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Abstract: A broad variety of medicinal chemistry approaches can be used for the identification of hits, generation of 

leads, as well as to accelerate the development of high quality drug candidates. Structure-based drug design (SBDD) 

methods are becoming increasingly powerful, versatile and more widely used. This review summarizes current 

developments in structure-based virtual screening and receptor-based pharmacophores, highlighting achievements as well 

as challenges, along with the value of structure-based lead optimization, with emphasis on recent examples of successful 

applications for the identification of novel active compounds. 
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STRUCTURE-BASED DRUG DESIGN 

 The performance of biochemical processes and cell 
mechanisms are dependent upon complex and multiple non-
covalent intermolecular interactions between proteins and 
small-molecule modulators. The understanding of the struc-
tural and chemical binding properties of important drug tar-
gets in biologically relevant pathways allows the design of 
small molecules capable of regulating or modulating specific 
target functions in the body that are closely linked to human 
diseases and disorders, through multiple intermolecular 
interactions within a well-defined binding pocket [1-4]. In 
general, the identification of promising hits for further opti-
mization is a major challenge faced by the both pharma-
ceutical and academic laboratories. Although the trial-and-
error nature is inherent in drug research, rational concepts 
and modern computational methods have become widely 
employed for lead selection and optimization. 

 The use of three-dimensional (3D) protein structure 
information in the development of new biologically active 
molecules, which is termed Structure-Based Drug Design 
(SBDD), is a well-established, successful and highly attar-
ctive strategy used by academic and pharmaceutical research 
laboratories worldwide [3-8]. As a creative and knowledge-
driven approach, an essential requirement for structure-based 
studies is a substantial understanding of the spatial and 
energetic aspects that affect the binding affinities of protein-
ligand complexes. Considering that the shape and chemical 
nature of the binding site of a specific target protein are 
known, and the possible intermolecular interactions between 
ligands and the protein within its active site have been  
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identified, this qualified information can be directly emp-
loyed for the identification of new ligands and the optimi-
zation of lead compounds. This opens new possibilities to 
boost the search for lead molecules and to limit the number 
of compounds that need to be evaluated experimentally. 

 Hits can be identified through the docking of small-
molecule ligands (selected from databases of chemical 
structures) into protein active sites or by using receptor-
based pharmacophore models. Furthermore, drug candidates 
can be designed de novo by improving the complementary 
binding properties of lead compounds and the respective 
target proteins (i.e., intermolecular interactions between 
amino acid residues of the target active site and the chemical 
groups of the lead candidates). Molecules that mimic the 
transition state of enzyme catalyzed reactions are interesting 
examples [3-12]. Early drug discovery steps usually require 
structural optimization of lead compounds in order to build 
the highest possible level of potency, selectivity and affinity 
for the target of interest, as well as appropriate physico-
chemical and pharmacokinetic characteristics. Substrates and 
cofactors of several enzymes have been structurally modified 
to generate excellent inhibitors using X-ray crystallographic 
data. Fig. (1) shows examples of potent and bioavailable 
nonpeptide inhibitors of human renin that were developed 
using structural information concerning proteins and small 
molecules (receptor-ligand intermolecular interactions) [13-
15]. Renin is an aspartyl protease involved in the regulation 
of blood pressure and its inhibition has been considered a 
promising strategy for the development of new alternative 
therapies for the treatment of hypertension. As can be seen in 
Fig. (1), the understanding of the cleavage mechanism of the 
substrate (angiotensinogen), and the detailed characterization 
of the enzymatic site (covering the S4 to S2’ subsites, and 
the catalytically central aspartates, Asp32 and Asp215) led to 
the development of substrate-based inhibitors (peptide 
analogs of the amino-terminal portion of angiotensinogen). 
The replacement of the scissile dipeptide moiety based on 
the transition-state analog concept allowed the development 
of new peptide-like inhibitors having potent in vitro activity, 
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but not exhibiting good oral absorption and stability (e.g., 
CGP 38560, IC50 = 0.7 nM). To overcome these hindrances, 
hydroxyethylene transition-state mimetic inhibitors of lower 
molecular weight were designed to explore the shape and 
chemical properties of the large hydrophobic S1/S3 binding 
cavity of the active site. This approach efficiently generated 
novel nonpeptide inhibitors with improved oral bioavaila-
bility and stability, while retaining high potency. Aliskiren 
(Tekturna

®
, Rasilez

®
, from Novartis and Speedel) was 

approved by the U.S. Food and Drug Administration in 
2007, being the first in this class of drugs called renin 
inhibitors for primary hypertension [16]. The inhibitor (Fig. 
1, IC50 = 0.6 nM) was positioned into the extended binding 
cleft of renin (S3 to S2’ subsites) making interactions with 
the hydrophobic cavity, which has not been previously 
explored. It is interestingly to note that pharmacokinetic 
properties and drug metabolism can also be examined and 
improved by exploring crystal structures of the human 
cytochrome P450 isoforms [17,18]. 

 The receptor-based approach is carried out in an iterative 
manner, proceeding via multiple computational and experi-
mental paths until the development of an optimized lead 
compound having high affinity and selectivity, as well as 
optimized pharmacokinetic properties, as shown in Fig. (2). 
The developed drug candidate is then appropriate to move 
into phase one clinical trials.  

 As a starting point, it is always useful to perform a meti-
culous analysis of the structural and chemical features of the 
target binding site (i.e., amino acid residues of the protein 
pocket: tautomerism, protonation, ionization). Protein struc-
tures (apo, ligand-free; or holo, ligand-bound) are experi-
mentally determined by X-ray crystallography and nuclear 
magnetic resonance (NMR). Alternatively, protein structure 
homology models can be a valuable alternative [3,5-10,19-
23]. Several in silico methods can be used in combination 
with experimental evidences to extract and organize the 
molecular information in order to assist the understanding of 
the structural and chemical basis involved in receptor-ligand 
binding affinity and biological activity. Receptor-based 
pharmacophore models and molecular docking methods can 
be employed in early drug discovery stages for hit 
identification and lead generation (Fig. 2). High performance 
computational searches are performed to screen small 
molecule chemical libraries that vary in size and complexity, 
and only a very small subset of promising compounds is 
selected for synthesis, acquisition and in vitro biological 
evaluation. Lead candidates can also be generated using a 
variety of experimental methods, including (i) high 
throughput screening (HTS); (ii) small-scale screening of 
compounds that are structurally related to modulators of a 
target protein; (iii) SAR studies of biologically interesting 
molecules; or (iv) fragment-based screening (Fig. 2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Structure-based drug design of orally active nonpeptide inhibitors of human renin. Inhibitors are shown in green, while the two 

catalytic aspartic acid residues in magenta. 
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 Focused libraries can be designed based on new bioactive 
molecules, through the incorporation of new data sets of 
compounds sharing a high degree of chemical similarity, as 
well as interesting structural diversity. The molecular and 
biological properties of new compounds (structurally related) 
can be further rationalized and even predicted (in terms of 
their chemical modifications), as a consequence of their 
direct interactions with the target receptor. Biochemical, 
crystallographic and spectroscopic methods are useful in 
determining the binding properties and mechanism of action 
of promising ligands.  

