

 Universidade de São Paulo

2009

HieraAnalyses: a tool for hierarchical analysis

of parallel programs

International Journal of High Performance Systems Architecture,Olney : Indersciences Publishers,v.

2, n. 1, p. 58-67, 2009
http://www.producao.usp.br/handle/BDPI/49324

Downloaded from: Biblioteca Digital da Produção Intelectual - BDPI, Universidade de São Paulo

Biblioteca Digital da Produção Intelectual - BDPI

Departamento de Física e Ciência Interdisciplinar - IFSC/FCI Artigos e Materiais de Revistas Científicas - IFSC/FCI

http://www.producao.usp.br
http://www.producao.usp.br/handle/BDPI/49324

58 Int. J. High Performance Systems Architecture, Vol. 2, No. 1, 2009

Copyright © 2009 Inderscience Enterprises Ltd.

HieraAnalyses – a tool for hierarchical analysis of
parallel programs

Thatyana de Faria Piola Seraphim* and Enzo Seraphim
Engineering of Systems and Technologies of the Information Institute,
Federal University of Itajubá,
BPS Av., 1303, Itajubá–MG, Brazil
Fax: +55-35-36291187
E-mail: thatyana@unifei.edu.br
E-mail: seraphim@unifei.edu.br
*Corresponding author

Gonzalo Travieso
Institute of Physics of São Carlos,
University of São Paulo,
Trabalhador São-carlense Av.,
400, São Carlos–SP, Brazil
Fax: +55-16-33722218
E-mail: gonzalo@ifsc.usp.br

Abstract: Detailed information for performance analysis of parallel programs can be collected
through trace files. Generally, trace files contain a register of individual events that occurred
during program execution. Considering that the events traced are commonly of low level, like
communication operations in a parallel system, and that it is increasingly common for the
application programmer to use higher level abstractions (e.g., a parallel eigenvalues routine), a
semantic gap exists between the collected information and the concepts used for the development
of the application, hindering an effective use of that information. In this work, a new approach to
trace files is proposed, where the files retain information about the different hierarchical levels in
the application. The files follow an XML format, where routines are XML tags, with auxiliary
routines called during its execution as child tags. The approach is demonstrated by its
implementation for the MPI library level and the OOPS level, this last one being an object-
oriented framework with higher level abstractions for the development of parallel programs that
uses MPI for its implementation. To complement the work, some analysis tools using the file
format are presented.

Keywords: trace; performance analysis; parallel programming.

Reference to this paper should be made as follows: Seraphim, T.F.P., Seraphim, E. and
Travieso, G. (2009) ‘HieraAnalyses – a tool for hierarchical analysis of parallel programs’,
Int. J. High Performance Systems Architecture, Vol. 2, No. 1, pp.58–67.

Biographical notes: Thatyana de Faria Piola Seraphim is an Associate Professor at the
Engineering of Systems and Technologies of the Information Institute at the Federal University
of Itajubá, Itajubá–MG, Brazil. She received her MSc (Applied Physics, 2003) and PhD (Applied
Physics, 2007) from the Institute of Physics of São Carlos (IFSC/USP), University of São Paulo,
São Carlos–SP, Brazil. Her research interests include high performance computing and computer
architecture.

Enzo Seraphim is an Associate Professor at the Engineering of Systems and Technologies of the
Information Institute at the Federal University of Itajubá, Itajubá–MG, Brazil. He received his
MSc (Computer Science, 2000) and PhD (Computer Science, 2006) from the Institute of
Mathematics and Computing (ICMC/USP), University of São Paulo, São Carlos–SP, Brazil. His
research interests include database management systems (DBMS), data structure and high
performance computing.

Gonzalo Travieso is an Associate Professor at the Institute of Physics of São Carlos, at the
University of São Paulo, São Carlos–SP, Brazil. He is an Electronic Engineer from Escola de
Engenharia de São Carlos, University of São Paulo and received his MSc and PhD on Applied
Physics from the Institute of Physics of São Carlos, University of São Paulo, São Carlos–SP,
Brazil. His main research interests are on distributed systems and parallel programming.

 HieraAnalyses – a tool for hierarchical analysis of parallel programs 59

1 Introduction

Many applications require performances that cannot be
achieved by a single processor, making parallel processing
indispensable. Parallel machines ranging from multi-core
CPUs to grid computing, from clusters of off-the-shelf
computers to dedicated parallel systems are available to
supply the needs of these applications. Nevertheless, due to
the complexity of parallel software development, the use of
parallel systems is mostly restricted to applications that can
be easily decomposed in independent tasks or applications
where their importance justifies the higher investment in
resources needed.

One of the reasons for this situation is the importance of
performance for parallel programs, as performance is
commonly the factor that justifies switching to a parallel
implementation of the program, despite the resulting
additional code complexity and hardware cost. Given a
parallel application, it is therefore important to be able to
analyse the factors that determine its performance. Many
tools have been proposed to help this evaluation, like
Automated Instrumentation and Monitoring System
(AIMS) (Fineman et al., 1997), Pablo (Reed et al., 1993)
and Vampir (Moore et al., 2001), among other (see also
Section 2). The technique of trace files is used to register
events that occur during program execution. Through the
analysis of these events and their times, conclusions can be
drawn about performance bottlenecks or sections of the
code where optimisations might be useful.

