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Abstract: Detailed information for performance analysis of parallel programs can be collected 
through trace files. Generally, trace files contain a register of individual events that occurred 
during program execution. Considering that the events traced are commonly of low level, like 
communication operations in a parallel system, and that it is increasingly common for the 
application programmer to use higher level abstractions (e.g., a parallel eigenvalues routine), a 
semantic gap exists between the collected information and the concepts used for the development 
of the application, hindering an effective use of that information. In this work, a new approach to 
trace files is proposed, where the files retain information about the different hierarchical levels in 
the application. The files follow an XML format, where routines are XML tags, with auxiliary 
routines called during its execution as child tags. The approach is demonstrated by its 
implementation for the MPI library level and the OOPS level, this last one being an object-
oriented framework with higher level abstractions for the development of parallel programs that 
uses MPI for its implementation. To complement the work, some analysis tools using the file 
format are presented. 
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1 Introduction 

Many applications require performances that cannot be 
achieved by a single processor, making parallel processing 
indispensable. Parallel machines ranging from multi-core 
CPUs to grid computing, from clusters of off-the-shelf 
computers to dedicated parallel systems are available to 
supply the needs of these applications. Nevertheless, due to 
the complexity of parallel software development, the use of 
parallel systems is mostly restricted to applications that can 
be easily decomposed in independent tasks or applications 
where their importance justifies the higher investment in 
resources needed. 

One of the reasons for this situation is the importance of 
performance for parallel programs, as performance is 
commonly the factor that justifies switching to a parallel 
implementation of the program, despite the resulting 
additional code complexity and hardware cost. Given a 
parallel application, it is therefore important to be able to 
analyse the factors that determine its performance. Many 
tools have been proposed to help this evaluation, like 
Automated Instrumentation and Monitoring System 
(AIMS) (Fineman et al., 1997), Pablo (Reed et al., 1993) 
and Vampir (Moore et al., 2001), among other (see also 
Section 2). The technique of trace files is used to register 
events that occur during program execution. Through the 
analysis of these events and their times, conclusions can be 
drawn about performance bottlenecks or sections of the 
code where optimisations might be useful. 

Parallel programs can be developed using the 
communication libraries, like Message Passing Interface 
(MPI) (MPI Forum, 1994) or PVM (Geist et al., 1994), but 
higher level solutions like ScaLAPACK (Blackford et al., 
1997) are being used because they provide abstractions that 
are closer to the application domain and can be optimised 
by experts to achieve high performance for a wide range of 
platforms. The use of higher level abstractions creates a 
semantic gap problem when working with trace files 
because these are generally based on lower level events, 
like communication operations. For concreteness, consider 
the example of the user of the POOLALi library 
(Rodrigues, 2004), an object-oriented wrapper to the 
ScaLAPACK eigenvalues/eigenvectors routines. POOLALi 
is based on ScaLAPACK, that is based on PBLAS; the last 
is based on BLACS, that is implemented using MPI (or 
PVM) (see Figure 1). For the user of POOLALi, trace 
events related with MPI communication operations are 
useless. It is important that events at the level of POOLALi 
method calls be registered. But in some cases, further 
analyses require access to events of a lower level 
abstraction. A full trace file-based approach to performance 
analysis should therefore include information on events 
over all abstraction levels. 

This article presents the Hierarchical Analyses tool, 
which enables performance evaluation at different 
abstraction levels. The reminder of this articles is organised 
as follows: Section 2 discusses some related performance 
analysis tools; Section 3 presents the tool proposed in this 
work; Section 4 shows the results of some experiments with 

the proposed tool, using a molecular dynamics application 
implemented in MPI and in the Object-Oriented Parallel 
System (OOPS) framework (Sonoda and Travieso, 2006); 
and the conclusions are presented in Section 5. 

Figure 1 Different abstractions levels in the POOLALi parallel 
library 

 

2 State of the art 

Performance evaluation aims at identifying performance 
bottlenecks. Tools are used to help understand the  
behaviour of parallel programs, load balancing, amount of 
communications and other issues closely related with  
the performance of the application. Without trying to  
be comprehensive, some performance-related tools are 
presented below. 