 The knowledge generated (chemical and biological) from 
these steps is a key component in medicinal chemistry, and 
can be used in the iterative design of new ligands with 
improved properties characteristics (lead optimization) [3-
11,19-27]. For this purpose, 3D quantitative structure-
activity relationships (3D QSAR) methods are among the 
most important strategies that can be applied for the 
successful optimization of leads (Fig. 2). In this context, 3D 
QSAR models are generated to explain the relationships 
between the intermolecular interactions related to the 3D 
conformations of a set of structurally related molecules and 
their experimental activity (e.g., IC50, Ki), therefore, provi-
ding a rational basis for the development of new promising 
compounds [24,28,29]. 

  Structure-based approaches have increasingly demon-
strated their value in drug design. The impact of these tech-
nologies on early discovery and lead optimization is signi-
ficant. Although there is a multiplicity of different approa-

ches being employed in early stages of drug discovery, 
SBDD is one of the most powerful techniques, and has been 
used quite frequently by scientists in the pharmaceutical 
industry as well as in academic laboratories over the past 
forty years. SBDD approaches continue to drive important 
advances in drug design, integrating traditional and modern 
technologies from the fields of medicinal chemistry, 
computational chemistry, informatics, biology, biochemistry, 
and structural biology. Structure-based methods bring the 3D 
structures of proteins to light, and thereby greatly enable 
many drug discovery efforts to identifying novel, small 
molecule drug candidates that selectively and potently 
modulates the right biological target. The ability to make 
knowledge-based decisions during the early phases of drug 
discovery is the key to decreasing hit-to-lead and lead 
optimization cycle times. The significant advances in struc-
tural capabilities (e.g., protein generation and purification 
techniques, high throughput crystallography, virtual scree-
ning, SAR by NMR) combined with robust and more 
efficient computational tools (faster and cheaper) have 
improved molecular modeling tools to evaluate ligand-
protein interactions. The evolution of medicinal chemistry 
has resulted in an increase in the number of successful 
applications of structure-based approaches. The importance 
of these approaches in exploring the chemical space of biolo-
gically active compounds is well established, considering 
that these powerful strategies have significantly contributed 
to the discovery and introduction of several NCEs into 
clinical trials for a wide variety of therapeutic applications. 
Some successful examples include inhibitors of HIV-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Description of the workflow of the iterative process of structure-based drug design. 
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protease, neuraminidase, renin, carbonic anhydrase, tyrosine 
phosphatase, -lactamase and DNA gyrase, among others 
[15,22,30-39]. As depicted in Fig. (2), pharmacophore 
analyses, molecular docking and 3D QSAR are among the 
medicinal chemistry methods of utmost importance in 
modern rational drug design. Some case studies will be 
presented in this short review to explore the value and 
potential of each of these techniques involved in the state-of-
the-art drug research, highlighting the identification of novel, 
potent and selective receptor modulators with drug like 
properties. 

STRUCTURE-BASED VIRTUAL SCREENING 

 Genomic and proteomic approaches have provided novel 
insights into the identification of new targets for drug 
intervention, presenting attractive opportunities for the 
discovery of new agents with important therapeutic pro-
perties. Several hundred molecular targets have been cloned 
and are currently evaluated as drug targets. These mainly 
include G-protein coupled receptors (GPCRs), ligand-gated 
ion channels (LGICs), nuclear receptors (NRs), cytokines, 
and reuptake/transport proteins. Every week, new potential 
therapeutic approaches for the treatment of important 
diseases are suggested as a result of the exponential 
proliferation of novel biological targets. The sheer volume of 
genetic information produced in the last decade has shifted 
the emphasis from the generation of novel DNA sequences 
to the determination of which of the many potential targets 
offer unique opportunities for drug research. Therefore, 
target selection and validation are current bottlenecks in drug 
discovery and will continue to be so in the future [19-24]. 
Solving the protein folding process is paramount for this 
excellent approach to be successful.  

 The identification of promising hits and the generation of 
high quality leads are crucial steps in the early stages of any 
drug discovery project. Recent advances in medicinal chemi-
stry at the interface of chemistry and biology have created an 
important foundation in the search for new drug candidates 
possessing a combination of optimized pharmacodynamic 
and pharmacokinetic properties. Despite the impact of the 
recent technological and scientific advances, drug discovery 
has become more expensive and time consuming over the 
same period of time [24,29]. The widespread use of 
combinatorial chemistry and HTS for the discovery of lead 
compounds has created a large demand for small organic 
molecules that act on specific drug targets. These 
technologies focus on the generation of a huge number of 
molecules integrated with the biological screening of a very 
large number of samples. However, due to the ever increa-
sing pressure to reduce drug development time and costs, 
there is a clear paradigm shift from the random screening of 
collections of compounds to a more rational process, which 
would directly affect the success rate of NCE generation. 
One of the most important challenges for the pharmaceutical 
industry is the identification of innovative NCEs from an 
incredibly large reservoir of real and virtual possible 
compounds. Several steps of the drug discovery process 
(e.g., hit identification, lead optimization, pharmacokinetic 
profile) can be improved in a rational way with the appli-
cation of computational methods. 