Parallel programs can be developed using the
communication libraries, like Message Passing Interface
(MPI) (MPI Forum, 1994) or PVM (Geist et al., 1994), but
higher level solutions like ScaLAPACK (Blackford et al.,
1997) are being used because they provide abstractions that
are closer to the application domain and can be optimised
by experts to achieve high performance for a wide range of
platforms. The use of higher level abstractions creates a
semantic gap problem when working with trace files
because these are generally based on lower level events,
like communication operations. For concreteness, consider
the example of the user of the POOLALi library
(Rodrigues, 2004), an object-oriented wrapper to the
ScaLAPACK eigenvalues/eigenvectors routines. POOLALi
is based on ScaLAPACK, that is based on PBLAS; the last
is based on BLACS, that is implemented using MPI (or
PVM) (see Figure 1). For the user of POOLALi, trace
events related with MPI communication operations are
useless. It is important that events at the level of POOLALi
method calls be registered. But in some cases, further
analyses require access to events of a lower level
abstraction. A full trace file-based approach to performance
analysis should therefore include information on events
over all abstraction levels.

This article presents the Hierarchical Analyses tool,
which enables performance evaluation at different
abstraction levels. The reminder of this articles is organised
as follows: Section 2 discusses some related performance
analysis tools; Section 3 presents the tool proposed in this
work; Section 4 shows the results of some experiments with

the proposed tool, using a molecular dynamics application
implemented in MPI and in the Object-Oriented Parallel
System (OOPS) framework (Sonoda and Travieso, 2006);
and the conclusions are presented in Section 5.

Figure 1 Different abstractions levels in the POOLALi parallel
library

2 State of the art

Performance evaluation aims at identifying performance
bottlenecks. Tools are used to help understand the
behaviour of parallel programs, load balancing, amount of
communications and other issues closely related with
the performance of the application. Without trying to
be comprehensive, some performance-related tools are
presented below.

The traditional tool gprof helps identify procedures or
lines of code where the program spends most of its time
(Graham et al., 1982), collecting information about the time
taken in each routine and the number of calls. This
information is useful for identifying optimisation or
parallelisation candidates. There is no explicit support for
parallelism in gprof.

Multiprocessing Environment (MPE) is related with the
MPICH implementation of MPI, but can be used in other
implementations. It supports facilities including profiling
and visualisation tools. The profiling library works with the
profiling interface of MPI (Moore et al., 2001).

Pablo (Browne et al., 1998; Reed et al., 1993),
Paraver (Labarta et al., 2001) and Vampir (Moore et al.,
2001; Browne et al., 1998) are environments for collection,
analysis and visualisation of performance data
of parallel programs. Events registered correspond to
communication and I/O operations of MPI. Paraver works
also with OpenMP and Java. Vampir has a mechanism
limit the quantity of recorded events, by choosing the most
appropriate events to the desired analysis.

Paradyn (Miller et al., 1995) and AIMS (Yan, 1994)
enable real-time monitoring of parallel programs. In
Paradyn, instrumentation is dynamically adjusted during

60 T.F.P. Seraphim et al.

program execution. The user specifies the performance data
to collect (like CPU time, communication or
synchronisation operations) and the parts of the program to
instrument. There is no need to recompile the program to
change the instrumentation behaviour. In AIMS, the
program behaviour can be visualised through animations.

In IPS (Miller et al., 1990; Hollingsworth et al., 1991),
instrumentation code is automatically inserted during
compilation, with collection of events like procedure call
and return, synchronisation operations, I/O, process
creation, among other.

SCALEA (Truoung and Fahringer, 2003) is a
performance instrumentation, measurement, analysis and
visualisation tool for parallel programs that supports post-
mortem performance analysis. It supports profiling and
tracing for parallel and distributed programs and sensor
managers for capturing and managing performance data of
individual computing nodes of parallel and distributed
machines. The SCALEA profiling and tracing library
collects timing, event and counter information, as well as
hardware parameters [determined through an interface with
a PAPI library (Browne et al., 2000)]. The Scalea
Instrumentation System (SIS) provides the user with three
alternatives to control instrumentation, which includes
command-line options, SIS directives and a high level
instrumentation library combined with an OpenMP, MPI,
HPF front-end and unparser. All of these alternatives
support the specification of performance metrics and code
regions of interest for which SCALEA automatically
generates instrumentation code and determines the desired
performance values during or after program execution.

The UAH Logging, Trace Recording and Analysis
(ULTRA) instrumentation system (Cohen et al., 2007)
provides an accurate and low cost mean of collecting
traces of MPI program execution. These traces preserve the
original parallel program’s data-dependencies by recording
each MPI operation performed, the message source,
destination and size, and the number of application
instructions preceding the operation. The instrumentation
introduces a small amount of overhead when an MPI
communication library function is called, allowing data
to be collected on large production runs of parallel
programs. The instrumentation uses wrappers inserted
between the application code and the functions that
implement the MPI operations.

