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Abstract—As a test criterion, mutation analysis is known for
yielding very effective tests. It is also known for creating many
test requirements, each of which is represented by a “mutant”
that must be “killed.” In recent years, researchers have found that
these test requirements have a lot of duplication, in that many
test requirements yield the same tests. Put another way, hundreds
of mutants can usually be killed by only a few dozen tests. If
we could reduce this duplication without reducing mutation’s
effectiveness, mutation testing could become more cost-effective.
One avenue of this research has been to use only one type of
mutant, the statement deletion mutation operator. Researchers
have found that statement deletion mutation has relatively few
mutants, but yields tests that are almost as effective as using
all mutants, with the significant benefit that fewer equivalent
mutants are generated. This paper extends this idea by asking
a simple question: if deleting statements is a cost-effective way
to design tests, will deleting other program elements also be
effective? This paper presents results from mutation operators
that delete variables, operators, and constants, finding that
indeed, this is an efficient and effective approach.

I. INTRODUCTION

Mutation analysis [1] is a test criterion that is widely

recognized for helping testers design very effective test sets.

On the other hand, it is also considered costly, both in terms

of computation and human resources. Mutation operators are

used to generate alternative versions of the program under test

and the tester designs tests that make these mutant programs

behave differently from the original program. The number of

mutants a test set “kills” is used as a measure of quality.

Mutation testing is effective because it directly relates to

the ability of the test set to reveal faults, as represented by the

mutants. Mutation adequate tests are likely to reveal other kind

of faults, based on the coupling effect [2]. Mutation’s effective-

ness directly depends on the mutation operators used, as does

its cost. It is expensive when the mutation operators create a

large number of mutants (generally called test requirements

[3]). Mutants must be run against the test set (a computation

cost), and testers must analyze “live” mutants and design

tests to kill them (a human cost). Additionally, some mutants

cannot be killed, that is, they behave the same as the program

under test for all tests; they are equivalent mutants. Identifying

equivalent mutants is largely done by hand (a human cost). Not

surprisingly, the human cost typically dominates.

Mutation operators play a pivotal role both the quality of the

tests (effectiveness) and the cost of testing. Mutation operators

are defined based on programming language characteristics

and common mistakes programmers make. Mutation operators

have been defined for many languages, including Fortran [4],

C [5] and Java [6], [7]. Some mutation operators have been

based on experience and intuition (Mothra operators [4]),

whereas others have been based on fault models (muJava [7],

and the Hazard of Operability Study (HAZOP) [8], [9]).

Mutation operators based on all characteristics of the lan-

guage often generate mutants that are redundant in the sense

that many mutants are killed by the same tests. Redundant

mutants increases cost because there are more mutants, and

some operators create more equivalent mutants than others.

Several studies were conducted to identify a smaller set

of “essential” operators that would guarantee a good test set

with a low cost [10]–[13]. A recent study [14] focused on a

single operator with high effectiveness. The study found that

the Statement Deletion (SDL) operator has characteristics that

make it a likely choice for a single operator mutation criterion.

This paper uses that result, but goes in a new direction.

Instead of empirically selecting mutation operators, we first

analyze SDL characteristics and then develop new operators

that should have the same qualities. This resulted in three new

mutation operators that we applied to a suite of programs

to assess effectiveness and cost. The results show that a

combination of two operators is the most effective alternative,

achieving more then 97% of mutation score gained when using

the complete set of mutants. However, when cost is also taken

in consideration, a more precise analyses is necessary. Thus,

an analysis of cost is also presented.

This paper is organized as follows: The next section defines

and discusses SDL-mutation, which uses only the SDL oper-

ator to generate mutants. Then we present our new operators.

Section III presents an analysis of expected costs of all four

operators. Section IV presents data from an experimental

evaluation of the operators. Section V discusses similar work

and Section VI gives final remarks and recommendations.

II. DELETION MUTATION OPERATORS

One-op mutation is the idea of using a single powerful

mutation operator that leads to a highly effective test set with

a low cost. SDL-mutation [15] is a one-op mutation version

that uses Statement Deletion (SDL). Results showed that SDL-

mutation yields huge savings in the cost of mutation testing

without a significant loss of effectiveness [14].

SDL has several positive characteristics. First, its effective-

ness is high. The usual way to assess an operator’s effective-

ness is to first design a test set that kills all of its mutants, and

then find how many mutants that test set kills of the complete

set of mutants. In previous experiments, SDL achieved 92%

effectiveness for Java [14]. Second, the cost of using SDL

is low. The total number of mutants is proportional to the

number of statements in the program under test. In the worst

case, if each mutant requires a unique test, the number of
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tests is proportional to the number of statements. Third, the

number of equivalent mutants is comparatively low. Statement

deletion removes entire statements, so an SDL mutant is only

equivalent if the statement is unnecessary. Previous work [14]

identified a few, relatively rare, situations when SDL mutants

could be equivalent (such as valid redundancy). However, the

percentage of equivalent SDL mutants is less than that of the

complete set of mutation operators.

Fourth, the SDL operator can be applied to every program,

because every program must have at least one statement. This

is not true for many other mutation operators. Fifth, SDL can

be defined for any imperative programming language, making

it broadly applicable. Sixth, the equivalent mutants created by

SDL appear to be easier to identify than for other operators,

manually or automatically. This is based on our observations,

and the intuition that understanding the effects of removing

a statement is easier than understanding the effects of other

mutants. This observation has not been supported with data.