 The search for new biologically active molecules from 
large compound databases by means of computer-assisted 
methods is a process known as virtual screening. VS 
methods have rapidly become an essential component of the 
modern drug discovery process [24-27]. Structure-based 
virtual screening (SBVS) approaches explore information 
about the target protein structure in order to select molecules 
that are likely to favorably interact. These molecules can 
then be selected for in vitro biological tests. In SBVS 
approaches, the chemical space is broadly explored using 
databases of commercially available compounds for virtual 
screening [3-11,19,20,23-27]. High-performance hardware 
and specialized software, combined with advanced know-
ledge of 3D protein structure and small-molecule binding 
modes, have made this technology a useful complement, and 
in some cases, a reasonable alternative to HTS [3,5,6,-
20,24,27]. Recently, several examples of success stories 
have been described for the use of this approach in the 
discovery of novel lead compounds, including cases where 
HTS was not effective or failed. Moreover, SBVS 
approaches showed a unique ability to significantly enhance 
hit-rates for obtaining lead compounds when compared with 
HTS approaches [6,36,39,40]. 

 The combined use of both HTS and SBVS is an 
important strategy in medicinal chemistry that has allowed 
the identification of inhibitors of the protein tyrosine 
phosphatase 1B (PTP1B) (Fig. 3), which plays an important 
role in metabolism and has been identified as a target for 
obesity and type II diabetes. A corporate library of 400,000 
compounds was biologically screened against PTP1B, with 
543 hits being identified in a single-point assay at 300 M 
concentration of compound. From these initial hits, 85 had 
their potency determined with IC50 values ranging from 1 to 
100 M (hit rate of 0.021%), where the most active com-
pound had an IC50 value of 4.2 M. On the other hand, 
SBVS was used to screen more than 230,000 compounds 
against PTP1B, using the X-ray crystallographic structure 
PDB ID 1PTY. The docking top-scoring 1,000 molecules 
were considered for further evaluation, from which 365 were 
selected based on the occupancy and complementary inter-
actions with the two tyrosine sites that are related to high 
affinity and specificity. From the compounds selected for the 
biological evaluation, 127 (34.8%) inhibited the target 
enzyme PTP1B, with IC50 values less than 100 M. The 
most potent compound shows an IC50 of 1.7 M. As shown 
in Fig. (3), the SBVS approach presented a hit rate much 
higher than that of HTS (about 1,700-fold, with molecules 
having drug-like properties) [36]. The selected docking hits 
incorporated a range of functional characteristics, including 
molecules with negative groups (compound 8, Fig. 3) 
capable to interact into the phosphate binding-site of the 
catalytic cavity, as well as neutral molecules (compound 3, 
Fig. 3) presenting extensive shape complementarity to the 
enzyme surface. The characteristic carboxylic acid-bearing 
molecule compound 8 (IC50 = 21.6 M) was predicted to 
interact with the catalytic site residues Arg221 and Cys215. 
In contrast, the docking positions of compound 3 (IC50 = 8.6 

M) revealed that this larger molecule actually occupies both 
tyrosine sites to achieve a more favorable steric comple-
mentarity. 
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 SBVS typically encompasses a sequence of crucial com-
putational steps, including target preparation, chemical data-
base selection, docking, scoring, post-docking analysis, 
ranking, visual inspection and prioritization of compounds 
for testing, as schematically shown in Fig. (4) to briefly 
illustrates previous studies for human carbonic anhydrase II 
(hCAII) inhibitors [34,35]. The knowledge-based SBVS 
approach is strongly affected by the quantity and quality of 
the information about the systems under investigation. The 
process of selection and preparation of the macromolecular 
target involves essential issues, such as druggability of the 
target receptor, selection of the most relevant geometry, 
flexibility, assignment of charges, protonation and tauto-
meric states, ionization, and the inclusion of conserved water 
molecules in the binding cavity. Some relevant molecular 
characteristics such as partial charges, stereochemistry, 
ionization and tautomeric states must also be correctly 
assigned to the small molecule compounds [7,9,10,19,20, 
24,41]. 

  Regardless the source of the small-molecule database 
(e.g., private collections, virtual libraries of synthetically 
accessible compounds, databases of commercially available 
compounds, in-house libraries of natural and synthetic 
compounds, and so on), screening libraries generally contain 
a large number of molecules with broad chemical diversity. 
In the important process of library design, several molecular 
filters can be used to reduce the number of compounds to be 
screened. Common filtering methods are variations of 
Lipinski’s rule of five that include physicochemical and 
pharmacokinetic parameters in order to guide the selection of 

compounds with lead-like, fragment-like, and drug-like 
properties. The chemical space can also be reduced by taking 
into account molecular properties presented by series of 
modulators with known biological activity, or through the 
identification of specific features required for ligand binding. 
Additional filters are often applied to remove specific 
chemical structures associated with chemical instability and 
toxicity [19,42,43]. All of these computational (virtual) 
screening filters are useful to improve the quality of small-
molecule libraries and are crucial to the application of SBVS 
methods. 

 The fundamental goal of SBVS is to identify molecules 
with the proper shape, hydrogen bonding, electrostatic and 
hydrophobic interactions that are complementary to the 
target receptor. Therefore, reliable methods for prediction of 
ligand orientation and conformation into the binding cavity 
of the macromolecular target (docking) are required. After-
wards, it is also necessary to have a solid evaluation of the 
quality of the fit or the calculated binding affinity, associated 
to each predicted binding mode. However, there are still 
many challenges in developing fully satisfactory docking 
algorithms and scoring functions for VS approaches. Exploi-
ting ligand conformation and protein flexibility, treating 
desolvation, incorporating water molecules and calculating 
ligand-receptor binding energies are among the major 
difficulties [3,4,7,9,19,20,24-26]. Although certain key 
points and limitations have to be considered, the potential of 
SBVS lies in its ability to generate robust hypotheses that 
can be tested in iterative cycles. In addition, several strate-
gies have been successfully used to increase hit rates 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Workflow of HTS and SBVS strategies in the identification of new leads for tyrosine phosphatase, highlighting differences in hit 

rates and the impact of the two screening approaches. 
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(enrichment) in SBVS [3,4,7,20,27,44]. The in silico 
docking and scoring tools are constantly being optimized and 
redesigned to improve their performance. It is estimated that 
there are about 30 individual docking programs available 
(e.g., Dock [45], Autodock [46], FlexX [47], FlexE [48], 
Gold [49], Glide [50]), which follow different concepts and 
approaches, and are thus more appropriate for specific 
proteins and molecular systems. In this way, the selection of 
a docking procedure suitable to describe the relevant mole-
cular properties of the system under investigation is one of 
the crucial steps in the early stages of SBVS [10,24,26]. The 
several possible post-docking analyses are important to 
minimize the number of compounds selected for biological 
evaluation, and to reduce the false positives rate. Multiple 
scoring functions, consensus scoring, more complex and 
time-consuming functions or parameters to include flexi-
bility, solvent effects and water molecules, and datasets of 

known bioactive compounds or decoys to calibrate the 
methodologies are among the most used strategies. Geo-
metric analyses and visual inspection of molecular surface 
complementarity (3D analysis of receptor-ligand inter-
actions) are also useful approaches to balance deficiencies 
associated with docking, scoring and ranking functions [4,6-
9,19,25, 51-53].  

