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Is the characterization of biological systems as complex systems in the mathematical
sense a fruitful assertion? In this paper we argue in the affirmative, although obviously
we do not attempt to confront all the issues raised by this question. We use the fly’s
visual system as an example and analyse our experimental results of one particular
neuron in the fly’s visual system from this point of view. We find that the motion-
sensitive ‘H1’ neuron, which converts incoming signals into a sequence of identical pulses
or ‘spikes’, encodes the information contained in the stimulus into an alphabet composed
of a few letters. This encoding occurs on multilayered sets, one of the features attributed
to complex systems. The conversion of intervals between consecutive occurrences of
spikes into an alphabet requires us to construct a generating partition. This entails a one-
to-one correspondence between sequences of spike intervals and words written in the
alphabet. The alphabet dynamics is multifractal both with and without stimulus, though
the multifractality increases with the stimulus entropy. This is in sharp contrast to
models generating independent spike intervals, such as models using Poisson statistics,
whose dynamics is monofractal. We embed the support of the probability measure, which
describes the distribution of words written in this alphabet, in a two-dimensional space,
whose topology can be reproduced by an M-shaped map. This map has positive
Lyapunov exponents, indicating a chaotic-like encoding.

Keywords: complex systems; neuron dynamics; multifractality; dynamical systems

1. The fly’s optical tract as a complex system

The neural system of any living creature, the fly in particular, is certainly a complex
system. In fact, it consists of individual neurons' joined into modules, which
interact with themselves and with the external world. This multiple-component

* Author for correspondence (rk@if.sc.usp.br).

" Present address: Max-Planck-Institut fiir Physik Komplexer Systeme, Nothnitzerstrasse 38,
01187 Dresden, Germany.

! Even a neuron itself may be considered as such a system.
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system evolves and adapts as a consequence of these internal and external
dynamical interactions. The interacting components lead to hierarchical structures
with different causations at different levels. In an experiment we usually only
observe causations in a few levels, in our case at the ‘last’ neuron. There are various
mathematical characterizations of a complex system (Grassberger 1986; Poon &
Grebogi 1995; Bialek et al. 2001). We do not attempt to satisfy all the criteria spelt
out there, but suggest that the encoding of external stimuli in a part of the fly’s
optical tract takes place in multilayered sets (Baptista et al. 2006).

Roughly, in the optical system of the fly, the incoming information is processed
first by the photoreceptors and then by various modules—the lamina, medulla,
lobula and lobula plate. From here the information goes to the sensory system. We
record from one neuron, the ‘H1’, located in the lobula plate. H1 encodes the
incoming signals into a sequence of identical pulses, termed action potentials or
spikes. If such a spiking neuron has to encode relevant features of the stimulus, it
has to fire precisely timed spikes depending on the presynaptic input generated by
the instantaneous stimuli the organism receives. Our experimental results
strongly suggest that this encoding takes place on multilayered sets, a
characteristic of the complex nature of this system. These sets are defined in
terms of symbolic sequences of letters, selected from an alphabet according to the
size of spike time intervals. Furthermore, we present strong evidence that the
underlying dynamics (UD) on each layer is multifractal, thus allowing for a
chaotic-like type of encoding. Already in the no-stimulus regime, owing to the
multifractal dynamics, the UD is highly flexible, ready to adapt its dynamics to
the statistical properties of the stimulus (Fairhall et al. 2001) to be encoded. Then,
in the presence of the stimulus, finely tuned spike times ride on a set whose UD has
now an increased multifractality, shaped by the properties of the stimulus. We
also show that a two-letter alphabet is required for the UD to represent the
no-stimulus dynamics of spontaneous firing, while a four-letter alphabet is
necessary for the UD to encode the information contained in the stimulus.

2. Multifractality

We study this underlying dynamical regime in a prominent example of a spiking
neuron: the H1 neuron, located in the lobula plate of the fly, Chrysomya
megacephala. This area is several layers back from each compound eye of the fly.
It includes large motion-detector neurons with wide receptive fields and pronounced
direction selectivity. The two H1 neurons, one for each lobula plate, are sensitive to
image motion around a vertical axis (Hausen 1981). Their response is excited by
horizontal back-to-front motions, generated by rotations around a vertical axis and
suppressed by motions in the opposite direction. One of these neurons was
stimulated by a computer-controlled random, vertical bar pattern with horizontal
velocity v(t). Here we discretize time in bins of 2 ms, which is roughly the refractory
period of the H1 neuron. The fly therefore saw a new frame on the monitor every
dt=2ms,” whose change in position 8z was given by dx(t)= v(t)dt.