3 Hierarchical analyses tool

From the above presented performance evaluation tools,
none is structured to take into account the various
abstraction levels used in the development of the
application. The following sections describe the
HieraAnalyses tool, developed to demonstrate the
feasibility of the approach proposed in this work. For the
tool development was used software instrumentation in
library routines of static form, by the facility of
instrumentation and does not need a dedicated hardware.
The tool is composed of two modules: a collector module,

described in Section 3.1, and a transformation module,
described in Section 3.2.

3.1 Data collection

The data to be used for performance analysis is collected
and stored by the hieraCollector module. An eXtensible
Markup Language (XML) (W3C, 2009) format is used
which reflects the logical organisation of procedure calls in
a tree structure, with a procedure call being child of the
procedure call that resulted in its execution.

Each library routine that should have its execution
monitored must be adapted by inclusion of instrumentation
code. This is done at present manually by the library
developer or someone else with access to the source
code. Collection operations where developed for the MPI
library, using its profiling interface and for the OOPS
framework (Sonoda and Travieso, 2006), a class library
with high level abstractions for the development of parallel
applications. As OOPS uses MPI for its implementation, it
is possible, through the hierarchical collection system to
analyse the performance at the level of OOPS method calls
or MPI communication operations.

The grammar of the generated XML file is defined by a
Document Type Definition (DTD) file. The DTD used for
MPI and OOPS is presented below.

1 <!ELEMENT processor(hieraMPI | hieraOOPS)*>
2 <!ATTLIST processor
3 rank ID #REQUIRED
4 init CDATA #REQUIRED
5 finalize CDATA #REQUIRED>
6 <!ELEMENT hieraMPI EMPTY>
7 <!ATTLIST hieraMPI
8 operation (address|allgather|allgatherv|allreduce|
9 alltoall|alltoallv|barrier|broadcast|bsend|
10 bsend_init|buffer_attach|buffer_detach|cancel|
11 comm_create|comm_dup|comm_split|gatherv|
12 gather|get_count|get_elements|ibsend|
13 intercomm_create|intercomm_merge|iprobe|
14 irecv|irsend|isend|issend|pack|pack_size|probe|

receive|
15 recv_init|reduce|reduce_scatter|request_free|rsend|
16 rsend_init|scan|scatter|scatterv|send|send_init|
17 sendrecv|ssend|sendrecv_replace|ssend_init|start|
18 startall|test|testall|testany|test_cancelled|testsome|
19 type_commit|type_contiguous|type_extent|
20 type_free|type_hindexed|type_hvector|
21 type_indexed|type_lb|type_size|type_struct|
22 type_ub|type_vector|unpack|wait|waitall|waitany|
23 waitsome) #REQUIRED
24 file CDATA #REQUIRED
25 line CDATA #REQUIRED

 HieraAnalyses – a tool for hierarchical analysis of parallel programs 61

26 start_time CDATA #REQUIRED
27 finish_time CDATA #REQUIRED
28 count CDATA #IMPLIED
29 type CDATA #IMPLIED
30 dest CDATA #IMPLIED
31 tag CDATA #IMPLIED
32 com CDATA #IMPLIED
33 …
34 >
35 <!ELEMENT hieraOOPS (hieraOOPS|hieraMPI|
36 EMPTY)*>
37 <!ATTLIST hieraOOPS
38 class (unknown|distributionBlocked|matrix
39 distributionCyclic|distributionNone|vector|
40 vectorRepl|vectorSequ|group|partner|topology|
41 topologyGrid|topologyLinear|topologyPlain|
42 topologyPipe|topologyTorus|workgroup)
43 #REQUIRED
44 method (allreduce|barrier|bcast|col|
45 distributionBlocked|distributionCyclic|
46 distributionNone|fromEast|fromNext|fromNorth|
47 fromSouth|fromWest|fromNE|fromNW|fromSE|
48 fromSW|gather|gatherv|globalToLocal|isInGroup|
49 localSize|localToGlobal|matrix|max|min|partner|
50 prod|recv|reduce|row|scatter|scatterv|send|split|
51 store|subGroup|sum|syncGhostsCart|topologyGrid|
52 topologyPipe|toEast|toNorth|toPrevious|toSouth|
53 toWest|toNE|toNW|toSE|toSW|vector|vectorRepl|
54 vectorSequ) #REQUIRED
55 file CDATA #REQUIRED
56 line CDATA #REQUIRED
57 start_time CDATA #REQUIRED
58 finish_time CDATA #REQUIRED
59 …
60 >

The root element processor holds information of process
ID (like MPI rank) and times of start and finish of the
execution. All operations executed, of types hieraMPI or
hieraOOPS, are a child of this element. These operations
may be point-to-point or collective operations in MPI or
method calls in OOPS, with the information carried by each
element dependent on the element; common information
are operation name, file name and line of the call, start and
finish time of the operation. For OOPS elements, class and
method names are registered.

During execution of the instrumented code, two types of
files are generated: a configuration file and one trace file for
each process. The configuration file holds information
about all trace files.