 In the SBVS strategy used in the search for novel hCAII 
inhibitors (Fig. 4), atomic partial charges and protonation 
states were carefully assigned for 90,000 ligand molecules, 
which were submitted to a series of hierarchical filters 
[34,35]. While coordination to zinc was thought to be impor-
tant for hCAII binding, the database molecules were 
analyzed to include zinc-binding anchor groups, such as 
amides, sulfonamides, hydroxyacetamides and carboxylic 
and phosphonic acids. Following the selection of 2D func-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). Computational steps in SBVS, illustrated by the identification of a novel class of carbonic anhydrase inhibitors. 
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tional groups and the application of Lipinski’s rules, around 
6,000 compounds were screened using a hot-spot based 
pharmacophore model. For the pharmacophore generation, 
special attention was given to the hydrogen acceptor groups 
near the residues Thr199NH and Gln92, as well as to the 
hydrogen donor groups near the zinc and Thr199OH. In fact, 
these interactions are involved in the molecular recognition 
of the sulfonamide group of dorzolamide, a potent hCAII 
inhibitor (Fig. 4). Favorable hydrophobic interactions were 
found in a long extended region near the residues Leu198, 
Val121, Val143, Phe131 and Ile91. Approximately 3300 vir-
tual hits that satisfied the pharmacophore query were ranked 
according to molecular physicochemical similarities with 
reference ligands. Finally, the 100 best scoring candidates 
were flexibly docked into the enzyme binding pocket, which 
was sterically restricted by four conserved water molecules. 
The predicted binding affinities were examined based on 
their surface complementarity with the metalloproteinase 
site, the number of rotatable bonds, the quality of the overall 
binding conformation and the formation of hydrogen bonds 
to Glu92 and Thr200, which compensates for desolvation of 
these residues in the binding pocket. Accordingly, 13 
compounds were selected for experimental evaluation. Of 
these, 11 sulfonamides were active against hCAII, with 
potencies ranging from nanomolar to micromolar. Crystal 
structures of two sulfonamide inhibitors (shown in Fig. 4) 
revealed that the predicted binding modes were rather 
correct. The sulfonamide group establishes a network of 
hydrogen bonds with the enzyme binding site, with the 
deprotonated terminal nitrogen group coordinated to zinc. 
Furthermore, the remaining skeleton of the ligands is 
oriented into the previously identified hydrophobic pockets 
[34,35]. 

 The ultimate measure of success of any SBVS campaign 
would be increase hit rates while reducing the number of 
compounds for in vitro biochemical evaluation. Over the 
past few years, a high number of case studies has been 
reported using a variety of SBVS methods, demonstrating its 
broad applicability and the level of interest in this drug 
design strategy. Some important applications include, 
besides the examples abovementioned, the identification of 
antagonists of the thyroid hormone receptor, the discovery of 
inhibitors of tyrosine kinase p56 Lck, the selection of 
epidermal growth factor receptor (EGFR) inhibitors, as well 
as the discovery of inhibitors of the Bcl-2 protein [54-57]. 
The strategy for identification of ellagic acid, a natural 
compound, as nanomolar competitive inhibitor of casein 
kinase 2 (CK2), is depicted in Fig. (5) [58]. This enzyme is a 
ubiquitous, essential, and highly pleiotropic protein kinase 
whose abnormally high constitutive activity is related to 
neoplasia and other infectious diseases. In the SBVS 
approach for the identification of ligands of the ATP binding 
site of CK2, an in-house molecular database containing 
2,000 naturally-occurring compounds (including poly-
phenols as flavones, flavonols, isoflavones, catechins, anth-
raquinones, coumarins, and tannic acid derivatives, Fig. 5) 
was generated and a combination of different docking 
protocols and scoring functions was used. Firstly, rigid body 
orientations for each compound were evaluated according to 
their ability to fit into the ATP binding cavity. Afterwards, 
the compounds predicted to bind into the kinase site were 

submitted to a second step of flexible ligand-docking using 
four different programs and five scoring functions. 
Interestingly, a naturally occurring tannic acid derivative, 
ellagic acid, was classified among the top 5% compounds 
ranked by all possible combinations of flexible-doc-
king/scoring functions, independently from the nature of the 
scoring function. This compound was then characterized as a 
potent and selective competitive inhibitor of CK2 (Ki = 20 
nM) with respect to the substrate ATP (the inhibition of 
other kinases was in the micromolar range). 

RECEPTOR-BASED PHARMACOPHORES 

 The SBVS steps of docking, scoring and ranking are 
powerful tools for the selection of compounds from large 
libraries on the base of desired biological properties, and 
steric and electrostatic complementarity between macro-
molecular sites and ligands. Applying receptor-based 
constraints in SBVS protocols can significantly improve the 
docking results and lead to better hit lists [3,4,9,59]. Thus, 
only the molecules sharing a series of particular 3D steric 
and electrostatic features, that is, characteristics to satisfy 
pharmacophore requirements in a way to ensure optimal 
supramolecular interactions with the biological target struc-
ture, would be selected [59-62]. In order to explore these 
specific structural characteristics, the chemical landscape of 
the binding cavity can be used to define functional-group 
maps or hot-spots for protein ligand interactions, leading to 
the generation of binding-site pharmacophore models. A 
number of different methods that accurately probe and map 
ligand binding pockets has been reported either using 
information from ligand-protein complexes or knowledge of 
the sole protein structure (e.g. GRID [63], SuperStar [64], 
Drug-Score [65], LigandScout [66], Pocket [67], GBPM 
[68], LUDI [69], Cerius [70]). These strategies allowed a 
remarkable improvement of the quality of pharmacophore 
models. 

