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Abstract—Mutation testing is widely used in experiments.
Some papers experiment with mutation directly, while others
use it to introduce faults to measure the effectiveness of tests
created by other methods. There is some random variation in the
mutation score depending on the specific test values used. When
generating tests to use in experiments, a common, although not
universal practice, is to generate multiple sets of tests to satisfy
the same criterion or according to the same procedure, and then
to compute their average performance. Averaging over multiple
test sets is thought to reduce the variation in the mutation score.
This practice is extremely expensive when tests are generated by
hand (as is common) and as the number of programs increase (a
current positive trend in software engineering experimentation).

The research reported in this short paper asks a simple
and direct question: do we need to generate multiple sets of
test cases? That is, how do different test sets influence the
cost and effectiveness results? In a controlled experiment, we
generated 10 different test cases to be adequate for the Statement
Deletion (SSDL) mutation operator for 39 small programs and
functions, and then evaluated how they differ in terms of cost and
effectiveness. We found that averaging over multiple programs
was effective in reducing the variance in the mutation scores
introduced by specific tests.

Index Terms—Software testing; Mutation testing; Test set
selection

I. INTRODUCTION

When conducting experimental studies with mutation test-

ing, researchers usually need to solve some problems that are

seldom automated. This includes identifying equivalent mu-

tants and generating adequate test sets as part of experimental

setup.

In a recent paper [1] the authors faced the problem of select-

ing adequate test sets to evaluate the cost and effectiveness of

individual mutation operators. We used the approach pioneered

by Frankl [2] of first generating a “universe” of test cases

that were adequate for the complete set of mutants, and then

selected subsets that were adequate for the specific mutants

being studied. The cost and effectiveness of each operator can

be measured by assessing some characteristics of the adequate

test sets, such as their sizes and their mutation scores when

run against the complete set of mutants.

Initially, only one adequate test set was used for each

mutation operator. This procedure was criticized because for

a given operator Op there can be many different Op-adequate

subsets of the universe test set, and thus the results could vary

depending on which specific tests are selected. Although intu-

itively appealing, to the best of our knowledge this concern has

never been experimentally verified. So, the question addressed

in this paper is whether, and to what extent, the selection

of different adequate test sets can influence the experimental

results.

The results of this paper indicate two interesting findings.

The first is that different test sets can give different results on

individual programs. The second is somewhat contradictory,

when averaged over the set of 39 programs that we studied,

statistically this difference all but disappears. These facts can

be useful to future researchers in this area. The second finding

indicates that when researchers are interested in averages over

programs, one test set is enough. The first, however, brings up

a practical question: if the mutation score for the complete set

of mutants is sensitive to the specific test cases generated for

a reduced set of mutants, will this impact the effectiveness of

such test sets against “real world” faults? Moreover, is there a

way to identify and select the best (most effective) adequate

test sets from among a set of tests that all satisfy the same

criterion?

The next section of this short paper presents the experimen-

tal setup. Section III presents the results obtained, Section IV

presents threats to validity, and Section V presents conclusions

and recommendations.

II. EXPERIMENTAL SETUP

This section describes the subject programs, the tool used,

and the experimental procedure.

a) Subject Programs: Thirty nine programs written in

C of varying sizes and from different domains were used as

experimental subjects. These programs were extracted from

the Siemens program suite [3], text books [4], and the software

testing literature. The subject programs varied in size from one

to 20 functions, and from seven to 390 lines of code, totaling

189 functions and 2853 lines of code. When needed, we refer

to an individual subject as Pi.

Table I summarizes the subject programs. For each, the table

shows the number of functions, the number of lines of code,

the number of mutants generated by all operators, the number
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of equivalent mutants, and the number of tests in the mutation-

adequate test set.

b) Supporting Tool: This study used the C language

mutation tool Program Testing Using Mutants (Proteum) [5]

to generate a comprehensive set of faulty programs that were

used to evaluate the effectiveness of the test sets. This paper

uses the mutation score as a proxy for effectiveness. The

set of mutation operators implemented into Proteum follows,

as closely as possible, the original C operators defined by

Agrawal et al. [6]. The set of all mutants for program Pi is

referred as Mi.

c) Adequate Test Sets: For each subject program, an

adequate test set was constructed to kill all the mutants

generated by Proteum. We refer to the test sets for program

Pi as Ti. The size of each Ti is shown in Table I.

