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Abstract
To evaluate the cytotoxicity of PDT (photodynamic therapy) with Photogem� associated to blue LED (light-emitting diode)

on L929 and MDPC-23 cell cultures, 30000 cells/cm2 were seeded in 24-well plates for 48 h, incubated with Photogem�

(10, 25 or 50 mg/l) and irradiated with an LED source (460¡3 nm; 22 mW/cm2) at two energy densities (25.5 or 37.5 J/cm2).

Cell metabolism was evaluated by the MTT (methyltetrazolium) assay (Dunnet’s post hoc tests) and cell morphology by

SEM (scanning electron microscopy). Flow cytometry analysed the type of PDT-induced cell death as well and estimated

intracellular production of ROS (reactive oxygen species). There was a statistically significant decrease of mitochondrial

activity (90% to 97%) for all Photogem� concentrations associated to blue LED, regardless of irradiation time. It was also

demonstrated that the mitochondrial activity was not recovered after 12 or 24 h, characterizing irreversible cell damage.

PDT-treated cells presented an altered morphology with ill-defined limits. In both cell lines, there was a predominance of

necrotic cell death and the presence of Photogem� or irradiation increased the intracellular levels of ROS. PDT caused

severe toxic effects in normal cell culture, characterized by the reduction of the mitochondrial activity, morphological

alterations and induction of necrotic cell death.
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1. Introduction

PDT (photodynamic therapy) has been widely used in different

dental areas over the last decades, and excellent results have

been reported after its application for the treatment of oral cancer

and premalignant lesions (Allison et al., 2005, 2006; Yu et al.,

2008) as well as bacterial and fungal infections (Teichert et al.,

2002; Williams et al., 2006; Donnelly et al., 2007). The simplicity of

the PDT mechanism stimulated interest in this therapy, which is

characterized by the association of a photosensitizing agent and

visible light with a wavelength compatible with the photosensiti-

zer’s absorption spectrum (Konopka and Goslinski, 2007;

Buytaert et al., 2007). Photon absorption by the photosensitizer

leads it to a triple state of excitation that may interact with the

available oxygen, producing ROS (reactive oxygen species) and

singlet oxygen (Wainwright, 1998). All these products, originating

from PDT, may result in a cascade of oxidative events that cause

direct cell death, destruction of tumour vascularization and

activation of the host’s immune response (Wainwright, 1998).

Antimicrobial PDT has been indicated as an alternative

treatment for the elimination of microorganisms, especially

pathogens that are refractory to conventional therapies. The

singlet oxygen and all other released free radicals interact by

different mechanisms with diverse microbial cell structures, such

as proteins, lipid membranes and nucleic acids, resulting in

apoptotic or necrotic cell death (Konopka and Goslinski, 2007). The

increase of fungal infection incidence has been attributed to

indiscriminate use of broad-spectrum antibiotics, antifungal agents

and immunosuppressive drugs (Donnelly et al., 2008). Additionally,

there is a high incidence of Candida ssp. infections in immunode-

pressed and aged patients who continuously wear removable

dentures (Nikawa et al., 2003; Donnelly et al., 2008). Since the oral

cavity has an easy access for irradiation and application of drugs

with photosensitizing properties, PDT has been indicated for the

treatment of denture-induced stomatitis (Donnelly et al., 2008),

which is characterized as a clinical manifestation of oral candidosis

related to the use of complete dentures (Chandra et al., 2001).

Inactivation of Candida strains has been demonstrated in several

studies (Wilson and Mia, 1993; Zeina et al., 2001; Teichert et al.,

2002; Lambrechts et al., 2005a; Donnelly et al., 2007). However, it

has been reported that this fungus is more resistant and refractory to

treatment than Gram-positive bacteria (Lambrechts et al., 2005a).

According to Demidova and Hamblin (2005), the nuclear membrane,

the larger size of the fungal cell and the lower number of targets for

the singlet oxygen per cell unit volume, require a greater

concentration of photosensitizer and a greater amount of light to

inactivate the yeast. In addition, the similarity between fungal cells

and the mammalian cells hinders the selective accumulation of the

photosensitizer in the yeast (Donnelly et al., 2008).