Our previous research demonstrated the value of SDL-

mutation, making us wonder if other deletion operators might

also be inexpensive and effective. Thus, this paper proposes

and evaluates three additional deletion mutation operators. The

idea is that removing structures from the program under test:

1) should generate mostly non-equivalent mutants, other-

wise the structures could be eliminated from the original

program

2) should generate comparatively few mutants, thus saving

cost

3) should result in mutants for every unit under test

4) should be useful in most languages, by choosing struc-

tures to delete that are used in many languages

5) should generate comparatively few equivalent mutants

that should be relatively easy to identify

To define new operators we considered the same major pro-

gram structures modified by the original C mutant operators.

They divide operators into four main categories, statement,

operator, variable and constant. Statement deletion (SSDL)

was already present, so we added operator deletion (OODL),

variable deletion (VVDL), and constant deletion (CCDL).

They have been implemented in the C Proteum mutation

system [16], using the same four-character naming convention.

Proteum uses semantic analysis to avoid creating syntactically

illegal (stillborn) mutants. Only about .1% mutants are still-

born, and they are filtered out by the compiler and thus are

not used or counted. The following subsections define SSDL,

OODL, VVDL, and CCDL. Although the discussion is in the

context of C, the concept applies to other languages, including

other paradigms that use similar structures. Sections III and IV

complement this discussion with a theoretical analysis of cost

and an experimental assessment of cost and effectiveness.

A. Statement Deletion

Statement deletion has been implemented in several mu-

tation tools and languages. This study uses the C language

tool Program Testing Using Mutants (Proteum) [16]. They

follow, as closely as possible, the original C operators defined

by Agrawal et al. [5]. Proteum’s name for SDL is SSDL1.

SSDL systematically removes each statement block, and

each individual statement inside each statement block. SSDL

systematically removes each statement as well as all inner

statements. It does not change declarations, even when dec-

larations include initialization assignments. Note that this is

much more than statement coverage. Statement coverage only

requires reachability [3], whereas SSDL requires an infection

from the deleted statement and propagation to an output. The

eleven mutants generated for the program in Figure 1(a) are

described in Figure 1(b).

01 void test() {
02 int a, b, c, t, i;
03 if (a == 0) {
04 b = 3;
05 }
06 for (i = 0; i < 5; i++)
07 t = t + b + c;
08 }
09 void test_while() {
10 int a, b, c, t;
11 while (a < 5) {
12 t = t + b + c;
13 a++;
14 }
15 }

(a) Original program

Lines removed
M1: 4
M2: 4, 5
M3: 3, 4, 5
M4: 7
M5: 6, 7
M6: 2, 3, 4, 5, 6, 7
M7: 12
M8: 13
M9: 12, 13, 14
M10: 11, 12, 13, 14
M11: 10, 11, 12, 13, 14

(b) SSDL mutants

Fig. 1. Examples of SSDL generated mutants.

An advantage of SSDL is the low number of mutants

(O(LOC)). Intuitively, one might expect no equivalent SSDL

mutants unless the statement is unreachable or otherwise

useless. That is, we might expect that all equivalent SSDL

mutants represent something wrong with the program under

test. Although this might often be true, some equivalent

SSDL mutants might represent valid code. C compilers are

permissive in many cases, allowing some unusual situations.

Figure 2 shows two examples of equivalent SSDL mutants in

C that do not represent problems with the program.

1 int foo (int j, int k) {
2 int i;
3 i = 0; // Equivalent SSDL mutant
4 // do something
5 i = k * j;
6 return i; // Equivalent SSDL mutant
7 }

Fig. 2. Equivalent SSDL mutants.

The first example is the mutant that deletes the initialization

of variable i at line 3. This produces what we call a “quasi-

equivalent” mutant. In C, the initial value of local variables

that are not explicitly initialized is undefined: these variables

are not set to a default value. The initial value of these

1For convenience, this paper uses “SDL” generically to mean an operator
that deletes statements, and “SSDL” to refer to the C version of the operator.
Thus, they are sometimes used interchangeably.
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variables depends on the contents of the stack frame at

function activation time. Therefore, the mutant in Figure 2

is not equivalent because it may be killed by chance, if a

value different from zero is in the storage slot assigned to

i. On the other hand, the tester is not able to provide input

values that would kill this mutant. Mutants like this have to

be considered equivalent, since the tester cannot design a test

that is guaranteed to kill them.

The second example deletes the return statement, causing

the function to return an unknown value. But if we analyze

how the executable code is generated, the mutant is probably

equivalent. For a particular compiler we may have the follow-

ing sequence of instructions: (1) expression k∗j is computed in

register R; (2) the value of R is stored in variable i; (3) value

of i is moved to register R; (4) function foo returns its value

on register R. Removing the return statement corresponds to

not executing step (3) but the value of variable i is returned

because it was already in R. So, with or without the return
statement, the correct value is returned to the calling function

through register R. Testers will not want to analyze at this

level to mark mutants equivalent, so a reasonable approach is

to treat mutants like this as equivalent.

In addition, other perfectly acceptable constructions may

lead to equivalent SSDL mutants. For instance, an integer

global variable is by default initialized with value zero. Never-

theless, it is a good practice to explicitly initialize the variable

before using it. If the initial value is the same, then deleting

such a statement may not change the behavior of the program

(unless the function is called more than once and the variable

changes values), leading to an equivalent mutant. In other

words, redundancy is sometimes good engineering.