 Pharmacophore models derived from receptor mapping, 
as represented in Fig. (6) for the estrogen receptor  (ER ), 
are an attractive approach for SBDD [71]. Structure-based 
pharmacophore models can be developed from the 
information gathered by the superposition of X-ray crystal-
lographic structures through the identification of important 
regions of molecular interactions (Fig. 6a-d). In this 
example, the ligand-binding domains of the ER  structures 
in complex with three different modulators were superposed 
(genistein, WAY-244 and ERB-041, genistein is displayd in 
green, Fig. 6A) and a box encompassing the binding cavity 
was selected. Then, hydrophobic (yellow) and hydrophilic 
(cyan) GRID probes were selected to map the binding 
cavities of the ER  structures (Fig. 6B), and the conserved 
essential regions for ligand binding (e.g., hydrogen bonds 
with the Asp305/Arg394 and His475 ends, and the central 
planar hydrophobic core) were identified (Fig. 6C). A 
pharmacophore model was thus generated (Fig. 6D) based 
on hydrogen bond acceptors (cyan) and hydrophobic groups 
(yellow). It is worth noting that this approach has also been 
applied to study selectivity between the ER - and -
subtypes (Fig. 6E). The receptor-based information was 
exploited with the aim to highlight the most relevant 3D 
structural features involved in ER  subtype selectivity [71]. 
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 Another example of 3D pharmacophore generation from 
macromolecule-ligand complexes is illustrated in Fig. (7) 
[66]. Three relevant structures of Abelson tyrosine kinase 
(Abl) were retrieved from the PDB (1FPU, 1IEP, and 1OPJ) 
and used for pharmacophore modeling. The inadvertent acti-
vation of this kinase causes chronic myelogenous leukemia 
(CML), and the inhibition of this enzyme by small-molecule 
ligands has been recognized as an attractive strategy for the 
treatment of CML. The study of the biochemical mechanism 
and binding mode of STI-517 (Imatinib, Fig. 7) has revealed 
that this potent and selective ligand binds and stabilizes the 
inactive form of Abl, preventing its activation [72,73]. 
Therefore, a pharmacophore model was derived from the 
Abl-bond conformations of the STI-517 analogs. The 
structural information on the inhibitors was extracted from 
the PDB structures and interpreted in terms of their chemical 
characteristics (e.g., molecular topology and geometry, 
hybridization state, binding characteristics). Subsequently, 
six different preliminary pharmacophore models were 
derived from both the small-molecule ligands and respective 
surrounding amino acid residues, based on a set of possible 

intermolecular interactions, (e.g., hydrogen bond acceptors 
and donors, charge-transfer interactions, hydrophobic 
regions, volume constraints). The models were refined to 
merge together into one single 3D pharmacophore, which 
was substantially robust to describe the selective binding 
mode of the ligands into the Abl binding cavity [66]. The 
resulting pharmacophore model (Fig. 7) contained four lipo-
philic aromatic regions, two acceptors and eight excluded 
volume spheres. 

 As can be seen, a pharmacophore model is a versatile 3D 
arrangement of important features that can incorporate 
restrictions on the size and shape of specific regions of the 
ligand binding pocket of the receptor, in addition to hyd-
rogen bonding, electrostatic and hydrophobic interactions 
within the limits of the geometric constraints. 

 Pharmacophore models are useful tools for lead identi-
fication and optimization, and one of the strengths of this 
type of tool is that it takes into account the complex chemi-
cal representation of diverse structural scaffolds that can 
express similar chemical functions [62]. The models allow 
medicinal chemists to search 3D databases of compounds 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (5). Flowchart of the high-throughput consensus docking strategy for the identification of ellagic acid as a potent competitive inhibitor 

of CK2. 
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using appropriate software, such as UNITY [74], Catalyst 
[75] and FlexX-Pharm [76]. Structure-based pharmacophore 
design and database searching enable the investigation of the 
intermolecular interactions and binding mode in the active 
site region, leading to the identification of compounds that 
can display good affinity and selectivity for the target 
receptor, as schematically shown in Fig. (8). Moreover, VS 
procedures using pharmacophore models represent a useful 
tool to assess the docking results and the rank order of the 
compounds [24,34,59,77-79].  

 As shown in Fig. (9) for a series of indazole derivatives 
as DNA-gyrase inhibitors, pharmacophore models can be 
used to guide the synthesis of advanced molecules for hit-to-
lead and lead optimization programs [39,80]. DNA gyrase is 
a well-established therapeutic target for antimicrobial agents, 
since it is an essential prokaryotic type II topoisomerase with 
no direct mammalian counterpart. As HTS has not provided 
suitable hits, a rational approach was applied in the search 
for novel inhibitors based on a combination of computational 

and experimental techniques. Firstly, detailed structural 
information obtained both from SAR studies for cyclo-
thialidines and from complexes of the ATP binding site with 
ADPNP, cyclothialidine A and novobiocin, a clinical agent 
used against multi-resistant Staphylococcus aureus, was used 
to generate pharmacophore models. Although these ligands 
interact in different subregions of the same binding pocket, a 
common binding motif was identified, as shown in Fig. (9): 
they were found to donate a hydrogen bond to Asp73 and to 
accept a hydrogen bond from a conserved water molecule. 
Additionally, a hydrophobic part, which is complementary to 
the enzyme pocket, was recognized. The final pharma-
cophore model (Fig. 9) was used in VS experiments leading 
to the discovery of novel DNA gyrase inhibitors. In this 
context, a data set of 350,000 compounds was virtually 
screened to identify molecules that could fulfill the pharma-
cophore model. Subsequently, the molecules identified and 
their corresponding analogs (MW < 300) were clustered, 
generating representative potential low molecular weight 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (6). Schematic representation of a receptor-based pharmacophore model for ER. A) Ligand-binding domain of ER  structure in complex 

with genistein (green). B) Hydrophobic (yellow) and hydrophilic (cyan) GRID probes used to map the binding cavities of the ER  structures. 