The traditional tool gprof helps identify procedures or 
lines of code where the program spends most of its time 
(Graham et al., 1982), collecting information about the time 
taken in each routine and the number of calls. This 
information is useful for identifying optimisation or 
parallelisation candidates. There is no explicit support for 
parallelism in gprof. 

Multiprocessing Environment (MPE) is related with the 
MPICH implementation of MPI, but can be used in other 
implementations. It supports facilities including profiling 
and visualisation tools. The profiling library works with the 
profiling interface of MPI (Moore et al., 2001). 

Pablo (Browne et al., 1998; Reed et al., 1993),  
Paraver (Labarta et al., 2001) and Vampir (Moore et al., 
2001; Browne et al., 1998) are environments for collection, 
analysis and visualisation of performance data  
of parallel programs. Events registered correspond to 
communication and I/O operations of MPI. Paraver works 
also with OpenMP and Java. Vampir has a mechanism  
limit the quantity of recorded events, by choosing the most 
appropriate events to the desired analysis. 

Paradyn (Miller et al., 1995) and AIMS (Yan, 1994) 
enable real-time monitoring of parallel programs. In 
Paradyn, instrumentation is dynamically adjusted during 
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program execution. The user specifies the performance data 
to collect (like CPU time, communication or 
synchronisation operations) and the parts of the program to 
instrument. There is no need to recompile the program to 
change the instrumentation behaviour. In AIMS, the 
program behaviour can be visualised through animations. 

In IPS (Miller et al., 1990; Hollingsworth et al., 1991), 
instrumentation code is automatically inserted during 
compilation, with collection of events like procedure call 
and return, synchronisation operations, I/O, process 
creation, among other. 

SCALEA (Truoung and Fahringer, 2003) is a 
performance instrumentation, measurement, analysis and 
visualisation tool for parallel programs that supports post-
mortem performance analysis. It supports profiling and 
tracing for parallel and distributed programs and sensor 
managers for capturing and managing performance data of 
individual computing nodes of parallel and distributed 
machines. The SCALEA profiling and tracing library 
collects timing, event and counter information, as well as 
hardware parameters [determined through an interface with 
a PAPI library (Browne et al., 2000)]. The Scalea 
Instrumentation System (SIS) provides the user with three 
alternatives to control instrumentation, which includes 
command-line options, SIS directives and a high level 
instrumentation library combined with an OpenMP, MPI, 
HPF front-end and unparser. All of these alternatives 
support the specification of performance metrics and code 
regions of interest for which SCALEA automatically 
generates instrumentation code and determines the desired 
performance values during or after program execution. 

The UAH Logging, Trace Recording and Analysis 
(ULTRA) instrumentation system (Cohen et al., 2007) 
provides an accurate and low cost mean of collecting  
traces of MPI program execution. These traces preserve the 
original parallel program’s data-dependencies by recording 
each MPI operation performed, the message source, 
destination and size, and the number of application 
instructions preceding the operation. The instrumentation 
introduces a small amount of overhead when an MPI 
communication library function is called, allowing data  
to be collected on large production runs of parallel 
programs. The instrumentation uses wrappers inserted 
between the application code and the functions that 
implement the MPI operations. 

3 Hierarchical analyses tool 

From the above presented performance evaluation tools, 
none is structured to take into account the various 
abstraction levels used in the development of the 
application. The following sections describe the 
HieraAnalyses tool, developed to demonstrate the 
feasibility of the approach proposed in this work. For the 
tool development was used software instrumentation in 
library routines of static form, by the facility of 
instrumentation and does not need a dedicated hardware. 
The tool is composed of two modules: a collector module, 

described in Section 3.1, and a transformation module, 
described in Section 3.2. 

3.1 Data collection 

The data to be used for performance analysis is collected 
and stored by the hieraCollector module. An eXtensible 
Markup Language (XML) (W3C, 2009) format is used 
which reflects the logical organisation of procedure calls in 
a tree structure, with a procedure call being child of the 
procedure call that resulted in its execution. 

Each library routine that should have its execution 
monitored must be adapted by inclusion of instrumentation 
code. This is done at present manually by the library 
developer or someone else with access to the source  
code. Collection operations where developed for the MPI 
library, using its profiling interface and for the OOPS 
framework (Sonoda and Travieso, 2006), a class library 
with high level abstractions for the development of parallel 
applications. As OOPS uses MPI for its implementation, it 
is possible, through the hierarchical collection system to 
analyse the performance at the level of OOPS method calls 
or MPI communication operations. 