Therefore, in order to consider the antifungal PDT as a clinical

treatment for denture-induced stomatitis, it is necessary to know

its antifungal potential, as well as its cytotoxic effect on the

1 To whom correspondence should be addressed (email pavarina@foar.unesp.br).
Abbreviations: DCF, dichlorodihydrofluorescein; DMEM, Dulbecco’s modified Eagles medium; H2-DCFDA, 29,79-dichlorodihydrofluorescein diacetate;
LED, light-emitting diode; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide; PDT, photodynamic therapy; ROS, reactive oxygen species;
SEM, scanning electron microscopy.
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individual’s normal cells. The effect of PDT with some photo-

sensitizers on keratinocyte and fibroblast cultures has been

demonstrated by several in vitro studies (Zeina et al., 2002;

Zeina et al., 2003; Chiu et al., 2005; Lambrechts et al, 2005b).

However, the toxicity of Photogem�, a first-generation haemato-

porphyrin-derived photosensitizer, associated with LEDs (light-

emitting diodes) on the normal cells has not yet been described.

LED systems are still not widely used in PDT and have been

suggested as a substitute to laser and optic fibers because they

are easy to handle, portable, cost-effective and available in a

variety of shapes and sizes (Konopka and Goslinski, 2007).

Therefore, this study evaluated the in vitro cytotoxicity of the

antifungal PDT with the photosensitizer Photogem� associated to

blue LED on fibroblast L929 and odontoblast-like MDPC-23 cell

cultures. For such purposes, cell metabolism was evaluated by

the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium

bromide] assay 0, 12 and 24 h after PDT. Cell morphology was

analysed by SEM (scanning electron microscopy). Flow cytometry

was employed to analyse the type of PDT-induced cell death

(necrosis or apoptosis) using annexin V and propidium iodine

staining as well as to estimate the intracellular levels of ROS using

H2-DCFDA (29,79-dichlorodihydrofluorescein diacetate) staining.

2. Materials and methods

2.1. Photosensitizer and light source (blue LED)

Photogem� is a first-generation haematoporphyrin-derived

photosensitizer (Limited Liability Company). The clinical applica-

tion of this photosensitizing agent in humans has been allowed by

the State Pharmacological Committee of the Russian Federation,

where the product has been developed. In Brazil, the clinical use

of Photogem� has been approved by the ANVISA (Brazilian

National Health Surveillance Agency). A stock solution of the

photosensitizer Photogem� was prepared in serum-free DMEM

(Dulbecco’s modified Eagle’s medium) without Phenol Red (Sigma

Chemical) at a concentration of 1000 mg/l and stored at 4˚C. The

Photogem� concentrations used in the present study (10, 25 and

50 mg/l) were obtained by dilution of the stock solution.

An LED system with a predominant wavelength of 455 nm

developed by the Physics Institute of São Carlos (University of São

Paulo, São Carlos, SP, Brazil) was used to excite the photo-

sensitizer. This system, called Biotable, is composed of eight royal

blue LEDs (LXHL-PR09 Luxeon� III Emitter, Lumileds Lighting) that

are uniformly distributed into the device. This distribution allowed a

homogenous illumination of the surface of a 24-well plate (Costar

Corp.) with a light intensity of 22 mW/cm2. The cells were submitted

to two energy densities, 25.5 and 37.5 J/cm2, according to an

exposure time to the blue LED of 19 and 28 min respectively.

2.2. Cell culture

The two cell lines used in this study were immortalized L929

fibroblasts, purchased from Adolfo Lutz Institute, and immorta-

lized odontoblast cell line MDPC-23, cultured at the Laboratory of

Experimental Pathology and Biomaterials of Araraquara Dental

School, Brazil (Hanks et al., 1998). Both cell lines were cultured in

DMEM (Sigma Chemical) supplemented with 10% bovine fetal

serum (Gibco), with 100 units/ml penicillin, 100 mg/ml streptomy-

cin and 2 mmol/l glutamine (Gibco) in a humidified incubator with

5% CO2 and 95% air at 37˚C (Isotemp Fisher Scientific). The cells

were subcultured every 3 days until an adequate number of cells

were obtained for the study. After reaching approximately 80%

density, the cells were trypsinized, seeded in sterile 24-well plates

(30 000 cells/cm2) and incubated for 48 h.