3.2 Analysis

The hieraTransform module reads the collected data and
builds a memory representation from which measurements
can be computed for the performance analysis of the
program execution. It can thus be understood as operating
in two phases: transformation and measurements.

The representation phase reads the XML files generated
by hieraCollector and build a graph whose vertexes
represent the operations (the elements in the XML
representation) and whose edges represent relations
between them. Figure 2 shows an example with four
processors (P0, … , P3) and where, for example, P0
executed the operations send, bcast and send. Related
communication operations have their respective vertexes
linked by edges.

Figure 2 Example of the graph generated by hieraTransform

The edges of the graph enable various navigation
procedures to be deployed for performance evaluation. One
possibility as shown in Figure 3 is to traverse the graph one
operation at a time, going through each operation just once
and each process one after the other. The operations in the
figure are therefore traversed in the order 1, 2, 3, 4, … , 15.

Figure 3 Graph traversal based on the operations

Another possibility is to traverse the partner operations (like
the corresponding receive to a send) before going on to the
next operation of the same process, as shown in Figure 4. In
this case, each operation may be visited many times. For the
example in the figure, the traversal is 1, 2, 6, 3, 7, 11, 15, 4,
8, 5, 6, 2, 7, 8, 4, 12, 9, 10, 14, 11, 12, 8, 13, 14, 10, 15.

62 T.F.P. Seraphim et al.

Figure 4 Traversal based on partner operations

In the measurement phase, the first task is to choose what to
measure. Due to the large amount of data collected during
the execution of parallel programs, the measurements
are generally of the statistical nature, like number of
operations, averages, standard deviations or histograms.
The measurements are evaluated by traversing the graph in
an appropriate way, e.g., using the traversal by operations
of Figure 3 to count the number of each operation type
executed.

4 Experiments

As already said, hieraCollector was implemented for MPI
and OOPS. MPI was chosen due to its widespread use by
the parallel programming community and its availability for
a wide range of machines, enabling code portability while
retaining execution efficiency.

The OOPS framework is a class library aiming to
support the development of regular scientific applications
with extensive use of distributed matrices and vectors. It
supports higher level abstractions for the development of
the parallel code, without completely hidden the
parallelism. Its implementation is based on MPI. For this
reason, it is well-suited as a testbed for the tool proposed in
this work, as the user of OOPS will develop the code based
on OOPS abstractions, instead of the underlying MPI
abstractions.

To test the tool in a real application scenario, a program
that computes molecular dynamics of Lennard-Jones
particles using the force decomposition algorithm of
Plimpton (1995) was implemented and evaluated. A given
number of particles are distributed in a tri-dimensional box
subject to periodic boundary conditions and initial position
and velocities for the particles are specified. Afterwards, the
particles evolve according to the Lennard-Jones interaction
among them. The computation of the interaction forces
between each pair of particles is decomposed among the
available processors, with the particles distributed in blocks
to the processors, the processors arranged in a two-
dimensional processor grid and each processor being
responsible for the interaction of particle in the same row
with particles in the same column. See Plimpton (1995) for
a complete description of the algorithm. The algorithm was
implemented in an MPI version and an OOPS version.

Execution times reported below refer to the execution
on an eight node cluster of Pentium 4, 3.0 GHz machines
running GNU/Linux.

4.1 HieraCollector for MPI and OOPS

The MPI and OOPS versions of the program were executed
with four processes. The configuration file generated is
similar for the two versions and shown in the frame below.
The root is a hieraCollector element with the application
name and number of processes used for the execution. The
children are collect_file elements with the information
about the files that have the collected data from each
process. For instance, line 4 says that the data collected
from the process with rank 0 is stored in the file named
trace0.xml.

1 <?xml version=”1.0”?>
2 <!DOCTYPE hieraCollector SYSTEM

”hieraCollector.dtd”>
3 <hieraCollector application=”dinamica”

count_proc=”4”>
4 <collect_file rank=”P0”>trace0.xml</collect_file>
5 <collect_file rank=”P1”>trace1.xml</collect_file>
6 <collect_file rank=”P2”>trace2.xml</collect_file>
7 <collect_file rank=”P3”>trace3.xml</collect_file>
8 </hieraCollector>

Part of the contents of file trace0.xml for the MPI
program version is shown in the box below. It shows
the root element processor with process identification
rank=P0, start and finish times. Children of processor are
the various MPI operations executed, all of type hieraMPI
and corresponding operation fields (broadcast, receive,
send, etc.) and fields for information about the operation,
like file and line number, start and finish time, etc.