The grammar of the generated XML file is defined by a 
Document Type Definition (DTD) file. The DTD used for 
MPI and OOPS is presented below. 

1 <!ELEMENT processor(hieraMPI | hieraOOPS)*> 
2 <!ATTLIST processor 
3  rank ID #REQUIRED 
4  init CDATA #REQUIRED 
5  finalize CDATA #REQUIRED> 
6 <!ELEMENT hieraMPI EMPTY> 
7 <!ATTLIST hieraMPI 
8  operation (address|allgather|allgatherv|allreduce| 
9   alltoall|alltoallv|barrier|broadcast|bsend| 
10   bsend_init|buffer_attach|buffer_detach|cancel| 
11   comm_create|comm_dup|comm_split|gatherv| 
12   gather|get_count|get_elements|ibsend| 
13   intercomm_create|intercomm_merge|iprobe| 
14   irecv|irsend|isend|issend|pack|pack_size|probe| 

receive| 
15   recv_init|reduce|reduce_scatter|request_free|rsend| 
16   rsend_init|scan|scatter|scatterv|send|send_init| 
17   sendrecv|ssend|sendrecv_replace|ssend_init|start| 
18   startall|test|testall|testany|test_cancelled|testsome| 
19   type_commit|type_contiguous|type_extent| 
20   type_free|type_hindexed|type_hvector| 
21   type_indexed|type_lb|type_size|type_struct| 
22   type_ub|type_vector|unpack|wait|waitall|waitany| 
23   waitsome) #REQUIRED 
24  file CDATA #REQUIRED 
25  line CDATA #REQUIRED 
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26  start_time CDATA #REQUIRED 
27  finish_time CDATA #REQUIRED 
28  count CDATA #IMPLIED 
29  type CDATA #IMPLIED 
30  dest CDATA #IMPLIED 
31  tag CDATA #IMPLIED 
32  com CDATA #IMPLIED 
33  … 
34 > 
35 <!ELEMENT hieraOOPS (hieraOOPS|hieraMPI| 
36 EMPTY)*> 
37 <!ATTLIST hieraOOPS 
38  class (unknown|distributionBlocked|matrix 
39   distributionCyclic|distributionNone|vector| 
40   vectorRepl|vectorSequ|group|partner|topology| 
41   topologyGrid|topologyLinear|topologyPlain| 
42   topologyPipe|topologyTorus|workgroup) 
43   #REQUIRED 
44  method (allreduce|barrier|bcast|col| 
45   distributionBlocked|distributionCyclic| 
46   distributionNone|fromEast|fromNext|fromNorth| 
47   fromSouth|fromWest|fromNE|fromNW|fromSE| 
48   fromSW|gather|gatherv|globalToLocal|isInGroup| 
49   localSize|localToGlobal|matrix|max|min|partner| 
50   prod|recv|reduce|row|scatter|scatterv|send|split| 
51   store|subGroup|sum|syncGhostsCart|topologyGrid| 
52   topologyPipe|toEast|toNorth|toPrevious|toSouth| 
53   toWest|toNE|toNW|toSE|toSW|vector|vectorRepl| 
54   vectorSequ) #REQUIRED 
55  file CDATA #REQUIRED 
56  line CDATA #REQUIRED 
57  start_time CDATA #REQUIRED 
58  finish_time CDATA #REQUIRED 
59  … 
60  > 

The root element processor holds information of process 
ID (like MPI rank) and times of start and finish of the 
execution. All operations executed, of types hieraMPI or 
hieraOOPS, are a child of this element. These operations 
may be point-to-point or collective operations in MPI or 
method calls in OOPS, with the information carried by each 
element dependent on the element; common information 
are operation name, file name and line of the call, start and 
finish time of the operation. For OOPS elements, class and 
method names are registered. 

During execution of the instrumented code, two types of 
files are generated: a configuration file and one trace file for 
each process. The configuration file holds information 
about all trace files. 

3.2 Analysis 

The hieraTransform module reads the collected data and 
builds a memory representation from which measurements 
can be computed for the performance analysis of the 
program execution. It can thus be understood as operating 
in two phases: transformation and measurements. 