2.3. PDT

After 48 h of incubation, the culture medium was removed, and

cells were washed with PBS. The following groups were formed,

according to the treatment received: PDT (Photogem� 10, 25 or

50 mg/l+blue LED 25.5 or 37.5 J/cm2); Photogem� (10, 25 or 50

mg/l); blue LED (25.5 or 37.5 J/cm2) and negative control (no

treatment). The experimental and control groups are summarized

in Table 1. Aliquots of 1 ml of Photogem� at each concentration

(10, 25 or 50 mg/l) or DMEM without Phenol Red were transferred

individually to wells of 24-well plates and were incubated in

contact with the cells for 30 min protected from light. After the

incubation period, PDT and blue LED groups were irradiated using

the Biotable system for 19 or 28 min corresponding to energy

densities of 25.5 or 37.5 J/cm2, respectively. The Photogem�

group and the negative control group were maintained under

dark conditions for the same period corresponding to irradiation

(19 or 28 min).

2.4. Analysis of cell metabolism (MTT assay)

Cell metabolism was evaluated by SDH (succinic dehydrogenase)

enzyme, which is a measure of the mitochondrial respiration of the

cell (Mosmann, 1983). For this purpose, the MTT assay was used,

and mitochondrial activity was assessed 0, 12 and 24 h after PDT.

In 10 wells, 900 ml of DMEM in addition to 100 ml of MTT solution

(5 mg/ml sterile PBS) (Sigma Chemical) was applied to the cells

cultured in each well and incubated at 37˚C for 4 h. Thereafter, the

culture medium (DMEM with the MTT solution) was aspirated and

replaced by 600 ml of acidified propan-2-ol solution (0.04 M HCl)

to dissolve the blue crystals of formazan present in the cells.

Table 1 Experimental groups and treatments
P, Photogem�; L, light.

Groups Treatment

Negative control (no treatment) P2L2

Photogem� P+10 L2

P+25 L2

P+50L2

Blue LED P2L+ (19 min)
P2L+ (28 min)

PDT P+10L+ (19 min)
P+25L+ (19 min)
P+50L+ (19 min)
P+10L+ (28 min)
P+25L+ (28 min)
P+50L+ (28 min)

Cytotoxicity of photodynamic therapy
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Cell metabolism was determined as being proportional to the

absorbance measured at 570 nm wavelength with an ELISA plate

reader (Bio-Rad, model 3550-UV, microplate reader). The MTT

assay data presented a normal distribution and was analysed

statistically by ANOVA and Dunnet’s post hoc tests.

2.5. Analysis of cell morphology by SEM

For cell morphology analysis by SEM, sterile 12-mm-diameter

cover glasses (Fisher Scientific) were placed at the bottom of the

wells of all experimental and control groups immediately before

seeding the cell lines. After the experimental conditions had been

applied, the culture medium was removed, and the viable cells

that remained adhered to the glass substrate were fixed in 1 ml of

buffered 2.5% glutaraldehyde for 24 h and postfixed with 1%

osmium tetroxide for 1 h. The cells adhered to the glass substrate

were then dehydrated in a series of increasing ethanol concentra-

tions (30%, 50%, 70%, 95% and 100%) and immersed in HMDS

(1,1,1,3,3,3-hexamethyldisilazane; Acros Organics) for 90 min [23]

and stored in a desiccator for 24 h. The coverglasses were then

mounted on metallic stubs, sputter-coated with gold, and the

morphology of the surface-adhered L929 and MDPC-23 cells

were examined with a scanning electron microscope (JEOL-JMS-

T33A Scanning Microscope).

2.6. Type of cell death (annexin-V and propidium
iodide assay)

Both cell lines (L929 and MDPC-23) were cultured as monolayers

in 75-cm2 cell culture flasks, and after reaching approximately

80% density, the cells were trypsinized and seeded in 25-cm2 cell

culture flasks (30 000 cell/cm2). After 72 h in a humidified incuba-

tor, the culture medium was removed, and the cells were exposed

to Photogem� at experimental concentrations (10, 25 or 50 mg/l)

or to DMEM without Phenol Red for 30 min. Then, groups PDT and

blue LED were irradiated for 28 min (37.5 J/cm2). After these pro-

cedures, the cells were trypsinized and centrifuged at 500 rev./min

for 5 min. The supernatant was discarded, and the cells were

resuspended in 1 ml of ligation buffer containing 10 mM Hepes pH

7.4, 150 mM NaCl, 5 mM KCl, 1 mM MgCl2 and 1.8 mM CaCl2.