C) Important ligand binding regions translated into a pharmacophore query (terminal hydrogen bond acceptors in cyan, and a central 

hydrophobic part in yellow). D) View of the proposed pharmacophore model, with some important residues displayed in green. E) 

Selectivity model for ER. 
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Fig. (7). Key steps for the generation of a 3D pharmacophore model based on the Bcr-Abl tyrosine kinase crystal structures. The 

pharmacophore model consists of four hydrophobic aromatic groups (yellow) and two hydrogen acceptors (green) handled by vectorized 

representations. Spheres for excluded volume are shown in blue. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (8). A) Hot spots mapping the active site of a protein structure. Properties of putative hydrogen bond donors are colored blue while 

acceptors are colored red. B) Target-based pharmacophore points based on MIF. Hydrogen bond acceptor groups are displayed in blue and 

donors in red. C) Fit of a ligand over its corresponding target-based pharmacophore points. D) Polar interactions of the proposed ligand. 
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Fig. (9). Identification and optimization of a series of indazole derivatives as DNA gyrase inhibitors.  
 

inhibitors. A total of 3,000 molecules were screened in 
enzymatic assays providing 150 hits, but most of them 
exhibited moderate to low inhibition (maximal noneffective 
concentration, MNEC, in the micromolar range). Results 
from biophysical and binding studies indicated that these hits 
are specific modulators of the DNA gyrase ATP binding site. 
Seven chemical classes were then validated as novel DNA 
gyrase inhibitors, including: indazoles, phenols, 2-amino-
triazines, 4-amino-pyrimidines, 2-amino-pyrimidines, pyrro-
lopyrimidines, and 2-hydroxymethyl-indoles. The indazoles 
were then selected for 3D receptor-based optimization, 
resulting in highly potent inhibitors, such as 3,4-disubstituted 
indazole (Fig. 9), about 10-fold more potent than the 
aminocoumarin novobiocin. 

 The complexity of the structural 3D requirements can 
progressively be increased, thus restricting the features 
presented by the molecules during the process of optimi-
zation. This strategy is especially useful to reduce the 
number of compounds to be considered or tested in subse-
quent phases. Furthermore, pharmacophores can be used to 
align molecules in order to develop 3D QSAR models [81]. 
Recently, it has also been proposed that pharmacophore 
models could be applied to study the potential biological 
properties of molecules for different targets, considering 
their biological and chemical properties [82]. Interestingly, 
effective strategies have been developed to account for 
protein flexibility, including the creation of dynamic 
pharmacophore models [41,83-85]. 

STRUCTURE-BASED LEAD OPTIMIZATION 

 The identification of a very limited number of promising 
hits and the generation of high quality leads are crucial steps 

in the early stages of drug discovery (Fig. 2). Regardless of 
the strategy adopted (e.g., HTS, fragment-based, VS) for the 
identification of hits, these are generally in the micromolar 
range of activity. Hence, potency and affinity are parameters 
that must be improved by iterative cycles of ligand-receptor 
optimization and biological evaluation. Moreover, additional 
pharmacodynamic and pharmacokinetic properties, such as 
target selectivity, in vivo efficacy and bioavailability, have to 
be progressively adjusted and optimized in order to provide 
NCEs for clinical development (i.e., drug candidates) [4,7,-
10,27,86-88]. Successful lead optimization requires a better 
understanding of the complex factors responsible for binding 
affinity and specificity. Structural information, biological 
data, and advanced medicinal chemistry approaches have 
been applied to this context and have resulted in the 
identification of numerous late-stage development com-
pounds. Detailed knowledge and understanding of the SAR 
is a cornerstone for the progress of lead optimization pro-
jects. The rational design of experiments for the generation 
of standard large-scale biological data is a critical step, 
making possible comparisons of predictions and experi-
mental results. The broad variety of hits and leads that need 
to be further optimized highlights the importance of SAR 
studies in drug design, and as a consequence, allows the 
generation of a wide range of data sets [29]. As sche-
matically shown in Fig. (10), structure-based lead optimi-
zation involves the synthesis and biological evaluation of 
several compounds sharing a high degree of chemical 
similarity, but still possessing interesting structural diversity. 
Its success and effectiveness will depend to a large extent on 
the existence of a well-defined and controlled integration of 
medicinal chemistry efforts, including molecular modeling, 
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design, synthesis and biological evaluation [10,15,25,39,89-
97].  

 An example of fragment-based lead discovery and opti-
mization is shown in Fig. (11) for the development of cyclin 
dependent kinase 2 (CDK2) inhibitors with low nanomolar 
affinity, improved cellular activity and good pharma-
cokinetic profile [91]. The inhibition of CDK2, which is a 
serine-threonine kinase involved in cell cycle regulation, has 
been demonstrated to be an effective method for controlling 
tumor growth, and hence is an attractive approach for cancer 
chemotherapy. Initially, the application of fragment-based 
screening techniques to CDK2 identified multiple fragments 
that bind to the ATP binding site (e.g., chloropyrazinamine, 
indazole and pyrazolopyrimidine). Although the hits showed 
only moderate to low potency (40 μM to 1 mM), they were 
highly efficient binders (ligand efficiency, LE, between 0.35 
to 0.6) due to their low molecular weight (<225) and limited 
functionality, and were then considered suitable targets for 
further optimization. A detailed analysis of the ATP binding 
cavity, as well as of the binding mode of known CDK2 
ligands (throughout the optimization process of pyrazolo-
pyrimidines) led to the identification of important molecular 
regions associated with enhanced activity, including (i) the 
essential hydrogen bonds anchoring the ligand to the hinge 
region (Glu81 and Leu83); (ii) a water mediated hydrogen 
bond between the benzamide group and the catalytic Asp145 
of the DFG motif; (iii) stabilization of the twisted benzamide 
conformation by introduction of ortho-substituents; (iv) 
introduction of the solubilizing aminopiperidine amide group 
to improve physicochemical and pharmacokinetic properties, 
further resulting in the occupancy of a hydrophobic pocket 
near the solvent accessible area, which is related to improved 
cellular activity and selectivity over non-CDK kinases [98]. 
The iterative cycle of optimization of potency, cellular 
activity and pharmacokinetic properties, guided by SAR and 
structure-based studies, resulted in the development of 

AT7519, which is currently being evaluated in clinical trials 
for the treatment of human cancers (Fig. 11) [91]. The 
process of lead optimization is typically a major challenge 
which requires substantial research and the development of 
innovative approaches integrating science and technology in 
order to advance to the next level of improved affinity or 
potency by several orders of magnitude.  