The representation phase reads the XML files generated 
by hieraCollector and build a graph whose vertexes 
represent the operations (the elements in the XML 
representation) and whose edges represent relations 
between them. Figure 2 shows an example with four 
processors (P0, … , P3) and where, for example, P0 
executed the operations send, bcast and send. Related 
communication operations have their respective vertexes 
linked by edges. 

Figure 2 Example of the graph generated by hieraTransform 

 

The edges of the graph enable various navigation 
procedures to be deployed for performance evaluation. One 
possibility as shown in Figure 3 is to traverse the graph one 
operation at a time, going through each operation just once 
and each process one after the other. The operations in the 
figure are therefore traversed in the order 1, 2, 3, 4, … , 15. 

Figure 3 Graph traversal based on the operations 

 

Another possibility is to traverse the partner operations (like 
the corresponding receive to a send) before going on to the 
next operation of the same process, as shown in Figure 4. In 
this case, each operation may be visited many times. For the 
example in the figure, the traversal is 1, 2, 6, 3, 7, 11, 15, 4, 
8, 5, 6, 2, 7, 8, 4, 12, 9, 10, 14, 11, 12, 8, 13, 14, 10, 15. 
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Figure 4 Traversal based on partner operations 

 

In the measurement phase, the first task is to choose what to 
measure. Due to the large amount of data collected during 
the execution of parallel programs, the measurements  
are generally of the statistical nature, like number of  
operations, averages, standard deviations or histograms. 
The measurements are evaluated by traversing the graph in 
an appropriate way, e.g., using the traversal by operations 
of Figure 3 to count the number of each operation type 
executed. 

4 Experiments 

As already said, hieraCollector was implemented for MPI 
and OOPS. MPI was chosen due to its widespread use by 
the parallel programming community and its availability for 
a wide range of machines, enabling code portability while 
retaining execution efficiency. 

The OOPS framework is a class library aiming to 
support the development of regular scientific applications 
with extensive use of distributed matrices and vectors. It 
supports higher level abstractions for the development of 
the parallel code, without completely hidden the 
parallelism. Its implementation is based on MPI. For this 
reason, it is well-suited as a testbed for the tool proposed in 
this work, as the user of OOPS will develop the code based 
on OOPS abstractions, instead of the underlying MPI 
abstractions. 

To test the tool in a real application scenario, a program 
that computes molecular dynamics of Lennard-Jones 
particles using the force decomposition algorithm of 
Plimpton (1995) was implemented and evaluated. A given 
number of particles are distributed in a tri-dimensional box 
subject to periodic boundary conditions and initial position 
and velocities for the particles are specified. Afterwards, the 
particles evolve according to the Lennard-Jones interaction 
among them. The computation of the interaction forces 
between each pair of particles is decomposed among the 
available processors, with the particles distributed in blocks 
to the processors, the processors arranged in a two-
dimensional processor grid and each processor being 
responsible for the interaction of particle in the same row 
with particles in the same column. See Plimpton (1995) for 
a complete description of the algorithm. The algorithm was 
implemented in an MPI version and an OOPS version. 

Execution times reported below refer to the execution 
on an eight node cluster of Pentium 4, 3.0 GHz machines 
running GNU/Linux. 

4.1 HieraCollector for MPI and OOPS 

The MPI and OOPS versions of the program were executed 
with four processes. The configuration file generated is 
similar for the two versions and shown in the frame below. 
The root is a hieraCollector element with the application 
name and number of processes used for the execution. The 
children are collect_file elements with the information 
about the files that have the collected data from each 
process. For instance, line 4 says that the data collected 
from the process with rank 0 is stored in the file named 
trace0.xml. 

1 <?xml version=”1.0”?> 
2 <!DOCTYPE hieraCollector SYSTEM 

”hieraCollector.dtd”> 
3 <hieraCollector application=”dinamica” 

count_proc=”4”> 
4  <collect_file rank=”P0”>trace0.xml</collect_file> 
5  <collect_file rank=”P1”>trace1.xml</collect_file> 
6  <collect_file rank=”P2”>trace2.xml</collect_file> 
7  <collect_file rank=”P3”>trace3.xml</collect_file> 
8 </hieraCollector> 

Part of the contents of file trace0.xml for the MPI 
program version is shown in the box below. It shows  
the root element processor with process identification 
rank=P0, start and finish times. Children of processor are 
the various MPI operations executed, all of type hieraMPI 
and corresponding operation fields (broadcast, receive, 
send, etc.) and fields for information about the operation, 
like file and line number, start and finish time, etc. 