2 The experiments were performed in DipteraLab, Instituto de Fisica, Sdo Carlos, Brazil. Flies were
immobilized with wax and viewed an image displayed on a Tektronix 608 monitor from a distance
of 12 cm, the setup being similar to that of Fairhall et al. (2001). The light intensity corresponds
roughly to that seen by a fly at dusk.
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In order to be minimally representative, we selected four types of stimuli v(¢): Sy,
no stimulus; S;, constant velocity; S,, a stimulus generated by an Ornstein—
Uhlenbeck (Uhlenbeck & Ornstein 1930) process with correlation time 7,=20 ms;’
S3, an uncorrelated (7.=0) Gaussian stimulus.

In each experiment, such a spiking neuron generates a sequence of spike

times t;, i=1, 2, 3, ..., N,, where N,~10” in our experiments. All the informa-
tion received is compressed into the sequence of intervals At,=t;, 1—t. In
order to extract the UD, we classify all the possible intervals into a discrete
set of cardinality N, depending on their size: At;<d;,d; <At < dy,
dy < At; < d3, etc., where d;, j=1, 2, ..., N—1, are a set of dividers. Evidently,
if we make this set large enough, we recover the original intervals, when
d;—d;—, approaches 2 ms. The question is: can we choose a reasonably small
set of dividers without compromising the UD of the original intervals At,? In
other words, what is the size of the alphabet the fly’s H1 neuron uses to speak
postsynaptically?

We choose our dividers so as to maximize Shannon’s entropy (Strong et al.
1998). Equivalent results are obtained, although with larger errors, if we
minimize the information the spike train provides about the stimulus. For a
given set of N—1 dividers, we study the dynamics of our sequence of spike
intervals At; converted into a sequence of words of length L containing N letters.
Note that an L-letter word may comprise a very long time interval. Now count
up all the different sequences showing up in an experiment, get their probabilities
P, and compute the entropy per letter of a word of length L with N possible
letters of the experimental sequence

H(L,N) = —% > Pplogy(Py). (2.1)
k

Figure la shows the entropy for L=10 with only one divider for the four
different datasets. The entropy shows a maximum at

[di(S0), di(S1), di(S2), d(S5)] =23, 6, 5, 5]

bins. We now construct a uniquely defined generating (Plumecoq & Lefranc
2000a,b) partition of our time intervals. Generating means that our alphabet has
to be able to allow a one-to-one encoding of all possible sequences of intervals.
It will turn out to be the partition with N=2X2'=24,8 .... This is a highly
non-trivial endeavour. Even for such well-studied systems as the Henon map
(Grassberger & Kantz 1985), this question has not been settled. In order to
search for such a generating partition, we require the following consistency
requirement to be satisfied: in order to be generating, all the dividers of a
particular layer J must already be contained in the previous layers
j=1,2,...,J—1. If this were not true, conflicting information would result as
we go from layer J—1 to layer J. Dividers are extracted from the data using
always L=1. We will see that, within errors, only one partition satisfies this
requirement. We now construct table 1 in two steps. Firstly, maximizing the
entropy Hy(N=2X2!) for N=2,4,8,....," we get the respective dividers in
3The fly’s reaction time is of the order of 20 ms, and this is thus a behaviourally relevant time
scale.

4The subscript ‘2’ in Hy(N) indicates that we start our search for dividers using a sequence
beginning with this prime number.
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Figure 1. (a) Entropy versus divider for a two-letter code, for the four datasets: Sy, Si, S and Ss.
The entropy maximum gives the best divider d;. (b) Word entropy (Hpyax(L, N)X L) versus the
length of words L for the data S;. Note that for each N there is a value of L for which the entropy
reaches its maximum. We refer to these N and L values as N, and L,,,.. Each curve corresponds
to a different number of letters. (¢) Scaling law that relates Nyay with Ly, for which the maximum
of the entropy is achieved for all the datasets.

table 1. Thus, for experiment Sy, we found the dividers: 23; 9, 23 and 49; and 6,
14, 23, 34, 49 and 71. Secondly, we turn to the remaining values of N, searching
for dividers satisfying our consistency condition. This is indeed possible, if we fix,
for example, the bold-faced dividers and perform a constrained maximization to
obtain the remaining ones. We obtain the new Sy dividers: 9, 71, 34 and 14. Note
that the divider 9, obtained using two letters, arose in the sequence starting with
N=2 only when we used four letters. The corresponding entropy per letter
Hy(N=3, 5, 6, 7,...) equals to within 5% the entropy obtained with an
unconstrained maximization, which yields completely different dividers. We
conclude that Hy(N) for N=2Xx2'=24.8, ... does indeed satisfy our
consistency condition to be a generating partition. Is it unique? If we perform
the same procedure for other partitions, e.g. N=3X2!=3,6,12, ..., the first
step yields the same value for the unconstrained entropy maxima
Hy(N=3,6,12,...). In the second step, to obtain the remaining dividers, the