1 <?xml version=”1.0” encoding=”ISO-8859-1”?>
2 <!DOCTYPE processor SYSTEM ”trace.dtd”>
3 <?xml-stylesheet type=”text/xsl”
4 href=”visual.xsl”?>
5 <processor rank=”P0” init=”0.01229”
6 finalize=”1.96906”>
7 <hieraMPI operation=”broadcast” file=”md.c”
8 line=”37”start_time=”0.01992”
9 finish_time=”0.02001”count=”1”
10 type=”MPI_INT” root=”0”
11 comm=”MPI_COMM_WORLD”/>
12 <hieraMPI operation=”receive” file=”auxfmd.c”
13 line=”51”start_time=”0.02540”
14 finish_time=”0.02542”count=”1”
15 type=”MPI_INT” rem=”1” tag=”0”
16 comm=”MPI_COMM_WORLD”/>

 HieraAnalyses – a tool for hierarchical analysis of parallel programs 63

17 <hieraMPI operation=”send” file=”auxfmd.c”
18 line=”58”start_time=”0.02645”
19 finish_time=”0.02649” count=”1536”
20 type=”MPI_FLOAT” dest=”1” tag=”1”
21 comm=”MPI_COMM_WORLD”/>
22 <hieraMPI operation=”type_contiguous”
23 file=”md.c” line=”92” start_time=”0.04312”
24 finish_time=”0.04313”count=”3”
25 oldtype=”MPI_FLOAT” newtype=”P6_dtype”/>
26 <hieraMPI operation=”type_commit” file=”md.c”
27 line=”93”start_time=”0.04316”
28 finish_time=”0.04316”type=”P6_dtype”/>
29 <hieraMPI operation=”scan” file=”md.c” line=”95”
30 start_time=”0.04319” finish_time=”0.04321”
31 count=”1”type=”MPI_INT” op=”MPI_SUM”
32 comm.=”MPI_COMM_WORLD”/>
33 <hieraMPI operation=”allgatherv” file=”md.c”
34 line=”137”start_time=”0.05551”
35 finish_time=”0.05568”scount=”512”
36 stype=”MPI_INT” rcount=”512”
37 rtype=”MPI_INT” comm=”P5_comm”/>
38 <hieraMPI operation=”reduce” file=”md.c”
39 line=”171”start_time=”0.07606”
40 finish_time=”0.07609”count=”1536”
41 type=”MPI_FLOAT” op=”MPI_SUM”
42 root=”1” comm=”P5_comm”/>
43 …
44 </processor>

The following box shows part of the trace1.xml file
generated by the execution of process rank 1 of the OOPS
version of the molecular dynamics code. The root element
is again processor, with rank information rank="P1" and
initial and final time for the process. The children are
hieraOOPS elements for the methods called during the
execution, with information about class and method.
For instance, line 6 shows the call for the constructor of
class TopologyPipe, implemented in line 17 of file
TopologyPipe.cc, called with arguments next and
previous as specified.

1 <?xml version=”1.0” encoding=”ISO-8859-1”?>
2 <!DOCTYPE processor SYSTEM ”trace.dtd”>
3 <?xml-stylesheet type=”text/xsl” href=”visual.xsl”?>
4 <processor rank=”P1” init=”0.000064”
5 finalize=”134.766716”>
6 <hieraOOPS file=”TopologyPipe.cc” line=”17”
7 class=”OOPS::TopologyPipe”
8 method=”TopologyPipe”previous=”0” next=”2”
9 start_time=”0.014255”finish_time=”0.014377”/>
10 <hieraOOPS file=”TopologyGrid.cc” line=”4273”

11 class=”OOPS::TopologyGrid” method=”split”
12 color=”0” key=”1” start time=”0.014401”
13 finish_time=”0.023591”>
14 <hieraOOPS file=”Topology.cc” line=”2221”
15 class=”OOPS::Group” method=”split” color=”0”
16 key=”1”start_time=”0.014440”
17 finish_time=”0.023584”/>
18 </hieraOOPS>
19 <hieraOOPS file=”TopologyGrid.cc” line=”4274”
20 class=”OOPS::TopologyGrid” method=”split”
21 color=”1”key=”1” start_time=”0.023638”
22 finish_time=”0.031642”>
23 <hieraOOPS file=”Topology.cc” line=”2221”
24 class=”OOPS::Group” method=”split” color=”1”
25 key=”1”start_time=”0.023672”
26 finish_time=”0.031634”/>
27 </hieraOOPS>
28 <hieraOOPS file=”molecularDynamicsOOPS.cc”
29 line=”0”class=”OOPS::TopologyGrid”
30 method=”TopologyGrid”gsize=”4” cols=”2”
31 start_time=”0.014385”finish_time=”0.031741”/>
32 <hieraOOPS file=”molecularDynamicsOOPS.cc”
33 line=”45” class=”OOPS::TopologyGrid”
34 method=”bcast” root=”0” start_time=”0.031749”
35 finish_time=”0.031878”>
36 <hieraOOPS file=”Topology.cc” line=”2335”
37 class=”OOPS::Group” method=”bcast”
38 root=”0” start_time=”0.031788”
39 finish_time=”0.031872”>
40 <hieraMPI operation=”broadcast”

file=”Topology.cc”
41 line=”2335” count=”1” type=”MPI_INT”
42 root=”0” comm=”OOPS_Comm1”
43 start_time=”0.031788”