1 <?xml version=”1.0” encoding=”ISO-8859-1”?> 
2 <!DOCTYPE processor SYSTEM ”trace.dtd”> 
3 <?xml-stylesheet type=”text/xsl” 
4  href=”visual.xsl”?> 
5 <processor rank=”P0” init=”0.01229” 
6  finalize=”1.96906”> 
7 <hieraMPI operation=”broadcast” file=”md.c” 
8  line=”37”start_time=”0.01992” 
9  finish_time=”0.02001”count=”1” 
10  type=”MPI_INT” root=”0” 
11  comm=”MPI_COMM_WORLD”/> 
12 <hieraMPI operation=”receive” file=”auxfmd.c” 
13  line=”51”start_time=”0.02540” 
14  finish_time=”0.02542”count=”1” 
15  type=”MPI_INT” rem=”1” tag=”0” 
16  comm=”MPI_COMM_WORLD”/> 
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17 <hieraMPI operation=”send” file=”auxfmd.c” 
18  line=”58”start_time=”0.02645” 
19  finish_time=”0.02649” count=”1536” 
20  type=”MPI_FLOAT” dest=”1” tag=”1” 
21  comm=”MPI_COMM_WORLD”/> 
22 <hieraMPI operation=”type_contiguous” 
23  file=”md.c” line=”92” start_time=”0.04312” 
24  finish_time=”0.04313”count=”3” 
25  oldtype=”MPI_FLOAT” newtype=”P6_dtype”/> 
26 <hieraMPI operation=”type_commit” file=”md.c” 
27  line=”93”start_time=”0.04316” 
28  finish_time=”0.04316”type=”P6_dtype”/> 
29 <hieraMPI operation=”scan” file=”md.c” line=”95” 
30  start_time=”0.04319” finish_time=”0.04321” 
31  count=”1”type=”MPI_INT” op=”MPI_SUM” 
32  comm.=”MPI_COMM_WORLD”/> 
33 <hieraMPI operation=”allgatherv” file=”md.c” 
34  line=”137”start_time=”0.05551” 
35  finish_time=”0.05568”scount=”512” 
36  stype=”MPI_INT” rcount=”512” 
37  rtype=”MPI_INT” comm=”P5_comm”/> 
38 <hieraMPI operation=”reduce” file=”md.c” 
39  line=”171”start_time=”0.07606” 
40  finish_time=”0.07609”count=”1536” 
41  type=”MPI_FLOAT” op=”MPI_SUM” 
42  root=”1” comm=”P5_comm”/> 
43 … 
44 </processor> 

The following box shows part of the trace1.xml file 
generated by the execution of process rank 1 of the OOPS 
version of the molecular dynamics code. The root element 
is again processor, with rank information rank="P1" and 
initial and final time for the process. The children are 
hieraOOPS elements for the methods called during the 
execution, with information about class and method.  
For instance, line 6 shows the call for the constructor of 
class TopologyPipe, implemented in line 17 of file 
TopologyPipe.cc, called with arguments next and 
previous as specified. 

1 <?xml version=”1.0” encoding=”ISO-8859-1”?> 
2 <!DOCTYPE processor SYSTEM ”trace.dtd”> 
3 <?xml-stylesheet type=”text/xsl” href=”visual.xsl”?> 
4 <processor rank=”P1” init=”0.000064” 
5  finalize=”134.766716”> 
6 <hieraOOPS file=”TopologyPipe.cc” line=”17” 
7  class=”OOPS::TopologyPipe” 
8  method=”TopologyPipe”previous=”0” next=”2” 
9  start_time=”0.014255”finish_time=”0.014377”/> 
10 <hieraOOPS file=”TopologyGrid.cc” line=”4273” 