Most of the tests were generated by hand by the first author.

Some test cases were provided with the Siemens programs1

and we generated additional tests by hand to kill all non-

equivalent mutants. For the remaining programs, we also

generated tests by hand to kill all non-equivalent mutants.

Equivalent mutants were marked by hand analysis.

After all mutants were killed or marked as equivalent, test

cases that did not contribute to killing at least one mutant were

removed.

d) Data Collection: For each Pi we selected a reduced

set of mutants Ri. These mutants were generated by a single

mutation operator, Statement Deletion (SSDL). We chose

SSDL for two reasons: (1) it is universally applicable to all

programs; and (2) it has been studied in recent papers as

an alternative to using the complete set of mutation opera-

tors [1, 7, 8].

For each Ri we built 10 test sets that were adequate

for SSDL, TRi,1 through TRi,10. Each TRi,j was built by

selecting test cases from the universe set, Ti, until an adequate

test set was obtained. Starting with an empty set, a test case

was considered and added if and only if it killed at least

one additional mutant. For the first set, TRi,1, tests were

considered in the same order as they appeared in Ti. For

the remaining TRi,2 through TRi,10, tests were considered

in random order, starting with a new random seed for that test

set.

For each TRi,j two metrics were collected: its size and

its mutation score when executed against the complete set

of mutants Mi. Then, we collected statistics of distribution

and central tendency for each TRi,j , including mean, median,

minimum and maximum values, and the standard deviation

(SD). These numbers are analyzed in the next section.

e) Research Questions: We have two primary questions

in this experiment:

RQ1: If different SSDL-adequate test sets are selected from

the universe of test cases, how different would they

be in terms of effectiveness, as measured by the

mutation score against the complete set of mutants?

1Programs print_tokens, print_tokens2, replace, schedule,
schedule2, tcas and totInfo.

RQ2: if different SSDL-adequate test sets are selected from

the universe of test cases, how different would they

be in terms of cost, as measured by their sizes?

III. RESULTS

Table II shows the effectiveness results for the 39 programs.

Each row corresponds to program Pi, and the columns show

statistics over the 10 SSDL-adequate test sets. For program

P1 (boundedQueue), the lowest mutation score across the

10 test sets was 0.9207 and the highest score was 0.9902. The

average (mean) mutation score of all 10 test sets is 0.9600,

with a standard deviation of .0216.

The differences between the lowest and highest mutation

scores of a given program vary a lot among the programs.

For example, the high and low scores for P4 and P19 differ

by more than 20%, whereas P28 and P31 differ by less than

1%. So, if researchers rely on results for individual programs,

using only one adequate test set might skew the result. For

example, if P4’s lowest scoring test set was used, SSDL would

be considered to have only .4752 effectiveness. However, if

P4’s highest scoring test set was used, its effectiveness would

be found to be 0.7723.

Since several of the smallest programs had particularly high

SD, we calculated the Spearman rank correlation [9] between

the LOC and SD and between the LOC and Max-Min dif-

ference. Two series of numbers are perfectly correlated if the

value is 1 or -1, and not at all correlated if the value is 0. The

LOC and SD were (negatively) correlated with a value of -.65,

and the LOC and Max-Min difference with a value of -.63.

Thus, we conclude there is a strong correlation between size

and spread, that is, the differences in effectiveness among the

test sets are smaller with bigger programs. This is significant

because as the programs get bigger, we do not need to use

as many test sets in our experiment. This is good news for

experimentalists, because creating 10 test sets for a 10 line

program is one thing, but creating 10 test sets for a 1000 line

program is quite another!

The last row of Table II shows the averages over the 39

programs. The average Min is .9093 and the average Max

is .9338, so the SD is very small, only .0071. Running

a one-way ANOVA between the 10 sequences of test sets

for the 39 subjects we can see that there were no statisti-

cally significant differences between mutation score means

(F (9, 380) = 0.312; p = 0.971).

The results for the number of test cases in each adequate test

set are shown in Table III. Since each program has different

universes of adequate test cases, with different sizes, we

analyze the ratio between the largest and the smallest adequate

sets for each program, rather than the difference.