finish_time=”0.031866”/>
44 </hieraOOPS>
45 </hieraOOPS>
46 <hieraOOPS file=”molecularDynamicsOOPS.cc”
47 line=”46” class=”OOPS::TopologyGrid”
48 start_time=”0.031885” finish_time=”0.032002”>
49 <hieraOOPS file=”Topology.cc” line=”2335”
50 class=”OOPS::Group” method=”bcast” root=”0”
51 start_time=”0.031918” finish_time=”0.031995”>
52 <hieraMPI operation=”broadcast”
53 file=”Topology.cc” line=”2335” count=”1”
54 type=”MPI_INT” root=”0”

comm=”OOPS_Comm1”
55 start_time=”0.031918”

finish_time=”0.031989”/>
56 </hieraOOPS>

64 T.F.P. Seraphim et al.

57 </hieraOOPS>
58 <hieraOOPS file=”molecularDynamicsOOPS.cc”
59 line=”47” class=”OOPS::TopologyGrid”
60 method=”bcast” root=”0” start_time=”0.032008”
61 finish_time=”0.032123”>
62 <hieraOOPS file=”Topology.cc”line=”2335
63 class=”OOPS::Group” method=”bcast”
64 root=”0” start_time=”0.032043”
65 finish_time=”0.032118”>
66 <hieraMPI operation=”broadcast”
67 file=”Topology.cc” line=”2335” count=”1”
68 type=”MPI_INT” root=”0”

comm=”OOPS_Comm1”
69 start_time=”0.032043”

finish_time=”0.032112”/>
70 </hieraOOPS>
71 </hieraOOPS>
72 …
73 </processor>

The hierarchical structure of the file can be observed in
lines 32 to 40. The call to the method bcast of class
TopologyGrid (line 32) results in a call of method bcast
of class Group (line 36), that calls the hieraMPI element
broadcast (line 40).

4.2 HieraTransform for MPI and OOPS

To demonstrate analysis tools based on the described
graph structure generated from the collected files, some
applications were developed to extract some statistical
performance data. One of them counts the number of
operations of each type in each hierarchical level; another
computes the number of the operations of each type
discriminating by processor and between MPI and OOPS
operations; a third application simply collects the total
number of each operation executed; and lastly, an
application that computes the total communication and
computation times for each processor.

4.2.1 Evaluating the MPI molecular dynamics
program

Table 1 shows the number of operations in hierarchical
level 0 of the MPI application (the only one present in this
case). The process column shows the processes involved in
the application execution. The level column shows the level
in the hierarchy, in this case, there is just one level 0. The
count column shows the number of operations in the level
0. All processes execute about the same number of
operations, with process 0 executing about 10% more than
the others.

Table 2 gives more information, listing the type of
collection (all MPI in this case), the operation executed, file
and line number of the call and number of times the

operation was called. Due to the amount of collected
information, only operations of process 0 are shown in the
table. The reduce operations in lines 171 and 175 of file
md.c are the most executed operations by process 0.

Table 1 Number of operations in the MPI version of the
molecular dynamics program

Process Level Count

0 0 2,396
1 0 2,144
2 0 2,144
3 0 2,144

Table 2 Number of operations listed by individual operation
in the MPI version of the molecular dynamics code

Category Operation File Line Count

mpi allgather md.c 107 1
mpi allgather md.c 108 1
mpi allgatherv md.c 137 1
mpi allgatherv md.c 139 1
mpi allgatherv md.c 150 200
mpi allgatherv md.c 156 200
mpi broadcast md.c 37 1
mpi broadcast md.c 38 1
mpi broadcast md.c 39 1
mpi broadcast md.c 40 1
mpi broadcast md.c 41 1
mpi broadcast md.c 42 1
mpi broadcast md.c 43 1
mpi broadcast md.c 44 1
mpi broadcast md.c 45 1
mpi comm_split md.c 101 1
mpi comm_split md.c 102 1
mpi receive auxfmd.c 51 9
mpi receive auxfmd.c 90 180
mpi receive auxfmd.c 92 180
mpi reduce md.c 171 400
mpi reduce md.c 175 400
mpi reduce md.c 183 200
mpi reduce md.c 184 200
mpi reduce md.c 185 200
mpi reduce md.c 186 200
mpi scan md.c 95 1
mpi send auxfmd.c 58 9
mpi type_commit md.c 93 1
mpi type_contiguous md.c 92 1

Table 3 shows the same information (for all processes), but
collapsed by operation type. It can be seen that the code
relies heavily on reduction operations.

 HieraAnalyses – a tool for hierarchical analysis of parallel programs 65

Table 3 Number of operations of each type, for the MPI
version of the molecular dynamics code

Operation Count

allgather 8
allgatherv 1,608
broadcast 36
comm_split 8
receive 378
reduce 6,400
scan 4
send 378
type_commit 4
type_contiguous 4

Finally, Table 4 shows communication and total execution
times for the different processes. Note that communication
time is a significant fraction of total time.

Table 4 Total execution times and communication times
(in seconds) for the four processes of the MPI
molecular dynamics code

Process Communication Total

0 0.495700 1.784300
1 0.915030 1.753440
2 0.991050 1.753510
3 0.972300 1.753490

To give an idea of the influence of the instrumentation on
execution time, Table 5 presents the total execution times
for the application with and without instrumentation code.
The difference is about 6%.