B. Operator Deletion

Part of the goal of this research is to identify other possible

deletion mutation operators that can enhance SSDL. Our first

attempt is a mutation operator that deletes C operators. OODL

removes each arithmetic, relational, logical, bitwise and shift

operator in expressions. It also removes them from assignment

operators, replacing them by a plain assignment operator.

When a binary operator is removed, an operand must also be

removed so the expression remains well formed (compilable).

Thus deleting a binary operator produces two mutants; one

where the left operand is deleted, and another where the

right operand is deleted. Figure 3 gives some examples of

OODL mutants. The predicate in the example is shown fully

parenthesized to emphasize the fact that, for example, when

the ‘+’ operator is removed, “(2 * b)” is the right operand

(mutant M15).

As with SSDL, it is logical to expect that OODL would

not create any equivalent mutants. If removing an operator

(and part of the expression) never makes a difference, then the

original expression must be incorrect. Still, some equivalent

mutants are created that do not indicate an error, usually

because of idiosyncrasies of C. Figure 4 shows some examples.

In C, the expression a != 0 is equivalent to a, so the first

mutant does not change the program’s behavior. Likewise, the

expression k is equivalent to k != 0, which has the same

Original statement Mutant

if !((a + (2 * b)) > 0) M12 (a + 2 * b > 0)
M13 ! (a + 2 > 0)
M14 ! (a + b > 0)
M15 ! (a > 0)
M16 ! (2 * b > 0)
M17 ! (a + 2 * b)
M18 ! ( 0 )

x += 3 * y M19 x += 3
M20 x += y
M21 x = 3 * y

Fig. 3. Examples of OODL generated mutants.

effect in the loop test as k > 0. Both of these examples could

be detected statically when the mutant is created, although our

tool does not do this analysis.

Original statement Mutant

if (a != 0) if (a)
for (k=10; k>0; k--) for (k=10; k; k--)

Fig. 4. Equivalent OODL mutants.

Sometimes whether an OODL mutant is equivalent depends

on dynamic aspects of the program. For example, deleting or

changing a return statement whose value is never used is an

equivalent mutant. Detecting these equivalent mutants requires

much more analysis, either by a human or algorithm, and may

be undecidable in some situations.

C. Variable Deletion and Constant Deletion

Variable (VVDL) and constant deletion (CCDL) operators

are similar and discussed together. VVDL removes all oc-

currences of variable references from every expression, and

CCDL removes all occurrences of constant references. They

appear in expressions, thus the associated operator also must

be removed.

Mutants M13, M16 and M19 in Figure 3 are VVDL

mutants. Mutants M14, M17 and M20 are CCDL mutants. In

fact, all VVDL and CCDL mutants are also OODL mutants,

although OODL has additional mutants. For example, mutants

M12, M15, and M18 are neither VVDL nor CCDL.

Defining mutants that are subsets of OODL allows us to

measure the cost and effectiveness of mutation operators at a

more detailed level. The VVDL and CCDL operators result in

fewer mutants than OODL, thus are less expensive.

III. COST ANALYSIS

The cost of mutation testing is related to the mutation

operators. Specifically, cost is influenced by the number of

mutants created, the number of test cases required to kill the

mutants, and the number of equivalent mutants. Cost can be

assessed analytically or empirically.

An analytical approach can only address part of the cost.

We can estimate the expected number of mutants generated

by each operator, or a set of operators, but the actual number

depends on the individual programs. In the worse case, the

number of test cases required is the same as the number of

mutants. This pessimistic analysis is far from actual, however,

since each test case tends to kill many mutants. Equivalent

mutants cannot be predicted as well, but can be estimated by

empirically counting the number of equivalent mutants over a
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collection of programs to arrive at an estimated percentage.

This section presents an analysis of expected number of

mutants for the proposed operators.

The number of mutants was initially estimated by

Budd [17], who concluded that the number of mutants is

O(Vars∗Refs), that is, proportional to the number of variables

in the program times the number of variable references. Thus,

the number of mutants is dominated by the operators that

replace variable references.

To the best of our knowledge, the complexity of the C

operators has never been empirically measured. Delamaro et

al. [18] evaluated C operators designed for integration errors,

but did not include the traditional unit operators used in this

paper. Because the same kind of replacement operators used

in Mothra (Fortran 77) are also used in Proteum (C), it seems

likely that the expression given by Budd is also valid for C.

The complexity of the SSDL operator is easy to compute.

Each statement generates one mutant so the number of SSDL

mutants is proportional to the number of lines of code,

O(LOC ). For the OODL operator, let’s assume the maximum

number of operators in a single expression is c. Then, in the

worse case, the number of mutants is 2 ∗ c ∗ LOC. If we

assume that c� LOC then we can treat c as a constant, and

the complexity of OODL is also O(LOC). Since VVDL and

CCDL are subsets of OODL, they are also bounded by the

number of statements in the program.

IV. EXPERIMENTAL ANALYSIS

This section presents and discusses the results of an exper-

imental evaluation of the deletion operators. The goal is to

completely evaluate the effectiveness and cost for each of the

four operators, and then to evaluate possible combinations that

could lead to a cost-effective set of mutants.

The following subsections describe the experimental setup,

summarize the subject programs, present the results, discuss

the data, and finally discuss threats to validity.

A. Experimental design

The goal of this study is to collect and analyze data

about the effectiveness and cost of each deletion operator.

First we collected this data with each operator in isolation.

Then we investigated potential compositions of operators. Our

experiment used:

• Subjects: 39 C programs from different sources and

domains, and of different sizes. They are summarized in

Subsection IV-B.