The cells were stained and analysed by FACS in a flow cytometer

(FACSCalibur; BD Biosciences) equipped with argon laser and

CellQuest software (BD Biosciences). At least 10 000 events were

collected for each sample. For acquisition of the cells labelled

positively for apoptosis, an aliquot of 250 ml of cell suspension of

each experimental condition and the negative control were treated

with annexin-V (Biomedical Sciences Institute) at a concentration

of 1:500 for 20 min in the dark. The apoptotic cells were acquired

in the FL-1 channel of the flow cytometer. The cells labelled

positively for necrosis were acquired immediately after the

addition of 0.2 mg/ml of propidium iodide in the FL-2 channel of

the flow cytometer.

2.7. Analysis of intracellular ROS

Under the same conditions described for detection of the type

of cell death, cellular ROS production was monitored by

spectrofluorimetry using a membrane-permeable fluorescent

probe, H2-DCFDA (Invitrogen), which is more specific for the

detection of H2O2 (hydrogen peroxide). After cell resuspension in

ligation buffer, an aliquot of 250 ml of cell suspension of each

experimental condition and negative control was treated with H2-

DCFDA 1 mM for 20 min in the dark. In the presence of ROS, the

H2-DCFDA is oxidated and converted into DCF (dichlorodihydro-

fluorescein), which emits fluorescence at 525 nm upon excitation

at 488 nm by the flow cytometer. The calibration was made by the

addition of known concentrations of DCF. DCF fluorescence was

monitored in the FL-1 of the flow cytometer. Data referring to the

type of cell death and intracellular ROS production were analysed

by paired Student’s t test. All statistical analyses were done at the

5% significance level and using SYSTAT software 5.03 for

Windows (SYSTAT, Inc.).

3. Results

3.1. Cell metabolism (MTT assay)

Figures 1, 2, 3 and 4 present the effect of PDT (P+L+), different

Photogem� concentrations (P+L2) and the blue LED (P2L+) at

the different periods of cell metabolism evaluation (0, 12 and 24 h).

Considering the negative control group (P2L2) as having 100% of

L929 and MDPC-23 cell metabolism, a significant reduction of cell

metabolism (from 90% to 97%; P,0.05) was observed for all

Photogem� concentrations when the cells were irradiated by the

blue LED at both energy densities (25.5 and 37.5 J/cm2). In those

groups, there was no statistically significant difference (P.0.05)

among the Photogem� concentrations (10, 25 and 50 mg/l).

The toxicity of Photogem� without exposure to light was also

evaluated. An initial stimulation of the mitochondrial activity (0 h)

was observed, which returned to normality within 24 h. Regarding

the effect of light, only the groups exposed to blue LED for 28 min

(37.5 J/cm2) had their mitochondrial activity reduced 24 h after

irradiation. Compared with the negative control, the metabolism of

Figure 1 Graphic presentation of the percentage values of fibroblast L929 cell
line metabolism over time (0, 12 and 24 h) considering the negative
control (P2L2) as 100%

The irradiation dose was 25.5 J/cm2 (19 min) for groups P2L+ and P+L+. The
asterisks indicate values that were significantly different from 100% (Dunnet’s post
hoc, P,0.05). Each point represents the average of 10 values (n510).
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L929 fibroblasts and MDPC-23 cells decreased by 30% (Figure 2)

and 23% (Figure 4), respectively.

3.2. Cell morphology (SEM)

Figure 5(a)–5(f) presents a panel of SEM micrographs of the L929

fibroblasts representative of the experimental and control groups.

For the negative control group (no treatment) and the groups

treated with blue LED or Photogem� (50 mg/l) alone, numerous

L929 fibroblasts that remained adhered to the glass substrate

exhibited a spindle-shaped appearance with few cytoplasmic

processes originating from the membrane (Figures 5a, 5e and 5f).

However, the negative control group exhibited a larger number of

mitoses when compared with the blue LED and Photogem�

controls. In the groups submitted to PDT, there was a smaller

number of L929 fibroblasts that remained adhered to the cover-

glass. These cells were round-shaped and small-sized and

exhibited fine and sometimes fragmented cytoplasmic processes.

In some areas of the glass substrate, remnants of cytoplasmic

membrane of dead cells were observed (Figures 5b, 5c and 5d).

This altered morphology observed immediately after PDT (0 h)

remained unchanged within the following 24 h, demonstrating the

irreversible nature of the damage caused by the PDT (Figure 5d).

Figures 6(a)–6(f) presents a panel of SEM micrographs of the

MDPC-23 odontoblast-like cells. These cells exhibited a wide

cytoplasm and numerous fine cytoplasmic processes originating

from the cell membrane (Figures 6a, 6e and 6f). The blue LED

group irradiated with an energy density of 37.5 J/cm2 presented

similar morphology to that of the negative control group. On the

other hand, the Photogem� (50 mg/l) group presented a smaller

number of cells adhered to the glass substrate and some cell-free

regions, compared with the negative control group (Figure 6e).