11  class=”OOPS::TopologyGrid” method=”split” 
12  color=”0” key=”1” start time=”0.014401” 
13  finish_time=”0.023591”> 
14  <hieraOOPS file=”Topology.cc” line=”2221” 
15   class=”OOPS::Group” method=”split” color=”0” 
16   key=”1”start_time=”0.014440” 
17   finish_time=”0.023584”/> 
18 </hieraOOPS> 
19 <hieraOOPS file=”TopologyGrid.cc” line=”4274” 
20  class=”OOPS::TopologyGrid” method=”split”  
21  color=”1”key=”1” start_time=”0.023638” 
22  finish_time=”0.031642”> 
23  <hieraOOPS file=”Topology.cc” line=”2221” 
24   class=”OOPS::Group” method=”split” color=”1” 
25   key=”1”start_time=”0.023672” 
26   finish_time=”0.031634”/> 
27 </hieraOOPS> 
28 <hieraOOPS file=”molecularDynamicsOOPS.cc” 
29  line=”0”class=”OOPS::TopologyGrid” 
30  method=”TopologyGrid”gsize=”4” cols=”2” 
31  start_time=”0.014385”finish_time=”0.031741”/> 
32 <hieraOOPS file=”molecularDynamicsOOPS.cc” 
33  line=”45” class=”OOPS::TopologyGrid” 
34  method=”bcast” root=”0” start_time=”0.031749” 
35  finish_time=”0.031878”> 
36  <hieraOOPS file=”Topology.cc” line=”2335” 
37   class=”OOPS::Group” method=”bcast” 
38   root=”0” start_time=”0.031788” 
39   finish_time=”0.031872”> 
40   <hieraMPI operation=”broadcast” 

file=”Topology.cc” 
41    line=”2335” count=”1” type=”MPI_INT” 
42    root=”0” comm=”OOPS_Comm1” 
43    start_time=”0.031788”  

finish_time=”0.031866”/> 
44  </hieraOOPS> 
45 </hieraOOPS> 
46 <hieraOOPS file=”molecularDynamicsOOPS.cc” 
47  line=”46” class=”OOPS::TopologyGrid” 
48  start_time=”0.031885” finish_time=”0.032002”> 
49  <hieraOOPS file=”Topology.cc” line=”2335” 
50   class=”OOPS::Group” method=”bcast” root=”0” 
51   start_time=”0.031918” finish_time=”0.031995”> 
52   <hieraMPI operation=”broadcast” 
53    file=”Topology.cc” line=”2335” count=”1” 
54    type=”MPI_INT” root=”0”  

comm=”OOPS_Comm1” 
55    start_time=”0.031918”  

finish_time=”0.031989”/> 
56  </hieraOOPS> 
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57 </hieraOOPS> 
58 <hieraOOPS file=”molecularDynamicsOOPS.cc” 
59  line=”47” class=”OOPS::TopologyGrid” 
60  method=”bcast” root=”0” start_time=”0.032008” 
61  finish_time=”0.032123”> 
62  <hieraOOPS file=”Topology.cc”line=”2335 
63   class=”OOPS::Group” method=”bcast” 
64   root=”0” start_time=”0.032043” 
65   finish_time=”0.032118”> 
66   <hieraMPI operation=”broadcast” 
67    file=”Topology.cc” line=”2335” count=”1” 
68    type=”MPI_INT” root=”0”  

comm=”OOPS_Comm1” 
69    start_time=”0.032043”  

finish_time=”0.032112”/> 
70  </hieraOOPS> 
71 </hieraOOPS> 
72 … 
73 </processor> 

The hierarchical structure of the file can be observed in 
lines 32 to 40. The call to the method bcast of class 
TopologyGrid (line 32) results in a call of method bcast 
of class Group (line 36), that calls the hieraMPI element 
broadcast (line 40). 

4.2 HieraTransform for MPI and OOPS 

To demonstrate analysis tools based on the described  
graph structure generated from the collected files, some 
applications were developed to extract some statistical 
performance data. One of them counts the number of 
operations of each type in each hierarchical level; another 
computes the number of the operations of each type 
discriminating by processor and between MPI and OOPS 
operations; a third application simply collects the total 
number of each operation executed; and lastly, an 
application that computes the total communication and 
computation times for each processor. 