• Independent variables: The mutation operators used

in the study: SSDL, OODL, VVDL, and CCDL, and

combinations.

• Dependent variables: Mutation score, number of mu-

tants generated, number of test cases required, and num-

ber of equivalent mutants.

The experiment was carried out in seven steps:

1) For each subject program, P1, P2, ..., P39, all C mutation

operators, new and old, were applied to generate the

mutant set Mi.

2) For each Mi, a test set Ti was developed to kill all

mutants, that is, MS(Ti,Mi) = 1.0. The tests were de-

veloped by hand by the first author. Equivalent mutants

Ei were also hand identified.

3) For each deletion operator, we selected a subset of

tests that killed all mutants of that type. That is,

MS(Ti,j ,Mi,j) = 1.0, where Ti,j ∈ Ti, j ∈
{SSDL,OODL,VVDL,CCDL}, and Mi,j is the subset

of mutants generated by operator j. So, Ti,j is adequate

to program Pi and operator j.

4) For each program Pi we measure the effectiveness of the

deletion operator j by computing MS(Ti,j ,Mi), that is,

the mutation score of the tests for operator j against the

complete set of mutants.

5) For each program Pi we measure the cost of deletion

operator j by computing the following:

a) the percentage of all mutants generated by operator

j:
|Mi,j |
|Mi | × 100

b) the percentage of all tests needed to kill mutants

by operator j:
|Ti,j |
|Ti | × 100

c) the percentage of all equivalent mutants generated

by operator j:
|Ei,j |
|Ei | × 100

6) For each deletion operator we measured the weighted
effectiveness. This is computed by summing up the

number of mutants killed by the test sets of operator

j (Ti,j) and dividing this number by the total number of

non equivalent mutants for all 39 programs.

7) We measured the weighted costs for each operator

by summing up the costs of the operator for all 39

programs. Thus, for an operator j:

a) weighted number of mutants:
∑39

i=1 |Mi,j |
b) weighted number test cases:

∑39
i=1 |Ti,j |

c) weighted number of equivalent mutants:∑39
i=1 |Ei,j |

These measures allow us to compare the deletion operators.

We also repeated the data collection with all combinations of

the deletion operators.

In step 2, test cases were selected by hand to kill all non-

equivalent mutants. Some programs already had tests, which

were extended until they were mutation adequate. For the

other programs, an ad-hoc strategy of analyzing mutants and

designing tests to kill them was used.

In step 3, we selected tests from the complete adequate

test set until all mutants from that mutation operator were

killed. To avoid possible bias caused by the order of selection,

we repeated this process 10 times, each time with a different

random sequence of test cases. The mutation scores (number

of mutants killed) and the number of test cases for each

operator are averaged over these 10 different test sets.

B. Subjects

Thirty nine C programs of varying sizes and from different

domains were used as experimental subjects. These programs

were extracted from text books and the software testing

literature. Program mutation is primarily used for unit testing,

so we focused on program units (C functions) rather than large

systems. The subject programs varied in size from one to 20
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functions, and from seven to 394 lines of code, totaling 189

functions and 2853 lines of code.

Table I summarizes the subject programs. For each program,

the table shows the number of functions, number of lines of

code, the number of mutants generated by all operators, the

total number of equivalent mutants, and the number of tests

in the complete adequate test set.

TABLE I
EXPERIMENTAL RESULTS FOR SSDL MUTATION.

Functions LOC Mutants Equiv Test cases

boundedQueue 6 49 1121 99 13
cal 1 18 891 71 8
Calculation 7 46 1118 107 13
checkIt 1 9 104 3 9
CheckPalindrome 1 10 166 20 8
countPositive 1 9 151 9 5
date-plus 3 132 2421 160 44
DigitReverser 1 17 496 43 5
findLast 1 10 198 17 6
findVal 1 7 190 18 7
Gaussian 6 23 1086 19 21
Heap 7 41 1079 98 8
InversePermutation 1 15 576 61 12
jday-jdate 2 49 2821 81 27
lastZero 1 9 173 9 5
LRS 5 51 1132 258 8
MergeSort 3 32 991 48 18
numZero 1 10 151 17 5
oddOrPos 1 9 361 71 7
pcal 8 204 6419 779 49
power 1 11 268 12 9
print tokens 17 349 4322 542 34
print tokens2 18 275 4734 664 27
printPrimes 2 35 715 64 7
Queue 6 64 469 25 12
quicksort 1 23 1026 82 13
RecursiveSort 1 17 555 45 8
replace 20 390 11,100 2062 142
schedule 18 213 2108 221 45
schedule2 16 195 2626 411 41
Stack 6 56 460 49 11
stats 1 19 884 101 7
sum 1 7 165 11 6
tcas 8 63 2384 428 62
testPad 1 24 629 57 14
totInfo 7 214 6693 678 49
trashAndTakeOut 2 19 599 26 12
twoPred 1 10 246 24 10
UnixCal 4 119 4852 339 27

Total 189 2853 66480 7829 814
Min 1 7 104 3 5
Max 20 390 11100 2062 142
Average 4.85 73.15 1704.62 200.74 20.87

C. Results

This section presents results, with discussion postponed to

Section IV-D. Tables II through V show the statistics from

applying each deletion operator to the subject programs for

each dependent variable. These tables display unweighted

results, that is, each of the 39 programs contributed to the

results equally, regardless of whether it was a small program

or a large program. Thus, the results in the tables are the

average of the results for each individual program.