The groups submitted to the PDT presented an intense alteration

of the cell morphology, and it was not possible to identify the cell

cytoplasmic membrane. The few cells that remained adhered to

the glass substrate were small-sized and round-shaped

(Figures 6b, 6c and 6d). This altered morphology observed

immediately after PDT (0 h) remained unchanged within the

following 24 h, demonstrating the irreversible nature of the

damage caused by the PDT (Figure 6d).

3.3. Cell death induced by PDT

The type of cell death (apoptosis and necrosis) for both cell lines

(L929 e MDPC-23) caused by the contact with the Photogem�

associated or not to blue LED irradiation was evaluated by flow

cytometry. The exposure of MDPC cells to the three concentra-

tions of the photosensitizer (10, 25 and 50 mg/l) in the absence

of light induced 0.42%, 1.14% and 1.51% of apoptotic cell death,

respectively, and 1.14%, 13.85% and 34.69% necrotic cell

death respectively (Figure 7). The exposure of the L929 fibroblasts

to the three concentrations of the photosensitizer (10, 25 and 50

mg/l) in the absence of light induced 2.59%, 1.33% and 0.79% of

apoptotic cell death respectively and 6.59%, 7.85%, and 9.13%

of necrotic cell death respectively (Figure 7). These results indicate

Figure 2 Graphic presentation of the percentage values of fibroblast L929 cell
line metabolism over time (0, 12 and 24 h) considering the negative
control (P2L2) as 100%

The irradiation dose was 37.5 J/cm2 (28 min) for groups P2L+ and P+L+. The
asterisks indicate values that were significantly different from 100% (Dunnet’s post
hoc, P,0.05). Each point represents the average of 10 values (n510).

Figure 3 Graphic presentation of the percentage values of MDPC-23
odontoblast-like cell line metabolism over time (0, 12 and 24 h)
considering the negative control (P2L2) as 100%

The irradiation dose was 25.5 J/cm2 (19 min) for groups P2L+ and P+L+. The
asterisks indicate values that were significantly different from 100% (Dunnet’s post
hoc, P,0.05). Each point represents the average of 10 values (n510).

Figure 4 Graphic presentation of the percentage values of MDPC-23
odontoblast-like cell line metabolism over time (0, 12 and 24 h)
considering the negative control (P2L2) as 100%

The irradiation dose was 37.5 J/cm2 (28 min) for groups P2L+ and P+L+. The
asterisks indicate values that were significantly different from 100% (Dunnet’s post
hoc, P,0.05). Each point represents the average of 10 values (n510).

Cytotoxicity of photodynamic therapy
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a predominance of necrotic cell death for both cell lines under these

conditions. For PDT groups (Photogem�+blue LED), the destruc-

tion of both cell lines was so intense that it was not possible to

identify and acquire the cells labelled positively for either apoptosis

or necrosis by flow cytometry, making this technique unviable for

analysis of the type of cell death in these groups.

3.4. Intracellular ROS production

In the negative control group, intracellular ROS production by both

cell lines (L929 and MDPC-23) was negligible. The contact with

Photogem� without light activation increased significantly intra-

cellular ROS production in a dose-dependent manner in all

experimental groups compared with negative control (P,0.05).