4.2.1 Evaluating the MPI molecular dynamics 
program 

Table 1 shows the number of operations in hierarchical  
level 0 of the MPI application (the only one present in this 
case). The process column shows the processes involved in 
the application execution. The level column shows the level 
in the hierarchy, in this case, there is just one level 0. The 
count column shows the number of operations in the level 
0. All processes execute about the same number of 
operations, with process 0 executing about 10% more than 
the others. 

Table 2 gives more information, listing the type of 
collection (all MPI in this case), the operation executed, file 
and line number of the call and number of times the  
 

operation was called. Due to the amount of collected 
information, only operations of process 0 are shown in the 
table. The reduce operations in lines 171 and 175 of file 
md.c are the most executed operations by process 0. 

Table 1 Number of operations in the MPI version of the 
molecular dynamics program 

Process Level Count 

0 0 2,396 
1 0 2,144 
2 0 2,144 
3 0 2,144 

Table 2 Number of operations listed by individual operation 
in the MPI version of the molecular dynamics code 

Category Operation File Line Count 

mpi allgather md.c 107 1 
mpi allgather md.c 108 1 
mpi allgatherv md.c 137 1 
mpi allgatherv md.c 139 1 
mpi allgatherv md.c 150 200 
mpi allgatherv md.c 156 200 
mpi broadcast md.c 37 1 
mpi broadcast md.c 38 1 
mpi broadcast md.c 39 1 
mpi broadcast md.c 40 1 
mpi broadcast md.c 41 1 
mpi broadcast md.c 42 1 
mpi broadcast md.c 43 1 
mpi broadcast md.c 44 1 
mpi broadcast md.c 45 1 
mpi comm_split md.c 101 1 
mpi comm_split md.c 102 1 
mpi receive auxfmd.c 51 9 
mpi receive auxfmd.c 90 180 
mpi receive auxfmd.c 92 180 
mpi reduce md.c 171 400 
mpi reduce md.c 175 400 
mpi reduce md.c 183 200 
mpi reduce md.c 184 200 
mpi reduce md.c 185 200 
mpi reduce md.c 186 200 
mpi scan md.c 95 1 
mpi send auxfmd.c 58 9 
mpi type_commit md.c 93 1 
mpi type_contiguous md.c 92 1 

Table 3 shows the same information (for all processes), but 
collapsed by operation type. It can be seen that the code 
relies heavily on reduction operations. 
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Table 3 Number of operations of each type, for the MPI 
version of the molecular dynamics code 

Operation Count 

allgather 8 
allgatherv 1,608 
broadcast 36 
comm_split 8 
receive 378 
reduce 6,400 
scan 4 
send 378 
type_commit 4 
type_contiguous 4 

Finally, Table 4 shows communication and total execution 
times for the different processes. Note that communication 
time is a significant fraction of total time. 

Table 4 Total execution times and communication times  
(in seconds) for the four processes of the MPI 
molecular dynamics code 

Process Communication Total 

0 0.495700 1.784300 
1 0.915030 1.753440 
2 0.991050 1.753510 
3 0.972300 1.753490 

To give an idea of the influence of the instrumentation on 
execution time, Table 5 presents the total execution times 
for the application with and without instrumentation code. 
The difference is about 6%. 

Table 5 Influence of the instrumentation code on execution 
time of the MPI version of the molecular dynamics 
code (times in seconds) 

Process Instrumented Not instrumented 

0 1.784300 1.676900 
1 1.753440 1.655580 
2 1.753510 1.655580 
3 1.753490 1.655630 

4.2.2 Evaluating the OOPS molecular dynamics 
program 

Now, the same analysis is made for the OOPS version of  
the molecular dynamics code (the same algorithm, but 
implemented using OOPS primitives). 

Table 6 shows the number of operations executed in 
each of the abstraction levels 0, 1 and 2. Note the much 
higher number of operations than the MPI code. This is due 
to the fact that the current version of OOPS has no reduce 
operation over sections of arrays (like present in MPI), and 
therefore, the reductions must be executed in a loop for 
each particle. 