Table II shows the mutation scores of the test sets (Ti,j)

when run against the complete set of mutants (Mi). That is,

column SSDL shows results of the tests that kill all SSDL

mutants when applied to all mutants; the mean mutation

score across the 39 programs was .9232. We summarize

the 39 programs by showing the lowest mutation score, the

first quartile, the second quartile (mean and median), the

third quartile, and the maximum mutation score. Table III

shows the percentage of all mutants created by each operator.

For example, averaged over the 39 programs, 3.608% of all

mutants were SSDL. Table IV shows the percentage of all tests

required to kill the mutants from each deletion operator. For

example, on average 28.78% of all tests was needed to kill

all SSDL mutants. Finally, Table V shows the percentage of

all equivalent mutants that were created by each operator. So

2.021% of all equivalent mutants were of type SSDL. Figure 5

shows these data in boxplot graphs.

TABLE II
EFFECTIVENESS FOR EACH DELETION OPERATOR

Statistic SSDL OODL VVDL CCDL

Min. 0.6267 0.8531 0.7584 0.2712
1st Qu. 0.9072 0.9311 0.8855 0.7461
Median 0.9483 0.9598 0.9330 0.8737
Mean 0.9232 0.9503 0.9172 0.8080
3rd Qu. 0.9659 0.9770 0.9573 0.9322
Max. 0.9944 0.9912 0.9870 0.9861

TABLE III
MUTANTS COST FOR EACH DELETION OPERATOR

Statistic SSDL OODL VVDL CCDL

Min. 1.130 1.750 0.740 0.170
1st Qu. 2.235 2.415 1.140 0.420
Median 3.030 2.830 1.680 0.560
Mean 3.608 2.947 1.618 0.658
3rd Qu. 4.345 3.440 2.005 0.775
Max. 10.870 4.710 2.880 1.610

TABLE IV
TEST CASES COST FOR EACH DELETION OPERATOR

Statistic SSDL OODL VVDL CCDL

Min. 13.57 18.18 11.54 5.71
1st Qu. 21.63 24.61 19.86 10.00
Median 26.59 29.27 25.00 16.33
Mean 28.78 33.43 26.86 17.21
3rd Qu. 32.66 40.41 31.55 21.77
Max. 63.33 68.75 50.77 37.50

TABLE V
EQUIVALENT MUTANTS COST FOR EACH DELETION OPERATOR

Statistic SSDL OODL VVDL CCDL

Min. 0.000 0.00 0.00 0.00
1st Qu. 0.000 0.00 0.00 0.00
Median 1.230 1.980 0.00 0.470
Mean 2.021 2.083 0.5651 1.045
3rd Qu. 2.165 2.975 0.6150 1.770
Max. 18.370 12.240 5.000 4.650

We also collected data regarding possible combinations of

these four operators. Not all 11 combinations were evaluated.

VVDL and CCDL are subsets of OODL, so combining either

with OODL will by definition not increase effectiveness. Thus,

instead of six two-way combinations, four three-way com-

binations and one four-way combination, we only evaluated

four two-way combinations, plus the three-way combination

of SSDL, VVDL, and CCDL. We designate the combinations

by combining the first letters of the operators’ names:

• SODL = SSDL ∪ OODL

• SVDL = SSDL ∪ VVDL

• SCDL = SSDL ∪ CCDL

15



Fig. 5. Boxplot of effectiveness and cost for individual operators

• VCDL = VVDL ∪ CCDL

• SVCDL = SSDL ∪ VVDL ∪ CCDL

The data from these combinations are shown in Tables VI

through IX, and their boxplot graphs are in Figure 6.

TABLE VI
EFFECTIVENESS FOR COMBINATIONS OF OPERATORS

Statistic SODL SVDL SCDL VCDL SVCDL

Min. 0.8689 0.8287 0.6267 0.7584 0.8287
1st Qu. 0.9558 0.9372 0.9351 0.9118 0.9506
Median 0.9751 0.9621 0.9593 0.9450 0.9696
Mean 0.9666 0.9525 0.9391 0.9339 0.9607
3rd Qu. 0.9837 0.9790 0.9748 0.9706 0.9797
Max. 0.9948 0.9944 0.9944 0.9870 0.9944

TABLE VII
MUTANTS COST FOR COMBINATIONS OF OPERATORS

Statistic SODL SVDL SCDL VCDL SVCDL

Min. 3.900 1.990 1.800 1.230 3.230
1st Qu. 4.965 3.790 2.835 1.865 4.245
Median 6.100 4.740 3.730 2.210 5.310
Mean 6.555 5.226 4.200 2.209 5.817
3rd Qu. 7.280 6.000 4.865 2.590 6.775
Max. 15.140 13.220 11.09 3.240 13.430

TABLE VIII
TEST CASES COST FOR COMBINATIONS OF OPERATORS

Statistic SODL SVDL SCDL VCDL SVCDL

Min. 20.00 16.57 15.52 13.64 17.41
1st Qu. 29.00 26.20 24.18 21.62 28.45
Median 36.67 32.00 28.52 27.14 34.29
Mean 38.63 34.71 31.91 30.01 36.89
3rd Qu. 45.40 38.01 39.38 34.50 43.47
Max. 68.75 65.00 65.83 65.00 68.33

TABLE IX
EQUIVALENT MUTANTS COST FOR COMBINATIONS OF OPERATORS

Statistic SODL SVDL SCDL VCDL SVCDL

Min. 0.00 0.00 0.00 0.00 0.00
1st Qu. 0.00 0.00 0.00 0.00 0.00
Median 3.750 1.560 2.060 1.560 3.120
Mean 4.105 2.587 2.959 1.503 3.525
3rd Qu. 5.130 3.735 4.545 2.385 4.970
Max. 30.610 20.410 18.370 5.000 20.410

To compute the cost of each operator, we use the percentage

of test cases it requires and the percentage of equivalent

mutants. The number of tests and equivalent mutants affect

human cost. The number of mutants is not considered in the

cost because it only affects computation.