 When the relationship between the chemical structures of 
the ligands and their corresponding biological activity can be 
quantitatively measured, expressed and compared (i.e., SARs 
within data sets of structurally related compounds), they 
become quantitative SARs (or QSARs). QSAR is a 
methodology that applies statistical analysis of relationships 
between descriptors based on molecular structures and 
biological activity in a quantitative and mechanism-oriented 
manner. QSAR has a long history in the drug discovery field, 
and achieved a remarkable impact in the optimization of 
promising leads that act on specific targets. QSAR approa-
ches are widely used for improving and optimizing the 
performance of the several rounds required for lead 
optimization (e.g., design, synthesis, biological evaluation) 
[29, 99-105]. This technology plays a vital role in drug 
design and has been employed, and continue to be developed 
and employed, both to correlate information in data sets and 
as a tool to facilitate, for example, the discovery of enzyme 
inhibitors, agonist or antagonists of important drug targets 
(Fig. 10) [24,71,106-113].  

 The availability of advanced molecular modeling techni-
ques and several 2D and 3D QSAR methods has attracted the 
attention of many scientists around the world for the 
integration of computational drug design tools [24]. Many 
useful QSAR models have been developed in conjunction 
with improved knowledge of the structure and function of 
the target receptor, thus providing useful opportunities to 
capture and incorporate important information for the design 
of promising small-molecule drug candidates. An interesting 

 

 

 

 

 

 

 

 

 

 

 

Fig. (10). Process of hit-to-lead optimization and drug candidate selection. SAR and QSAR studies are essential elements of this complex 

paradigm. 
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example of integration of QSAR and SBDD in the area of 
cancer research is showed in Fig. (12) [29,110]. In this study, 
in the absence of tubulin-bound discodermolide crystal struc-
tures, a powerful fragment-based 2D QSAR method, holo-
gram QSAR (HQSAR), was used to generate molecular 
recognition patterns that were then integrated with molecular 
modeling studies as a step for the understanding of essential 
discodermolide-tubulin interactions associated with its high 
antiproliferative activity. The conformation-independent 

HQSAR method was especially adequate, since the disco-
dermolide system is very flexible and complex. As shown in 
Fig. (12), the most important 2D fragments associated with 
biological activity (positive contributions) were selected and 
used for the study of the main intermolecular interactions 
within the -tubulin system. 

 The receptor binding affinity and respective biological 
activity of a small-molecule modulator are directly related to 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (11). Fragment-based identification and lead optimization strategies in the developing CDK2 inhibitors with high affinity, cellular 

activity and good pharmacokinetic properties. 
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multiple and complex intermolecular interactions and forces 
of non-covalent nature (e.g., hydrogen bonds, electrostatic 
interactions, steric and hydrophobic effects). Therefore, 
molecular properties (descriptors) derived from the opti-
mized 3D structures of biologically active compounds are 
especially useful in describing the reversible and specific 
receptor-ligand interactions [29]. In this context, structure-
based 3D QSAR approaches are able to explore in detail 
both spatial and electrostatic properties that play a vital role 
in the formation of high affinity receptor-ligand complexes. 
This is of fundamental importance in the understanding of 
the molecular aspects that may reflect changes in the 
activities of series of structurally related compounds (which 
target the same receptor), and consequently, these studies are 
a positive effort to improve the connections between the 
chemical and biological space of data sets of compounds. 

 The comparative molecular field analysis (CoMFA) is 
the most widely used 3D QSAR approach for the prediction 
of biological activity and ligand-binding properties of 
ligands within data sets of high quality. In this method, 
quantitative relationships may be derived by sampling the 
steric and electrostatic fields surrounding a set of ligands, 

and the calculated fields are examined and related to the 
biological activity on a specific system. A major challenge in 
this approach is the selection of an optimized 3D confor-
mation of each ligand or a common spatial orientation with 
respect to the other ligands (the entire data set). The 
molecular alignment rule is the most important adjustable 
parameter and strongly affects the outcome of the 3D 
statistical analysis. The ideal alignment should represent the 
ligand-binding conformations adopted in the receptor 
binding site. For this reason, SBDD approaches (e.g., 
docking, pharmacophore models) are commonly used in 
CoMFA studies to generate 3D structural alignments of 
distinct data sets, incorporating important structural elements 
for the development and interpretation of the 3D QSAR 
models in terms of their chemical and biological significance 
(e.g., molecular mechanisms underlying the biological 
effects). In fact, several studies have shown the successful 
use of 3D QSAR and SBDD methods in a complementary 
way [71,106-113]. The integration of these technologies 
represents an efficient approach for drug discovery and lead 
optimization.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (12). Integration of 2D QSAR and molecular modeling studies in the generation of 3D models of interaction between discodermolide 

and the -tubulin cavity, employing the most important HQSAR molecular fragments related to the antiproliferative activity of the 

discodermolide analogs. 
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 As an illustrative example of CoMFA guided drug 
design, a large series of flavanoids, dihydrobenzoxathiins 
and dihydrobenzodithiins as estrogen receptor (ER) modu-
lators was employed to generated 3D QSAR models 
possessing high internal quality and significant predictive 
power [100]. In this study, structural and chemical features 
related to pharmacological properties, such as improved 
binding affinity and potency (inhibition of MCF-7 cell 
growth) were investigated. It is important to note that in 
addition to predicting accurately the property values (IC50) of 
untested compounds that are mostly structurally-related to 
the training set molecules, robust QSAR models can provide 
important information about the relevance of the applied 
descriptors for the property of interest being studied. This is 
the case as the statistical results often return weights that 
indicate the sign and magnitude of the steric and electrostatic 
fields in the modulation of the dependent variable. This 
information provides insights into the mechanism of action 
of series of active molecules and guides the synthesis path-
way toward particular structures with improved properties. 