Phil. Trans. R. Soc. A (2008)
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Figure 2. (a) Entropy per letter normalized by logs(N) for all datasets. Circles represent the
entropy H, (V) (bits per letter)/log,(N), and squares, the entropy Hz(N)(bits per letter)/logy(N)
for all datasets. (b) Ratio of r= (H,)/(Hz), where { ) indicates the average over S, ..., S3.

constrained maximizations yield smaller entropies Hy(N =2,4,5,7,8,...) by as
much as 10% as compared with the unconstrained ones (as shown in figure 2).
Here, H3(N=2) means: (i) maximize H3(N=3) to get [dy, d;] and (ii) maximize
H3(N=2), using either dy or d;, whichever gives the larger entropy. The only
exception here is one point corresponding to N=3. The same is also true for
other partitions, starting with prime numbers 5 and 7, thus indicating that
within errors the binary partition is the only generating one.

Figure 1c¢ shows that the number of letters needed to maximize the entropy
decreases with increasing word length L, due to correlations manifesting
themselves and undersampling effects. Since these put a limit to the size of the
alphabet usable, we address the UD using just a few letters. We note, however,
that even for N smaller than N, e.g. seven dividers for experiments S, and Ss,
we obtain essentially the information the original spike trains convey about the
stimulus (Strong et al. 1998). Figure 3 shows the information per letter I, for Ss,
divided by the information the original spike trains convey about the stimulus,
using the dividers of table 1. In other words, for N=2,3,4,5 ..., we use the
dividers [5], [3, 5], [3, 5, 11], [3,4, 5, 11], .... The error bars shown are due to
systematic errors in the computation of the noise entropy, i.e. the entropy of the
spike train, given the stimulus. In the conversion of spike times into an alphabet,
the precise timing relation of the stimulus to a particular letter is partially lost
and this fact is responsible for the error bars.

Phil. Trans. R. Soc. A (2008)
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Figure 3. Information per letter I5 the alphabet conveys about the stimulus for S,, divided by the
average information per spike Is: f=1I,/Is. The computation of the noise entropy H,ise, Where
I, = H— H,., introduces the large error bars. Our data are extrapolations to L— c (Strong et al.
1998). Experiment S3 shows the same trend.

Since we are going to extrapolate to L large, we focus on sequences of words of
length L containing four letters, using the best dividers of table 1. Only fine
details of our results depend on this choice.

We now encode each of these L-letter words in a one-to-one map into a real
number W;, 0< W;<1,” whose frequencies we count in order to compute their
probabilities p;. The structure of the space of sequences C( W) for a given N may
now be uncovered by computing the generalized dimensions® D, (Renyi 1971,
Grassberger & Procaccia 1983b; Hentschel & Procaccia 1983). These are
logarithmic ratios between the probabilities p; and their physical occupation e,
which in our space C is given by e=N"%. The index ¢ can be thought of as a
filter: a larger ¢ enhances this ratio for large probabilities, whereas a negative one
emphasizes the smaller probabilities,

(2.2)

An equivalent quantity is f,, the Legendre transform of (1— ¢)D,. The index «
measures the possible local fractal dimensions (Grassberger & Procaccia 1983¢;
Halsey et al. 1986) in our space C, occurring with singularity strength f,. This is

5 Our results are independent of the particular encoding used, as long as it is one-to-one.
5Note that, since no metric characterization of the space C(W) is performed, it is irrelevant to the
way we encode words into real numbers to calculate the generalized dimensions.