Table X shows a summary of effectiveness and cost for each

deletion operator both by itself and in combination with other

deletion operators. To enable a comparison with traditional

mutation, we also included the same results for random subsets

of mutants. These subsets varied from 1% to 5% of the

complete set of mutants for each program. We call these “%
random selective mutation.” The values were chosen so costs,

in terms of mutation score and number of test cases, and the

benefit, in terms of mutation score, were in the same range as

the results for the delete mutation operators. This allows us

to compare the approaches using the graphs in Figures 7 and

8. The CCDL operator, which scored poorly overall relative

to the other operators, is not shown in the plots in Figures 7

and 8, thus making the remaining results easier to see.

To reduce variation in the results obtained for % random

selective mutation, the data for these criteria were collected

five times, with different sampling of mutants. The results

presented average over those five samples.

To compare two criteria using Figure 7 or 8, note their

relative positions on the plot. The vertical axis measures the

mutation score, so it is better to be higher on the plot. The

horizontal axis measures the cost of either more tests or more

equivalent mutants to examine, so being farther left on a plot is

also desirable. Hence, if one criterion plots both above and to

the left of a second, the first criterion outperforms the second.

If the two criteria have some other relation on the graph, then

definitive conclusions cannot be drawn.

So far, we have presented unweighted averages over the 39

programs. This means that small programs of 9 or 10 LOC

have the same influence on the average as large programs

with two or three hundred LOC. This has the advantage of

straightforward and unbiased but means the results can be

unduly influenced by small outliers.

The results from individual programs can also be combined

by weighting the totals based on the program sizes. The

simplest way is to add the number of mutants, tests, mutants

killed, and equivalent mutants, then compute mutation score

and cost based on these sums. This “average of sums” reduces
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Fig. 6. Boxplot of effectiveness and cost for combinations of operators

TABLE X
EFFECTIVENESS AND COST RESULTS.

Operator MS %T. C. %Equiv
CCDL 0.8080 17.21 1.04
OODL 0.9503 33.43 2.08
SSDL 0.9232 28.78 2.02
VVDL 0.9172 26.86 0.57

SCDL 0.9391 31.91 2.96
VCDL 0.9339 30.01 1.5
SODL 0.9666 38.63 4.11
SVDL 0.9525 34.71 2.59
SVCDL 0.9607 36.89 3.52

Random 1% 0.8618 22.91 1.20
Random 2% 0.9250 30.45 2.45
Random 3% 0.9419 34.24 3.24
Random 4% 0.9539 38.72 4.37
Random 5% 0.9611 41.66 5.23

the impact of small programs, and is shown in Table XI, with

graphs in Figure 8.

TABLE XI
WEIGHTED EFFECTIVENESS AND COST RESULTS.

Operator MS # T. C. # Equiv
CCDL 0.8664 105.8 68
OODL 0.9661 228.7 186
SSDL 0.9552 202.6 175
VVDL 0.9376 169.5 54

SCDL 0.9666 227.5 243
VCDL 0.9471 189.9 122
SODL 0.9806 278.2 361
SVDL 0.9718 243.8 229

SVCDL 0.9754 257.3 297

Random 1% 0.9194 153.62 75.20
Random 2% 0.9517 205.80 154.00
Random 3% 0.9660 237,70 238.00
Random 4% 0.9739 272.48 304.80
Random 5% 0,9791 294.38 387.40

To complete the analysis, the values of the mutation scores

obtained by each criterion were compared in a Wilcoxon

paired test to check the following hypotheses:

• Null hypothesis, H0: there is no significant difference

between criteria A and B in the values of the MS over

the 39 programs.

• Alternative hypothesis, H1: there is a significant differ-

ence between criteria A and B in the values of the MS

over the 39 programs.

Table XII shows one line for each criterion A and one

Fig. 7. Unweighted cost and effectiveness graphs.

column for criterion B. The shaded cells highlight the cases

in which the Deletion Operators have a higher mutation

score than the random criterion. The pairs that did not have

significant improvement at the 95% confidence level are not

shown. For instance, the first line shows that SSDL has a

p-value of 2e − 07 when compared with the Random 1%

criterion, thus we reject H0 in favor of H1 and SSDL has a

better score. There is no significant difference between SSDL

and Random 2%, and Random 3%, 4% and 5% have better
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Fig. 8. Weighted cost and effectiveness graphs.

TABLE XII
P-VALUES FOR THE WILCOXON TEST BETWEEN MS CRITERIA.

1% 2% 3% 4% 5%

SSDL 2e-07 – 0.0030 4e-06 5e-08
OODL 1e-10 0.0002 – – 0.0013
VVDL 4e-05 – 7e-06 5e-08 3e-12
CCDL – 7e-05 5e-07 3e-09 1e-10
SODL 3e-11 1e-06 1e-06 0.0120 –
SVDL 6e-11 8-06 – – 0.0028
SCDL 1e-09 0.0246 – 0.0012 7e-06
VCDL 2e-08 – 0.0222 0.0002 2e-06
SVCDL 3e-11 1e-06 8e-05 – –

mutation scores than SSDL.