Table 5 Influence of the instrumentation code on execution
time of the MPI version of the molecular dynamics
code (times in seconds)

Process Instrumented Not instrumented

0 1.784300 1.676900
1 1.753440 1.655580
2 1.753510 1.655580
3 1.753490 1.655630

4.2.2 Evaluating the OOPS molecular dynamics
program

Now, the same analysis is made for the OOPS version of
the molecular dynamics code (the same algorithm, but
implemented using OOPS primitives).

Table 6 shows the number of operations executed in
each of the abstraction levels 0, 1 and 2. Note the much
higher number of operations than the MPI code. This is due
to the fact that the current version of OOPS has no reduce
operation over sections of arrays (like present in MPI), and
therefore, the reductions must be executed in a loop for
each particle.

Table 6 Number of operations in each hierarchical level for
the OOPS molecular dynamics code

Process Level 0 Level 1 Level 2

0 101,756 165,476 100,811

1 101,756 100,948 100,811

2 101,756 100,948 100,811

3 101,756 100,948 100,811

Table 7 discriminates the number of operations for
process 2 by operation type and point of call. Note how
most operations are MPI reduce operations (a total of
100,000), executed at the request of the sum operations at
lines 181 and 188 of molecularDynamicsOOPS.cc.

The results for all processes summarised by operation
type are shown in Table 8. Note how the operation count is
dominated by operations sum (and the corresponding
reduce), followed by the localSize and localToGlobal
operations, responsible for the verification of the sizes of
local parts of arrays and conversion from local to global
array indexes, respectively.

Finally, the effect of instrumentation on execution time
of the code is shown in Table 9. It can be seen that the
overload is of about 0.8%. Note that this is a small value,
despite the high number of registered operations.

5 Conclusions

Due to the increasing use of higher level abstractions for
the development of parallel codes, it is important that
performance tools consider these levels and are able to
generate information at the level understood by the
application developer.

This article presented the HieraAnalyses tool,
developed to probe the feasibility of such kind of tools. The
tool is composed of a collector model hieraCollector and a
transformation module hieraTransform. The collector
module writes performance information as an XML file
with hierarchical structure following the hierarchical call
structure of the execution. The transformation module
builds a graph from the collected data, upon which various
performance analyses may be carried out.

The article described further the application of the tool
to the analysis of a parallel molecular dynamics code
written in two versions: one using only MPI operations
and other using the OOPS framework, a high level
framework implemented using MPI. It was shown that
important information about the program execution and the
parts of the code that require attention can be deduced from
the graph structure that represents the performance
information.

A deeper use of the collected hierarchical information
involves the visualisation of the information following the
hierarchical structure present in the data. This may enable
the user to find the important sections of the code in a
top-down approach. This is a suggestion for future work.

66 T.F.P. Seraphim et al.

Table 7 Discrimination of the number of operations for process 2 of the OOPS molecular dynamics code

Category Operation File Line Count

mpi allgather Topology.cc 2,655 2
mpi allgatherv Topology.cc 2,622 2
mpi allreduce Topology.cc 3,672 200
mpi allreduce Topology.cc 3,837 600
mpi broadcast Topology.cc 2,335 5
mpi broadcast Topology.cc 2,423 3
mpi broadcast Topology.cc 2,434 1
mpi reduce Topology.cc 3,892 100,000
mpi scan Topology.cc 4,202 1
oops broadcast molecularDynamicsOOPS.cc 45 1
oops broadcast molecularDynamicsOOPS.cc 46 1
oops broadcast Topology.cc 2,423 3
oops broadcast Topology.cc 2,434 1
oops distributionBlocked Application 0 1
oops gather Topology.cc 2,622 2
oops gather Topology.cc 2,655 2
oops gather Topology.h 3,019 60
oops load Vector.h 1,606 4
oops localSize Vector.h 1,285 4
oops localSize Vector.h 1,531 4
oops scan molecularDynamicsOOPS.cc 105 1
oops scan Topology.cc 4,202 1
oops scatter Vector.h 1,531 4
oops scatter Topology.h 3,045 4
oops split Topology.cc 2,221 2
oops split TopologyGrid.cc 4,273 1
oops store Vector.h 1,613 60
oops sum molecularDynamicsOOPS.cc 181 50,000
oops sum molecularDynamicsOOPS.cc 188 50,000

Table 8 Operation count for all processes of the OOPS
version of the molecular dynamics code

Operation Count Operation Count

allgather 8 load 16

allgatherv 8 localSize 32,800

allreduce 3,200 localToGlobal 32,016

broadcast 36 scatter 32

reduce 400,000 split 16

scan 12 store 240

broadcast 72 sum 806,400

distribBlocked 4 topologyGrid 4

gather 3,712 topologyPipe 12

Table 9 Execution times (in seconds) with and without
instrumentation for the OOPS version of the
molecular dynamics code

Process Instrumented Not instrumented

0 239.407456 237.457
1 239.288433 237.458
2 239.288600 237.459
3 239.288144 237.471

Acknowledgements

The work of T.F.P. Seraphim was supported by National
Council for Scientific and Technological Development
(CNPq) under Grant Number 140453/2003-2.