However, there was no statistically significant difference among

the photosensitizer concentrations (10, 25 and 50 mg/l) on the

same cell line. The MDPC-23 cell line presented higher intracel-

lular ROS levels compared with L929 fibroblasts. The irradiation

of both cell lines for 28 min (37.5 J/cm2) in the absence of

photosensitizer also produced high intracellular ROS levels

(P,0.05). The level of ROS revealed a fluorescence intensity

value which is presented in Figure 8. Again, for PDT groups

Figure 5 SEM micrographs of the L929 cell line
(a) Negative control group of L929 fibroblasts: a large number of L929 fibroblasts can
be observed and numerous mitoses are occurring (arrows). These cells are spindle-
shaped cells present as fine cytoplasmic processes covering the glass substrate. SEM,
6500. (b) Group PDT/Photogem� (10 mg/l) irradiated for 28 min: fibroblasts exhibit
an altered morphology with ill-defined cell limits. The cells are small-sized, and cell
remnants can be observed adhered to the glass substrate. SEM, 6500. (c) Group PDT/
Photogem� (50 mg/l) irradiated for 28 min: the cells present the same characteristics
as those of the cells treated with 10 mg/l concentration (Figure 5b), indicating the lack
of differences between the Photogem� concentrations in this cell line. SEM, 6500.
(d) Group PDT/Photogem� (50 mg/l) irradiated for 28 min: there was maintenance of
the morphological alterations of the L929 fibroblasts 24 h after PDT, demonstrating the
irreversible damage cause by this therapy. SEM, 6500. (e) Group Photogem� (50 mg/
l). The L929 fibroblasts did not exhibit morphological alterations after contact with the
Photogem� even at the highest concentration evaluated. However, there was a
smaller number of cells adhered to the glass substrate and a smaller number of
mitoses. SEM, 6500. (f) Group light: the cells of this group were irradiated with the
highest energy density (37.5 J/cm2). There were no significant morphological
alterations, although a smaller number of cells remained adhered to glass substrate
compared with the control group. SEM, 6500.

Figure 6 SEM micrographs of the MDPC-23 cell line
(a) Negative control group of odontoblast-like cells: a large number of MDPC-23 cells
can be observed adhered to the glass substrate. These cells present a wide cytoplasm
and multiple cytoplasmic processes that seem to be keeping the cells attached to the
glass substrate. SEM, 6500. (b) Group PDT/Photogem� (10 mg/l) irradiated for
28 min: the MDPC-23 cells exhibit an altered morphology with ill-defined limits. The
cells are small-sized, and cell remnants can be observed adhered to the glass
substrate. SEM, 6500. (c) Group PDT/Photogem� (50 mg/l) irradiated for 28 min: the
cells present the same characteristics as those of the cells treated with 10 mg/l
concentration (Figure 6b), indicating the lack of differences between the Photogem�

concentrations in this cell line. (d) Group PDT/Photogem� (50 mg/l) irradiated for
28 min: there was maintenance of the morphological alterations of the MDPC-23 L929
fibroblasts 24 h after PDT, demonstrating the irreversible damage cause by this
therapy. SEM, 6500. (e) Group Photogem� (50 mg/l): The MDPC-23 cells did not
exhibit morphological alterations after contact with the Photogem� even at the highest
concentration evaluated. However, some cell-free areas could be also seen (arrows).
SEM, 6500. (f) Group light: the cells of this group were irradiated with the highest
energy density (37.5 J/cm2). There were no morphological alterations compared with
the control. SEM, 6500.
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(Photogem�+blue LED), the destruction of both cell lines was so

intense that it was not possible to acquire the cells labelled

stained with H2-DCFDA by flow cytometry, making this technique

unviable for analysis of the intracellular ROS production in these

groups.

4. Discussion

The present study evaluated the cytotoxic potential of PDT with

Photogem� associated to a blue LED system on L929 fibroblast

and odontoblast-like MDPC-23 cell cultures. These cell lines have

been widely used to evaluate the in vitro cytotoxic effects of

biomaterials and dental materials (Serrano et al., 2005; Aranha et

al., 2006; Jorge et al., 2007; de Souza Costa et al., 2008). The use

of more than one type of cell culture has been suggested by some

authors due to the different cell responses observed after PDT,

and the effects of this therapy are considered to be cell-

dependent (Ahn et al., 2004; Postigo et al., 2006). However, in

the present study, both the L929 fibroblasts and the odontoblast-

like MDPC-23 cells presented similar responses in the MTT assay,

and both had their morphology considerably altered by PDT,

showing disruption of cell membrane. However, in the cell death

and ROS production assays, MDPC-23 showed high levels of

necrotic death and ROS production possibly due to its potential to

accumulate Photogem� and further generating high levels of

singlet oxygen and hydrogen peroxide.

The clinical relevance of this study is to investigate whether

parameters used for inactivation of fungal species by PDT could

result in cytotoxic effects to the host’s normal cells. Zeina et al.