D. Discussion

If we only use one or two mutation operators, it is important

that they apply to all programs. This is trivially true for SSDL

(every program has at least one statement) and is usually

true for the other operators in this paper since they mutate

basic language features. Nevertheless, four of the 39 programs

produced no CCDL mutants. These four program, checkIt,
checkPalindrome, findVal and sum, are very small (7 to 10

LOC) and simple. checkPalindrome has one constant, but it is

used in a variable declaration and initialization, which Proteum

does not mutate.

1) Effectiveness: SSDL has been found to be particularly

effective [14], [15]. In this experiment it averages a 0.9232

mutation score, with a median of 0.9483. It does not perform

well for the smallest programs, having mutation score under

0.8 for three. For these programs, SSDL creates only a few

mutants (six or seven) that are killed by only two or three

tests. They have very few mutants (from 104 to 246), so a

small difference in the number of killed mutants makes a

big difference in the mutation scores. If those outliers were

eliminated, SSDL’s average mutation score would be 0.9396.

VVDL also exhibits the same effect, with one program with

mutation score of under 0.8. If that program was not used,

VVDL’s mean mutation score would be 0.9213.

OODL has the highest mean mutation score (.9503) and

median (.9598), as well as the smallest variation. Its minimum

score of 0.8531 could be considered an outlier. CCDL has very

low mutation scores (0.8080 average), and so should not be

considered as an effective single operator choice.

Combining operators yields higher mutation scores, with the

combination of SSDL and OODL (SODL) as the highest. Its

average mutation score is 0.9666, with a median of 0.9751,

has small variation, and has a minimum score of 0.8689. So if

we consider only effectiveness, SODL seems the best choice.

Other combinations also look strong. The combination of

SSDL and VVDL (SVDL) have a mean mutation score of

0.9525, and a median of 0.9621. The mutation score is below

0.8 for one program, and under 0.9 for three others. Adding

the CCDL operator (SVCDL) raises these numbers so they are

comparable with SODL.

Combining SSDL with CCDL (SCDL) or VVDL with

CCDL (CVDL) yields high scores, although not quite as

high: 0.9391 and 0.9339 average with medians of 0.96 ad

0.97. SCDL also has a very low minimum of 0.6267, which

accounts for its relative high variation. This program is an

outlier because CCDL does not generate any mutants and

SSDL produces poor results. Without this outlier the minimum

for SCDL would be 0.8112.

2) Cost: The other three dependent variables in the exper-

iment relate to the cost of mutation testing. Perhaps the most

encouraging results are with equivalent mutants. Only 0.57%

of the equivalent mutants are of type VVDL on average, and

the program with the most has only 5%. In fact, more than

50% of the programs had zero equivalent VVDL mutants, that

is, the median is 0.0%. CCDL has similar numbers, and not

surprisingly, VCDL is a promising combination.

The percentages of mutants generated are directly related

to the structure affected by the operators. One unexpected

result is that OODL generates, on average, fewer mutants than

SSDL. Since each statement may have more than one operator

and each binary operator produces two mutants, we expected

OODL to have more, but in our subjects, OODL created 2.95%

of the mutants and SSDL 3.61%.

VVDL created fewer mutants than SSDL and OODL, and

CCDL even fewer. The number of mutants for the combi-

nations is the sum of the individual operators, with a linear

ordering of: VCDL < SCDL < SVDL < SVCDL < SODL.

Only SSDL showed a large variability in the percentage of

mutants generated, and generated over 10% of the mutants

for two (very small) subjects.

The percentage of test cases needed to kill the mutants

of each operator showed surprising variation. CCDL required
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the fewest tests on average, but had the most variation (from

5.71% to 37.50%). The combination of SSDL and OODL

(SODL) was the most expensive, averaging 38.63% with a

maximum of 68.75%. The ordering among the operators is

similar to that with mutants, except that SSDL needed fewer

tests than OODL.

3) Summary: Based on these data, the best operator (or

combination) depends on whether cost or effectiveness is more

important.

If effectiveness is key, then SODL is the best choice. If the

number of mutants (cost) is the most important, then VVDL is

best. Quite often however, testers want a solution that would

balance cost and effectiveness. Tables X and XI summarize

the information about cost and effectiveness and give some

comparison data, using 1% to 5% random criteria. Figures 7

and 8 allows a visual analysis of such data.

We can see that when comparing operators with similar

cost, the effectiveness will usually favor the deletion operators

over the random criteria, especially when considering the

cost of identifying equivalent mutants. Using the unweighted

data, OODL’s equivalent mutant cost is less than Random

2% but it has a higher mutation score; even higher than (or

comparable with) Random 3%’s. SVDL has almost the same

cost as Random 2% and a higher effectiveness. In fact, SVDL’s

mutation score is higher than (or comparable with) Random

3%’s and similar to Random 4% but with a lower percentage

of equivalent mutants. The same analysis can be done pairing

SODL and SVCDL with Random 4% and Random 5%. One

remarkable case is VVDL, which has a cost of less than 0.6%

of equivalent mutants but still an effectiveness above 91%.

Using the weighted equivalent mutant cost, the conclusions

are also similar. OODL is stronger than Random 3%, with

a lower cost. SVDL is comparable with Random 4% but

significantly lower cost. SVCDL is comparable with Random

4% and SODL is better than Random 5%.