Phil. Trans. R. Soc. A (2008)



352 M. S. Baptista et al.

the global dimension of the set of points, which locally scales with singularity
strength . They are given by a=d[(¢—1)D,]/dq, fu= qa—(q— l)Dq.7

In figure 4a,b, we show the spectra of the symbolic sequences in C(W) with
their error,” which allow us to draw the following conclusions. The H1 neuron has
a multifractal character, exhibiting the existence of an infinite number of dimen-
sions a with densities f,. This is in sharp contrast to a memoryless, uncorrelated
spike train with a Poissonian or similar probability distribution. Any distribution
with independent increments yields a non-trivial f, for suboptimal dividers, but
is really monofractal for the optimal ones with L In(N)D, =log,(N), independent
of ¢. In fact, for N=2, let py/p; be the probabilities for an interval being smaller/
greater than d;. Then p,(Poisson)=e % where A is the spike rate. Then
LIn(N)D,=1logy(p{ + p{)/(1—q). Maximizing the entropy gives py=p; =1/2
and e~ @(Poison =1 /9 vielding L In(N)D, = logy(2).

Real spike trains by contrast are multifractal even for the best dividers for all
types of stimuli. The fractal dimensions are roughly the same for all the datasets,
since Dy = f; = 1. This means that the neuron’s dynamics has continuous support
on C, the probability measure being distributed without ‘holes’. The spectra’s
shape—f, =0 and f, >0 (except for S3)—indicates that C has at least two
scales and two main components: high-probability sets, hot spots localized in
small portions of the symbolic space C with density f, ; and another
low-probability set, cold spots spread out all over C with density f, . In the set
associated with Sy, the number of cold spots very much dominates—
Ja. ~ Qpax ~ 1—the hot ones, implying one dominant scale. For the other
datasets, the scales are comparable. Therefore, as the dynamics of the stimulus
becomes faster as we go from 7.= % to 7.=0, the suppressed scale emerges.

Given the f, spectra of our data, what is the simplest set with this spectrum? To
address this question, we construct a probabilistic two-scale set with the following
rule: an interval of length unity is divided into b+ 1 equal pieces, such that one
piece receives p, of the original measure and the remaining b receive p; each, with
po+ bpy=1. Iterating this process self-similarly yields a set of dimension

B ln(pg + bpf)
T (1—q)n(1 +b)’

with py= (14 b)"* and p; = (1— py)/b, where b is adjusted to produce the
correct value for f, in figure 4b. The resulting f, spectra are shown in figure 4c¢,d.

Note that b jumps to lower values, once a stimulus is turned on. This means
that for no stimulus the dynamics distributes the measure rather uniformly into
31 equal intervals, where 30 of them receive p; of the measure and one receives py
with py>p;. At the rth iteration of the set, 30 intervals will contain p] of the
measure (cold spots), one interval will contain pj of the measure (hot spots), i.e.
virtually all of the measure, and the rest will receive combinations proportional
to pg_k p¥, 0<Ek<r. When stimulated, the number of pieces drops dramatically to
approximately one, the hot spots approximately balancing the cold ones. Stimuli

(2.3)

7 D, can be reliably computed, if there are linear regimes, when plotting the numerator versus the
denominator of equation (2.2). The ¢ values were selected so as to produce D, values with a
variance of no larger than 5% relative to the absolute value (this is obtained from the residual of
the linear fitting) and which produce an error in f, of no more than 10% relative to the absolute
value, except for some low-probability sets, which have larger errors.
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Figure 4. The f, spectra using table 1: (a) two letters and (b) four letters. To avoid cluttering, we show
only one-sided error bars as dashed lines. Spectra analogous to (a,b), using equation (2.3): (¢) for two
letters with bg g, .5,.5, = [30; 1.55;2.0; 1.44] and (d) for four letters with bg, g, .s,.5, = [30;1.45;2.0;1.2].
The arrows indicate the endpoint «,,,, of the curve for S.

thus reshape the probability landscape, which becomes more and more
structured as the stimulus entropy increases.

3. The M map and a two-dimensional symbolic space
The uncovering of a neural code, the rule by which a stimulus is encoded into a
sequence of spike times, is one of the central issues in neuroscience. Here we

address a much simpler, though preliminary, issue: finding a pseudo-code, which

Phil. Trans. R. Soc. A (2008)
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Figure 5. The M mapping. A piecewise almost linear map with four distinct domains. For z,, > 1
take z,+1=2—1,+1. Each domain is associated with a symbol.

generates sequences with four letters, having the same probability distributions
and the same f, spectra as the data.

We propose a piecewise almost linear map of the form shown in figure 5.5 It
was selected out of several dozens of multiparameter maps, which did not work.
The parameters (c1, ¢z and ¢3) of the M map were adjusted, starting from initial
divider intervals set proportional to the respective letter probabilities. It models
the most probable words, meaning that, for stimuli [Sy, Si, S2, S3], we only
consider words appearing more than [4, 20, 20, 25] times, discarding words with
frequency approximately less than 0.012%. Note that cold spots are sensitive to
low-probability words. The nonlinearity for 0<z,<¢; models the prominent
singularity due to words mostly composed of ‘0’s in dataset Sy and is given by

Tpiy1 = ‘Tn(hl/cl + (1/01)93;.% _1)7 0< Zy < ‘1, (31)

with ¢=0.9. The jump in b (see figure 5) is reflected in this nonlinearity. If g=0,
the map is piecewise linear.