The ratio ranges from a low of 1 (on programs P4, P9,

P15, and P38) all the way to a high of 7 on P17. Not

surprisingly, larger programs usually need more tests. This

time, larger programs tended to have a higher SD over the

10 sets of tests, but Spearman’s correlation between LOC and

SD was only .56. The correlation is positive, indicating that
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TABLE I
SUBJECT PROGRAMS.

Program Prog. Name Functions LOC Mutants Equiv. Test Cases
P1 boundedQueue 6 49 1121 99 13
P2 cal 1 18 891 71 8
P3 Calculation 7 46 1118 107 13
P4 checkIt 1 9 104 3 9
P5 CheckPalindrome 1 10 166 20 8
P6 countPositive 1 9 151 9 5
P7 date-plus 3 132 2421 160 44
P8 DigitReverser 1 17 496 43 5
P9 findLast 1 10 198 17 6
P10 findVal 1 7 190 18 7
P11 Gaussian 6 23 1086 19 21
P12 Heap 7 41 1079 98 8
P13 InversePermutation 1 15 576 61 12
P14 jday-jdate 2 49 2821 81 27
P15 lastZero 1 9 173 9 5
P16 LRS 5 51 1132 258 8
P17 MergeSort 3 32 991 48 18
P18 numZero 1 10 151 17 5
P19 oddOrPos 1 9 361 71 7
P20 pcal 8 204 6419 779 49
P21 power 1 11 268 12 9
P22 print tokens 17 349 4322 542 34
P23 print tokens2 18 275 4734 664 27
P24 printPrimes 2 35 715 64 7
P25 Queue 6 64 469 25 12
P26 quicksort 1 23 1026 82 13
P27 RecursiveSort 1 17 555 45 8
P28 replace 20 390 11, 100 2062 142
P29 schedule 18 213 2108 221 45
P30 schedule2 16 195 2626 411 41
P31 Stack 6 56 460 49 11
P32 stats 1 19 884 101 7
P33 sum 1 7 165 11 6
P34 tcas 8 63 2384 428 62
P35 testPad 1 24 629 57 14
P36 totInfo 7 214 6693 678 49
P37 trashAndTakeOut 2 19 599 26 12
P38 twoPred 1 10 246 24 10
P39 UnixCal 4 119 4852 339 27

Total 189 2853 66480 7829 814
Min 1 7 104 3 5
Max 20 390 11100 2062 142

Average 4.85 73.15 1704.62 200.74 20.87

the spread grows as the number of tests grows. Again, this is

not surprising and is possibly purely a function of size.

The ratio between the largest and smallest test set sizes,

however, only has a Spearman’s correlation value of -.28 with

LOC. Thus, we conclude that differences in test set size is not

significantly correlated with program size.

Considering only the averages for the 39 programs, as we

did with the mutation score, the smallest mean is 4.79 and the

largest is 6.00. Running a one-way ANOVA, we can see that

there were no statistically significant differences between test

set sizes means (F (9, 380) = 0.222; p = 0.991).

As with the mutation scores, there is very little difference

between the minimum and maximum number of test cases

when averaged over all 39 programs.

IV. THREATS TO VALIDITY & LIMITATIONS

A usual threat in this kind of experimental work is the fact

that, no matter which programs we use in the experiment, the

results can never be generalized to all programs. To deal with

this problem we tried to select a large number of programs

from different sources and in different domains. Also in this

sense, the small sizes of most programs may represent a threat,

but analyzing a large number of large programs is practically

impossible

The creation of the universe of test cases, adequate to all

the C mutants of each programs was done manually. Using

different tests or a different tester could result in different

results. However the construction of such sets is extremely

time consuming, so it would be impractical to create more than

one test set. It is the same for the identification of equivalent

mutants. It was done by the first author and, besides his

experience with mutation testing and the C language, no other

measure was taken to guarantee the quality of such process.