The same analysis holds for the test case cost, but some of

the differences are smaller. As a visual aid, looking at graphs

we can draw an imaginary crescent curve passing through

the random criteria points. Assuming this curve represents

the behavior of all random criteria, it is noticeable that all

deletion operators are above the curve, indicating that they

provide better effectiveness and/or lower cost.

E. Threats to validity

This experiment used a relatively large number of C

programs, collected from diverse sources and with diverse

features. As with any experimental study using programs,

however, we cannot be sure whether they are representative,

which limits the results’ generalizability.

Another common problem in this kind of experimental work

is the need to obtain an adequate test set for the programs. This

can be done automatically, for instance, generating a large set

of test cases and assuming that all the remaining alive mutants

are equivalent. While this approach can save time, it would

introduce imprecision. Thus, in this experiment we manually

analyzed each mutant and either created a test to kill it or

identified it as equivalent. This is tedious and time consuming,

but can reduce error. This also made building more than one

test set per program prohibitively expensive.

The potential error associated with selecting test sets ade-

quate to the operators was minimized by selecting, for each

program, 10 different sets from the original complete test set,

for each target operator.

V. RELATED WORK

Several papers have provided details about defining mu-

tation operators. Most widely known are mutation operators

defined for Fortran [4], [19] (implemented in Mothra), C [5]

(in Proteum), and Java [7] (in muJava).

This paper was inspired by previous work that attempted to

use a single operator to reduce the cost of mutation testing,

in particular, the Statement Deletion operator. Untch carried

out an experiment across four sufficient sets of mutation

operators and the single statement deletion operator [15]. He

used regression analysis to show that SDL generates the fewest

mutants, and was best at predicting the overall mutation score

of the test sets. Similar results were achieved by Deng et al.

[14], who showed that SDL can dramatically reduce the cost

of the tests while still being effective.

Another example of mutation operators designed for specific

types of errors are the Interface Mutation (IM) operators [20].

Those operators reveal integration faults by mimicking faults

related to errors that propagate through a function call, its

parameters, and return value.

Kaminski et al. took a more theoretical approach to reduce

redundancy among mutation operators at time of creation.

They proved that the relational operator replacement operator,

which normally produces seven mutants for each operator,

only needs three mutants per operator. Tests that kill those

three are guaranteed to kill the other four. Just, Kapfhammer,

and Scheiggert [21] obtained similar results for the conditional

operator replacement mutation operator.

VI. CONCLUSIONS

This paper presents new results to reduce the cost of

mutation testing. The statement deletion mutation operator

(SSDL) deletes entire statements from programs, thus requir-

ing the tester to design tests that demonstrate the usefulness

of each statement. This paper defines new innovative mutation

operators that delete parts of statements, and presents results

from an empirical evaluation of the new operators. Deletion

mutation operators allow testers to achieve most of the benefits

of traditional mutation testing at a fraction of the cost.

The operators were designed to: (1) require test sets that are

highly effective at revealing faults; (2) generate relatively few

mutants; (3) generate relatively few equivalent mutants; (4)

apply to all programs; (5) be applicable to diverse program-

ming languages; (6) have equivalent mutants that are easy to

identify. The statement deletion operator satisfies these goals,

and we found that the new deletion operators do as well.

This paper defines three operators. Operator deletion

(OODL) removes arithmetic and relational operators, includ-

ing each of the left and right operands of binary operators

(two mutants). Variable deletion (VVDL) removes variable
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references, including operators when needed. Constant dele-

tion (CCDL) removes constant references, including operators

when needed.

All operators create O(LOC) mutants, that is, the number

of mutants is linear in the number of statements. This com-

pares very favorably with O(V ars ∗Refs) for the traditional

set of mutation operators. And unlike other mutation operators,

they will generate mutants for every program (at least, every

program that contains statements, variables, and operators).

They also can be applied to any programming language that

includes statements, variables, and operators.

Our experimental results showed that the OODL and VVDL

mutation operators perform remarkably well. Tests that kill

all OODL and VVDL mutants kill a very high percentage of

all mutants, indicating the test sets are almost as effective.

We cannot quantify how much testing strength we lose by

achieving 97% mutation score instead of 100%, but this

is significantly more testing than is normally achieved in

practice. CCDL was less effective. We also combined the new

operators (and SSDL), finding that the combination of SSL

and OODL is very effective as well as very inexpensive.

Very importantly, we found that the deletion operators

needed fewer tests than the traditional set of operators, and

generated a fraction of the number of equivalent mutants. Both

of these are significant factors in the cost of mutation testing.

These results were obtained with the C programming language

(using Proteum), and many equivalent mutants were only

equivalent because of unusual characteristics of the language.

If this study was redone in Java, we expect even fewer

equivalent mutants.

We did not empirically evaluate whether it is easier to detect

equivalent deletion mutants, so have no quantitative data. How-

ever, we hand-identified hundreds of equivalent mutants in

this study, and observed that most equivalent deletion mutants

were very easy to confirm, whereas many equivalent non-

deletion mutants required very detailed and time-consuming

analysis. Intuitively, this is because the deletion mutants are

fairly simple, and their affects on program behavior are usually

clear and straightforward.

These results will benefit other areas of testing research

like automatic test data generation [22], [23]. The authors

are currently working the generation of test data based on

mutation. Narrowing the focus to only a few, relatively simple

mutation operators greatly simplifies the problem.
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