We create a symbolic sequence from a trajectory of the M map, associating
letters By, B2, B3, B4, if z, €10, 1], [c1, 2], [, 3], [c3,1], respectively, to real
numbers.

The extraction of the second layer’s equivalent dynamics is one of the basic
steps in analysing this system within the framework of dynamical systems
theory. We therefore convert the dynamics of our sequence of spike intervals
At; into a sequence of words of length L=6 containing N=4 letters and
embed our sequences into a Cartesian two-dimensional space’ G= W, ® Wi,
for visualization. The symbolic spaces for the sequences generated by the M
model with the parameters of table 2 are shown in figure 6e—h. The symbolic

8 Notice that h; may be greater than 1.
9The false nearest neighbour technique (Kantz & Schreiber 1997) indicates an embedding
dimension d, ~3-6.

Phil. Trans. R. Soc. A (2008)
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Figure 6. Symbolic spaces G for N=4 letters and L=5: (a) Sy, (b) 51, (¢) So and (d) Sz for the
original data; (e) Sy, (f) Si, (g) S2 and (h) Sz for the M mapping with parameters from table 2.

Table 2. Parameters of the M mapping (figure 5), whose sequences generate the symbolic spaces of
figure 6. (Parameters adjusted in order to reproduce both the spectra in figure 4a,b and G in
figure 6a—d.)

dataset c1 Co c3 h ho hs g
So 0.337 0.6 0.8 0.93 0 1.0 0.9
S1 0.3 0.6 0.8 0.9 0.25 1.1 0
Sy 0.3 0.6 0.8 0.85 0.25 1.0 0
S5 0.3 0.6 0.8 1.0 0.25 1.2 0

sequences extracted from the original data using four letters, embedded in
G,'% again for the most probable words, are shown in figure 6a-d. They
exhibit the same qualitative features as the M model-generated ones.

As the fly is subjected to different stimuli, the H1 dynamics is rather robust (as can
be gleaned from table 2, which shows only a small change in parameter values).

9The position of the stripes depends on how we code for W;, but quantities like D, f. and
Lyapunov exponents are coordinate independent.

Phil. Trans. R. Soc. A (2008)
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Table 3. Lyapunov exponents A for the four datasets extracted from M map sequences.

dataset So S1 Sa S3
A 1.85 1.81 2.08 2.14

We can also infer the chaoticity of the experimental data, measuring the
Lyapunov exponents of the corresponding M map for the four datasets (see table 3).

As expected, the exponents increase as the stimuli’s entropy increases. Note
though that, even for no or constant stimuli, the exponents are positive,
indicating a genuine chaotic UD.

4. Conclusion

We show that methods from dynamical systems from the point of view of complex
systems, when applied to a biological system, are able to extract new and
relevant features. In our case, we extract the UD of the H1 neuron by a finite size
alphabet with about four letters. Analysing sequences written in this alphabet
allows us to exhibit the multifractal character of the sequence space. We did
model our data sequences by a piecewise almost linear map, whose dynamics
compares well with the original data in a two-dimensional state space. The
stimulus shapes the landscape of the sequence space from mainly uniform to
highly structured, as the stimuli become increasingly dynamically variable. But
this reshaping is played out on different chaotically unstable layers. These are
dynamically linked—a behaviour typical of complex systems.

The existence of multifractal sets strongly suggests a chaotic dynamics—also
supported by the positive Lyapunov exponents that we compute using the M
map. This leads us to think about strange attractors, which exhibit a natural way
to generate hot spots: the existence of folds of an attractor with bounded measure
(Grebogi et al. 1988). There the system loses its hyperbolicity, since the stable
and unstable manifolds are tangent. Owing to ergodicity or recurrence, these
folds map densely into the attractor, generating high-probability spots.

The tools developed here for the analysis of our data are of general applicability.
The fly’s optical processing system reveals its fascinating complexity, even in the
basic aspects of the spike generating dynamics. Aspects of this spike generating
dynamics provide a means for its manipulation and control. It remains to be seen
whether the layered structure uncovered here has a counterpart in the fly’s optical
information processing system.
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