 The CoMFA results were highly compatible with the 3D 
environment of the ER binding site as demonstrated in Fig. 
(13) for the generated molecular contour fields. The CoMFA 
electrostatic contour maps for affinity (Fig. 13A) and 
potency (Fig. 13 B) show blue contours surrounding the 
protonated nitrogen atom in the pyrrolidine ring, repre-
senting a region where electropositive environment is related 
to increasing binding affinity and potency. The electrostatic 
fields are, however, more important to explain the diffe-
rences of potency than the corresponding variations in the 
binding affinity values [106]. Therefore, it indicates that the 
protonated nitrogen of the pyrrolidine ring is important not 
only for binding affinity, but also for the antagonist 
biocharacter, which is in agreement with the chemical 
environment of the protein, and also with previous studies of 
the electrostatic interactions between the N of the hetero-
cyclic ring and Asp351 (responsible for the antiestrogenic 
activity). The CoMFA steric fields are similar in both 3D 
contour maps as the yellow contour near the benzoxathiin 
reveals that less steric bulky substituents attached to this ring 
are positively related to affinity and potency. On the other 
hand, bulky para- or metha-substituents in the phenyl ring 
are related to enhanced affinity, but not with increased 
potency as indicated by the green region encompassing the 
phenyl ring. These results are in agreement with the 3D 
target environment, as depicted in Fig. (13) and suggest that 
these models should be useful for the design of novel 
structurally related ER antagonists presenting optimized 
binding affinity and potency properties. 

 Other 3D QSAR approaches commonly used in drug 
design studies include GRID/GOLPE (generating optimal 
linear PLS estimations) [63,114], CoMSIA (comparative 
molecular similarity index analysis) [98], and EVA (QSAR 
by eigenvalue analysis) [115]. Variations of well know 
methods can also be found, such as CoMMA (comparative 
molecular moment analysis) [116], AFMoC (adaptation of 
fields for molecular comparison) [117], and HASL 
(hypothetical active site lattice) [118]. 

 The strategy of combining 3D contour maps with the 
structural environment of the protein (target binding site) has 

proven useful to investigate important parameters such as 
affinity and potency, but can also be used to study other 
pharmacodymanic and pharmacokinetic properties, including 
selectivity, reactivity and metabolism [71,107,119-127]. 
Furthermore, considering that the QSAR models may 
provide useful insights into structural and chemical features 
related to the property of interest (biological activity 
parameter), it is possible to envisage that the same general 
approach can be applied in SBVS for the identification of 
hits [128-131]. For QSAR model development, different 
weights are associated with each selected independent 
variable (physicochemical parameters). These weights can be 
interpreted as a measure of the importance of the different 
intermolecular interactions for the target biological activity. 
Therefore, rigorously validated QSAR models can be used as 
a filter to select and rank molecules in the process of SBVS 
[128, 131-134]. An interesting example of the integration of 
3D QSAR and pharmacophore models in the search for new 
compounds targeting the 16S RNA A site of the bacterial 
ribosome is shown in Fig. (14), revealing the potential of this 
strategy in overcoming difficulties in docking and scoring of 
RNA-ligand complexes [134,135]. The increasing bacterial 
resistance to existing antibiotics highlights the need for the 
development of novel therapeutic agents. One of the main 
targets for designing selective antibacterial drugs is the 
prokaryotic ribosome, the target of a clinical relevant class of 
broad spectrum antibiotics, the aminoglycosides. As shown 
in Fig. (14), aminoglycosides bind to the 16S RNA of ribo-
some at the double helix of aminoacyl-tRNA decoding site 
(A site). The ring I of the neamine core is inserted into the 
helix, where it stacks over G1491 and forms a pseudobase 
pair with A1408. Amino groups linked to the ring II (2-
deoxystreptamine) are involved in hydrogen bonds with a 
conserved U1406.U1495 pair as well as G1494 and a phos-
phate group of A1493. Additional contacts, formed by the 
remaining rings as well as water molecules in different 
positions, are responsible for the diversity of ligands that can 
be accommodated. The binding of aminoglycosides reduces 
the ability of the ribosome to discrimate between tRNAs, 
leading to death of the bacterial cell. 

 SBDD strategies for RNA-binders remain a major chal-
lenge, because most of the methods were developed for 
studying protein-ligand complexes. Therefore, in the search 
for novel 16S rRNA ligands containing a neamine motif, an 
integrated strategy was used. Pharmacophore models were 
derived based on features of the 16S RNA bound to 
paromomycin (PDB code 1J7T). In this way were selected 
hydrogen bonds with C1407 (acceptor) and G1491 (donor), 
positive charges near G1405 and steric constraints (Fig. 14). 
A rigid 3D search resulted in promising compounds, which 
were positioned and minimized into the binding site. Predi-
ctive 3D QSAR models for aminoglycoside derivatives were 
used to evaluate and score the proposed binding modes of 
selected compounds and fragments. The most interesting 
compounds were further prioritized for biological tests [134]. 

CONCLUSION 

 The explosion of genomic, proteomic, and structural 
information has provided hundreds of new targets and oppor-
tunities for drug discovery. The modern drug discovery 
process is increasingly becoming more information driven. 
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Fig. (13). Structure-based 3D QSAR CoMFA studies in the design of improved ligands of ER (PDB ID 1XP1). A. CoMFA contour steric and 

electrostatic maps for binding affinity. The highest binding affinity of the ER modulators (IC50=0.3 nM) is shown as background reference. B. 

CoMFA contour steric and electrostatic maps for potency. The most potent antagonist (IC50=0.03 nM) is displayed in the background for 

reference. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (14). Integration of 3D QSAR and pharmacophore models in SBVS for 16 S rRNA ligands. Red spheres: hydrogen bond acceptors; 

green spheres: hydrogen bond donors; blue spheres: positive nitrogen atom; violet spheres: steric features corresponding to receptor atoms. 

Small gray and violet spheres denote positions of those atoms necessary to form bonds with oxygen atoms O5 or O6. 
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Recent years have seen a tremendous increase in new tech-
nologies and methods for the design of NCEs. Virtual 
screening and pharmacophore modeling are state of the art 
knowledge-based approaches that use structural information 
from both targets and ligands. They are useful tools to find 
novel molecules with similar biological activity, or to 
improve the potency, affinity or selectivity of active com-
pounds of interest. The use of these drug design strategies 
has increased enormously in recent years because of the 
availability of databases with millions of commercially 
available compounds, as well as 3D structures of several 
target proteins. Structure-based drug design has a long and 
rich history and continues to expand and evolve in response 
to scientific and technological developments, and hopefully 
will have a long and interesting future in the identification 
and optimization of promising leads having high potential 
for generating new therapeutic agents. 
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