Finally, we used SSDL as the operator for test case se-

lection. Other operators, and indeed, any other test criterion

could yield different results. The important issue here is not the

actual values obtained, but the analysis of the methodological

procedures taken. Thus we see no reason why using other
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TABLE II
EFFECTIVENESS OF SSDL

Prog. Min Median Mean Max St. Dev. Max-Min
P1 0.9207 0.9658 0.9600 0.9902 0.0216 0.0695
P2 0.8622 0.9268 0.9230 0.9720 0.0359 0.1098
P3 0.8577 0.9289 0.9214 0.9694 0.0342 0.1117
P4 0.4752 0.6287 0.6267 0.7723 0.0904 0.2971
P5 0.9178 0.9315 0.9342 0.9658 0.0177 0.0480
P6 0.8169 0.9085 0.8930 0.9718 0.0595 0.1549
P7 0.9425 0.9549 0.9577 0.9748 0.0113 0.0323
P8 0.8543 0.9879 0.9744 0.9956 0.0424 0.1413
P9 0.7005 0.7914 0.7807 0.8075 0.0322 0.1070
P10 0.8218 0.8822 0.8736 0.9138 0.0359 0.0920
P11 0.9544 0.9679 0.9663 0.9786 0.0085 0.0242
P12 0.9492 0.9787 0.9757 0.9868 0.0113 0.0376
P13 0.8721 0.9215 0.9157 0.9380 0.0202 0.0659
P14 0.9223 0.9639 0.9583 0.9686 0.0144 0.0463
P15 0.8537 0.8628 0.8689 0.8902 0.0153 0.0365
P16 0.9564 0.9681 0.9707 0.9832 0.0102 0.0268
P17 0.9212 0.9475 0.9483 0.9758 0.0159 0.0546
P18 0.8433 0.9328 0.9306 0.9776 0.0504 0.1343
P19 0.7138 0.7724 0.8110 0.9586 0.0901 0.2448
P20 0.9240 0.9348 0.9421 0.9667 0.0164 0.0427
P21 0.9492 0.9609 0.9609 0.9766 0.0090 0.0274
P22 0.9799 0.9873 0.9871 0.9947 0.0042 0.0148
P23 0.9637 0.9821 0.9807 0.9929 0.0094 0.0292
P24 0.9662 0.9816 0.9808 0.9908 0.0089 0.0246
P25 0.9798 0.9966 0.9944 1.0000 0.0070 0.0202
P26 0.9325 0.9657 0.9593 0.9852 0.0181 0.0527
P27 0.9235 0.9480 0.9431 0.9686 0.0150 0.0451
P28 0.9649 0.9717 0.9707 0.9761 0.0034 0.0112
P29 0.9502 0.9637 0.9651 0.9873 0.0093 0.0371
P30 0.9436 0.9626 0.9588 0.9689 0.0089 0.0253
P31 0.9830 0.9903 0.9888 0.9927 0.0029 0.0097
P32 0.9170 0.9374 0.9458 0.9770 0.0200 0.0600
P33 0.7792 0.8506 0.8526 0.9221 0.0641 0.1429
P34 0.8338 0.8701 0.8674 0.8978 0.0239 0.0640
P35 0.9021 0.9213 0.9247 0.9633 0.0231 0.0612
P36 0.9428 0.9535 0.9557 0.9677 0.0076 0.0249
P37 0.8778 0.8901 0.8988 0.9372 0.0198 0.0594
P38 0.6712 0.7793 0.7725 0.8604 0.0707 0.1892
P39 0.9608 0.9653 0.9655 0.9738 0.0038 0.0130
Avg. 0.9093 0.9232 0.9232 0.9338 0.0071 0.0245

mutation operators would yield different results, although we

certainly encourage replication of this study.

V. CONCLUSIONS AND RECOMMENDATIONS

This paper evaluates the effect of using multiple test cases

in experimental research. Previous researchers have assumed

that selecting only one adequate test set could interfere in the

results of cost and effectiveness for mutation operators, and

thus created multiple test sets. However, this assumption was

made without evidence.

Our results show that there can be significant differences

for individual subject programs among different test sets

chosen for the same adequacy criterion. These differences

were observed for both effectiveness (mutation score) and

cost (number of tests). This result makes a case for choosing

multiple test sets during experimentation.

However, we found that the differences in effectiveness

among different test sets was less with larger programs.