(2001) reported that the minimum PDT time needed for causing

irreversible damage on keratinocytes was 200-fold longer than

that required for inactivating bacteria. However, the minimum PDT

time was only 18-fold longer than that required for inactivation of

Candida albicans. These results suggest that PDT was able to

inactivate both bacteria and C. albicans without causing damage

to the normal cells and that inactivation of the yeast required a

longer irradiation time. Lambrechts et al. (2005b) evaluated the

cytotoxic effects of antifungal PDT on fibroblasts. These authors

observed total reduction of cell metabolism when TriP[4] porphyrin

was used at doses over 12.5 mM and that the inactivation dose for

C. albicans was 25 mM. In the present study, the results of the MTT

assay revealed a high toxicity of PDT to both cell lines. The

association of all Photogem� concentrations (10, 25 and 50 mg/l)

with both blue LED energy densities (25.5 and 37.5 J/cm2)

reduced significantly the cell metabolism (Figures 1–4). The

parameters used in this study were previously established based

on data obtained in our laboratory referring to specific PDT

parameters for inactivation of standard and fluconazol resistant

C. albicans and Candida glabrata strains. Inactivation of Candida

ssp. by PDT is a complex and multistaged process, different from

the inactivation of bacteria, which is a simpler process. However,

as PDT effectiveness depends on ROS and singlet oxygen

generation, a greater quantity of these compounds must be

produced to act on larger-sized cells that present a greater variety

of targets, including an additional barrier like the nuclear

membrane (Demidova and Hamblin, 2005). Therefore the inac-

tivation of the different Candida species requires a higher

photosensitizer concentration and a higher energy density, which

increases the probability of causing damage to the host’s normal

cells (Lambrechts et al., 2005a).

There are a number of factors related to PDT toxicity, such as

the type of photosensitizer, light intensity, cell type and preincuba-

tion time with the drug (Hsieh et al., 2003). In the present in vitro

study, no direct relationship was observed between the increase

in the photosensitizer concentration and the damage caused to the

L929 and MDPC-23 cells. The lowest photosensitizer concentration

(10 mg/l) was as toxic as the highest concentration (50 mg/l),

regardless of the blue LED irradiation time. This result differs from

those previous studies, which reported a dose-dependent rela-

tionship between the photosensitizer concentration and PDT

toxicity for microorganisms or malignant cells (Ahn et al., 2004;

Bliss et al., 2004; Demidova and Hamblin, 2005). Some studies

Figure 7 Graphic presentation of the percentage of Photogem�-induced cell
death

The L929 and MDPC-23 cells were incubated with the different Photogem�

concentrations (10, 25 and 50 mg/l), and the type of cell death was evaluated by
flow cytometry with annexin-V and propidium iodide staining. Ctrl, control.

Figure 8 ROS produced by the contact of Photogem� and blue light irradiation
on L929 and MDPC-23 cells monitored by DCFDA fluorescence
detected by flow cytometry

Bars with the same letters represent means of four independent experiments that do
not differ significantly (Student’s t test; P.0.05).
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(Maisch et al., 2005; Bouillaguet et al., 2008) have found that the

dependence between drug concentration and cell damage was

generally in evidence when decimal dilutions (101, 102, 103) of

photosensitizer were used, which did not occur in this study. In

addition, the data obtained in the present study suggest that the

cell preincubation time with Photogem� (30 min) was able to

sensitize and saturate the cell sites in both L929 fibroblasts and

odontoblast-like cells, even when the lowest photosensitizer

concentration was used. The analysis by flow cytometry revealed

that the intracellular ROS levels produced by the L929 fibroblasts

and MDPC-23 cells after blue LED irradiation were able to cause

equally irreversible cell damage for the three photosensitizer

concentrations (10, 25 or 50 mg/l) (Figure 8). It was also observed

that contact with the Photogem� increased the ROS levels for the

three photosensitizer concentrations compared with the negative

control, in such a way that the ROS levels produced after cell

contact with the 10 mg/l concentration did not differ significantly

from those obtained with the 50 mg/l concentration.

The irreversibility of the cell damage caused by the PDT was

demonstrated by the evaluation of cell metabolism at different

periods after treatment (0, 12 and 24 h). The results revealed that

even 24 h after PDT, cell metabolism remained between 3% and

10% compared with the negative control group (no treatment),

which was considered as having 100% of metabolism. The

evaluation of mitochondrial activity over time is recommended

because it has been demonstrated that the MTT assay performed

immediately after PDT provides higher cell metabolism values

compared with those obtained after longer evaluation periods

(Lambrechts et al., 2005b; Postigo et al., 2006). This result

suggests a continuous and cumulative effect of the light-activated

photosensitizer on cell culture. In this study, the cytotoxic effects

of the PDT persisted with time, which indicates that both L929

fibroblasts and MDPC-23 cells were unable to recover within 24 h

after PDT application. The SEM micrographs confirmed that the

damage caused by the PDT were irreversible (Figures 5d and 6d)

since the cells maintained the same morphological alterations 24 h

after the PDT. In the groups subjected to PDT, there was severe

cell destruction, with altered morphology, smaller size and smaller

number of cells adhered to the coverglass. In addition, there were

cell fragments and ill-defined cytoplasmic membrane limits in the

cells subjected to PDT (Figures 5 and 6).