Table 6 Number of operations in each hierarchical level for 
the OOPS molecular dynamics code 

Process Level 0 Level 1 Level 2 

0 101,756 165,476 100,811 

1 101,756 100,948 100,811 

2 101,756 100,948 100,811 

3 101,756 100,948 100,811 

Table 7 discriminates the number of operations for  
process 2 by operation type and point of call. Note how 
most operations are MPI reduce operations (a total of  
100,000), executed at the request of the sum operations at 
lines 181 and 188 of molecularDynamicsOOPS.cc. 

The results for all processes summarised by operation 
type are shown in Table 8. Note how the operation count is 
dominated by operations sum (and the corresponding 
reduce), followed by the localSize and localToGlobal 
operations, responsible for the verification of the sizes of 
local parts of arrays and conversion from local to global 
array indexes, respectively. 

Finally, the effect of instrumentation on execution time 
of the code is shown in Table 9. It can be seen that the 
overload is of about 0.8%. Note that this is a small value, 
despite the high number of registered operations. 

5 Conclusions 

Due to the increasing use of higher level abstractions for  
the development of parallel codes, it is important that 
performance tools consider these levels and are able to 
generate information at the level understood by the 
application developer. 

This article presented the HieraAnalyses tool, 
developed to probe the feasibility of such kind of tools. The 
tool is composed of a collector model hieraCollector and a 
transformation module hieraTransform. The collector 
module writes performance information as an XML file 
with hierarchical structure following the hierarchical call 
structure of the execution. The transformation module 
builds a graph from the collected data, upon which various 
performance analyses may be carried out. 

The article described further the application of the tool 
to the analysis of a parallel molecular dynamics code 
written in two versions: one using only MPI operations  
and other using the OOPS framework, a high level 
framework implemented using MPI. It was shown that 
important information about the program execution and the 
parts of the code that require attention can be deduced from 
the graph structure that represents the performance 
information. 

A deeper use of the collected hierarchical information 
involves the visualisation of the information following the 
hierarchical structure present in the data. This may enable 
the user to find the important sections of the code in a  
top-down approach. This is a suggestion for future work. 
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Table 7 Discrimination of the number of operations for process 2 of the OOPS molecular dynamics code 

Category Operation File Line Count 

mpi allgather Topology.cc 2,655 2 
mpi allgatherv Topology.cc 2,622 2 
mpi allreduce Topology.cc 3,672 200 
mpi allreduce Topology.cc 3,837 600 
mpi broadcast Topology.cc 2,335 5 
mpi broadcast Topology.cc 2,423 3 
mpi broadcast Topology.cc 2,434 1 
mpi reduce Topology.cc 3,892 100,000 
mpi scan Topology.cc 4,202 1 
oops broadcast molecularDynamicsOOPS.cc 45 1 
oops broadcast molecularDynamicsOOPS.cc 46 1 
oops broadcast Topology.cc 2,423 3 
oops broadcast Topology.cc 2,434 1 
oops distributionBlocked Application 0 1 
oops gather Topology.cc 2,622 2 
oops gather Topology.cc 2,655 2 
oops gather Topology.h 3,019 60 
oops load Vector.h 1,606 4 
oops localSize Vector.h 1,285 4 
oops localSize Vector.h 1,531 4 
oops scan molecularDynamicsOOPS.cc 105 1 
oops scan Topology.cc 4,202 1 
oops scatter Vector.h 1,531 4 
oops scatter Topology.h 3,045 4 
oops split Topology.cc 2,221 2 
oops split TopologyGrid.cc 4,273 1 
oops store Vector.h 1,613 60 
oops sum molecularDynamicsOOPS.cc 181 50,000 
oops sum molecularDynamicsOOPS.cc 188 50,000 

 
 

Table 8 Operation count for all processes of the OOPS 
version of the molecular dynamics code 

Operation Count  Operation Count 

allgather 8  load 16 

allgatherv 8  localSize 32,800 

allreduce 3,200  localToGlobal 32,016 

broadcast 36  scatter 32 

reduce 400,000  split 16 

scan 12  store 240 

broadcast 72  sum 806,400 

distribBlocked 4  topologyGrid 4 

gather 3,712  topologyPipe 12 

 

Table 9 Execution times (in seconds) with and without 
instrumentation for the OOPS version of the 
molecular dynamics code 

Process Instrumented Not instrumented 

0 239.407456 237.457 
1 239.288433 237.458 
2 239.288600 237.459 
3 239.288144 237.471 
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