Perhaps more importantly, the differences tended to disappear

when effectiveness is averaged over a collection of programs

(39 in our study). This is not surprising since the difference

TABLE III
SIZES OF SSDL-ADEQUATE TEST SETS

Prog. Min Median Mean Max St. Dev. Max/Min
P1 3 5.0 5.0 6 0.9280 2.00
P2 3 3.0 3.5 5 0.7265 1.67
P3 5 6.0 6.3 8 0.8819 1.60
P4 2 2.0 2.0 2 0.0000 1.00
P5 3 3.0 3.1 4 0.0000 1.33
P6 1 1.5 1.6 3 0.5270 3.00
P7 13 15.0 15.2 17 1.4142 1.31
P8 1 1.0 1.3 2 0.4410 2.00
P9 2 2.0 2.0 2 0.0000 1.00
P10 1 2.0 1.7 2 0.5000 2.00
P11 3 4.0 4.3 5 0.6667 1.67
P12 2 3.0 3.4 5 1.0138 2.50
P13 2 3.0 3.3 5 0.6009 2.50
P14 4 4.0 4.3 5 0.4410 1.25
P15 1 1.0 1.0 1 0.0000 1.00
P16 2 3.0 3.1 4 0.6009 2.00
P17 1 3.0 3.3 7 1.8028 7.00
P18 1 1.0 1.3 2 0.4410 2.00
P19 1 2.0 1.9 3 0.8333 3.00
P20 14 15.0 15.2 17 1.1180 1.21
P21 2 2.0 2.5 4 0.7265 2.00
P22 7 10.0 10.1 14 1.8708 2.00
P23 4 6.5 6.6 9 1.8105 2.25
P24 1 2.0 2.1 3 0.8660 3.00
P25 6 7.5 7.6 10 0.7071 1.67
P26 1 2.0 2.2 5 0.7817 5.00
P27 1 1.0 1.4 3 0.4410 3.00
P28 16 18.5 19.4 24 2.5495 1.50
P29 10 10.0 10.5 12 0.7265 1.20
P30 7 11.0 10.9 15 1.7401 2.14
P31 4 5.0 5.1 6 0.7071 1.50
P32 1 2.0 1.8 2 0.4410 2.00
P33 1 1.0 1.5 3 0.5000 3.00
P34 10 11.5 11.5 13 0.7071 1.30
P35 3 4.0 3.7 4 0.5000 1.33
P36 8 10.0 10.1 12 1.5366 1.50
P37 3 3.5 3.6 5 0.7071 1.67
P38 2 2.0 2.0 2 0.0000 1.00
P39 7 7.0 7.2 8 0.4410 1.14
Avg. 4.79 5.1 5.2 6 0.2139 1.25

in the results of the test sets for each program is probably

due to the chances of selecting specific test case values. If

we had insignificant differences among the 10 test set for any

single subject, then that would indicate the practice of using

multiple sets is not necessary. The fact that a large number of

subjects reduces the individual errors is not particularly related

to mutation. It is only a good experimental practice.

Thus, we recommend using multiple test sets if only a

few subjects are chosen, but if many subjects are used,

using multiple test sets may not increase the accuracy of the

experimental work. It is important to note that the lack of

statistical significance does not mean that the averages do

not differ. A two percentage points difference in the averages,

as found in this experiment, may or may not be significant,

depending how the researcher needs to use it. In addition,

we used an “unweighted average” in which each program is

weighted equally in the final mean. If other statistics are used,

for instance a weighted mean, the results may differ slightly.

The weighted mean of the effectiveness can be computed by

summing up the total number of killed mutants on all 39

programs and dividing that sum by the total number of non
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equivalent mutants.

We did not vary the number of tests; we always used 10.

So we are not able to provide insight as to how many test sets

are “enough.”

Analyzing these results raises an interesting question that

might be of interest for researchers and practitioners. What

are the consequences of choosing a given test case in terms of

effectiveness, considering not only mutation operators but also

real faults? If a tester is presented with two test sets adequate

to a set of mutants (or to any other testing criterion), which

should she/he choose? Is there a way to predict which should

be more effective in terms of a larger set of faults, either

those defined by mutant operators or real faults? In a quick

check we could verify, for instance, that there is no strong

correlation between the size of the SSDL-adequate test sets

and their effectiveness against the complete set of mutants.
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