Ahn et al. (2004) evaluated the antitumour effect of the PDT

using Photogem� on four uterine cancer cell lines. The authors

observed that cell irradiation in the presence of Photogem�

induced plasma membrane disruption and cell shrinkage, indi-

cating the plasma membrane as the main target for this

photosensitizer. As a rule, photosensitizer accumulation in the

mitochondria or endoplasmic reticulum causes apoptosis, while

its accumulation in the plasma membrane or lysosomes predis-

poses the cells to necrosis (Buytaert et al., 2007). In order to

characterize the type of cell death resulting from the PDT with

Photogem�, annexin-V and propidium iodine staining were used

to label the cells positively for apoptosis and necrosis, respect-

ively. However, the cell damage observed after PDT was so

severe that the flow cytometry was unable to identify and label

either of the cell lines (L929 and MDPC-23). Analysis of the type of

cell death by flow cytometry was successful only for the groups

exposed to the photosensitizer without light association (P+L2).

For the MDPC-23 cells, it was observed that the higher the

photosensitizer concentration (50 mg/l) the larger the number of

dead cells, estimated as 34.69% of necrotic cell death (Figure 7).

This cell line was more sensitive to the contact with Photogem�

compared with the L929 fibroblasts, which exhibited the highest

necrotic cell death rate (9.13%) with the 25 mg/l concentration

(Figure 7).

The isolated effect of light on the L929 and MDPC-23 cell

cultures was also observed in the present study because it is

known that the light may have either a stimulating or an inhibitory

effect on cell metabolism (Karu, 1990). At 24 h, a reduction of

cell metabolism was observed for the cells irradiated for 28 min

(37.5 J/cm2), although not statistically significant. Reduction of cell

metabolism after exposure to visible light has been reported in

previous studies (Wataha et al., 2004; Taoufik et al., 2008). Zeina

et al. (2002) observed that the longer the exposure time, the more

severe the cell damage and lesser the cell recovery after PDT.

High light intensities have been described to lead to the formation

of intracellular ROS, which may interact with endogenous

photosensitizers such as flavines and cytochrome c, causing cell

damage or even death (Karu, 1990). Lockwood et al. (2005)

observed that an energy density of 30 J/cm2 produced high ROS

levels and that the presence of antioxidants was shown to reduce

the toxic effects to the cells, thereby confirming that the ROS are

responsible for the reduction of cell metabolism. In the present

study, the intracellular ROS levels were also evaluated for L929

and MDPC-23 cells exposed to the blue LED without photo-

sensitizer, and greater ROS formation in the irradiated groups

could be observed compared with the negative control group

(P,0.05). Therefore, the data suggest that ROS produced by the

irradiated cells might have caused the cell damage observed 24 h

after the treatment (Figure 8).

Although the results of the present study demonstrate a cytotoxic

effect of PDT on the normal cell cultures, the importance of

developing alternative treatments for microbial control, especially

those resistant to conventional treatments is recognized. The

antimicrobial effect of haematoporphyrin derivatives has been widely

studied, and their effectiveness has been confirmed by several

studies (Bertoloni et al., 1989; Bliss et al., 2004; Lambrechts et al.,

2005a). However, since PDT efficacy depends on the combination

of a number of factors, the major challenge for this therapy is to

develop a single protocol that is able to inactivate different microbial

species without harming the host’s normal cells. Further in vitro and

in vivo studies are required to develop PDT protocols that could

inactivate Candida strains without harming the host’s normal tissues

and contribute to the treatment of oral candidosis.

5. Conclusions

The results of this study suggest that the PDT with Photogem�

associated to blue LED using the parameters established for

inactivation of Candida ssp. presented severe toxicity to L929

fibroblasts and odontoblast-like MDPC-23 cell cultures. There

was a marked decrease of cell metabolism mostly due to necrotic
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cell death, characterized by damage to the cytoplasmic cell

membrane. In addition, it may be suggested that the intracellular

ROS levels are responsible for the oxidative stress and the

consequent cell death.
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