 HieraAnalyses – a tool for hierarchical analysis of parallel programs 67

References
Blackford, L.S., Dongarra, J.J. and Whaley, R.C. (1997)

‘ScalaPACK user’s guide’, Siam – Society for Industrial and
Applied Mathematics, May, ISBN: 0-89871-397-8.

Browne, S., Dongarra, J. and London, K. (1998) ‘Revier of
performance analysis tools for MPI parallel programs’, NHSE
Review, Vol. 3, No. 1.

Browne, S., Dongarra, J., Garner, N., London, K. and
Mucci, P. (2000) ‘A scalable cross-plataform infrastructure
for application performance tuning using hardware
counters’, Proceedings of the ACM/IEEE Conference on
Supercomputing, IEEE Computer Society, p.42.

Cohen, W.E., Garrett, W.D. and Gaede, R.K. (2007) ‘Parallel
program traces for accurate prediction of proposed cluster
performance’, CiteSeerX – Scientific Literature Digital
Library and Search Engine.

Fineman, C., Frumkin, M., Hontalas, P., Hribar, M. and Jin, H.
(1997) The Automated Instrumentation and Monitoring
System, available at http://www.nas.nasa.gov/Groups/Tools/
Projects/AIMS/manual/TableTest.html (accessed on April/09,
January).

Geist, A., Beguelin, A., Dongarra, J., Jiang, W.,
Manchek, R. and Sunderam, V. (1994) PVM Parallel Virtual
Machine, A User’s Guide and Tutorial for Networked
Parallel Computing, MIT Press.

Graham, S.L., Kessler, P.B. and Mckusic, M.K. (1982) ‘gprof: a
call graph execution profiler’, SIGPLAN Symposium on
Compiler Construction, June, pp.120–126.

Hollingsworth, J.K., Irvin, R.B. and Miller, B.P. (1991) ‘The
integration of application and system based metrics in a
parallel program performance tool’, Proceedings on the 3rd
ACM SIGPLAN Symposium on Principles & Practice of
Prallel Programming, SINGPLAN Notices, April, Vol. 26,
No. 7, pp.189–200.

Labarta, J., Gimenez, J., Caubet, J. and Escale, F. (2001) ‘Paraver:
parallel program visualization and analysis tool’, European
Center for Parallelism of Barcelona, October, Version 3.1.

Miller, B.P., Callaghan, M.D., Cargille, J.M., Hollingsworth, J.K.,
Bruce, R., Karen, I., Karavanic, L., Kunchithapadam, K.
and Newhall, T. (1995) ‘The paradyn parallel performance
measurement tools’, IEEE Computer, pp.37–46.

Miller, B.P., Clark, M., Hollingsworth, J.K., Kierted, S., Lim, S.
and Torzewski, T. (1990) ‘IPS-2: the second generation of a
parallel program measurement system’, IEEE Transactions
on Parallel and Distributed Systems, February, Vol. 1, No. 2,
pp.206–217.

Moore, S., Cronk, D., London, K. and Dongarra, J. (2001) ‘Review
of performance analysis tools for MPI parallel programs’, 8th
European PVM/MPI Users’ Group Meeting, pp.241–248.

Message Passing Interface (MPI) Forum (1994) ‘MPI: a message-
passing interface standard’, University of Tennessee,
Knoxville, TN, USA, June.

Plimpton, S. (1995) ‘Fast parallel algorithms for shortrange
molecular dynamics’, Journal of Computational Physics,
March, Vol. 117, No. 1, pp.1–19.

Reed, D.A., Aydt, R.A., Noe, R.J., Shields, K.A., Schwartz, B.W.
and Tavera, L.F. (1993) ‘Scalable performance analysis: the
Pablo performance analysis environment’, Proceedings of the
Scalable Parallel Libraries Conference, IEEE Computer
Society, pp.104–113.

Rodrigues, F.A. (2004) ‘Técnicas de Orientacão ao objeto para
computacão científica paralela’, Master’s thesis, Instituto de
Física de São Carlos – Universidade de São Paulo, April.

Sonoda, E. and Travieso, G. (2006) ‘The OOPS framework: high
level abstractions for the development of parallel scientific
applications’, OOPSLA’06: Companion to the 21st ACM
SIGPLAN Conference on Object-Oriented Programming
Systems, Languages and Applications, pp.659–660.

Truoung, H. and Fahringer, T. (2003) ‘SCALEA: a performance
analysis tool for parallel programs’, Concurrency and
Computation: Practice and Experience, Vol. 15, Nos. 11–12,
pp.1001–1025.

W3C (2009) W3C: World Wide Web Consortium, available at
http://www.w3c.org (accessed on April/09).

Yan, J.C. (1994) ‘Performance tuning with AIMS – an automated
instrumentation and monitoring system for multicomputers’,
Proceedings of the 27th Hawaii International Conference on
System Sciences, January, Vol. II, Nos. 4–7, pp.625–633.

