

 Universidade de São Paulo

2014-03-31

Experimental evaluation of SDL and One-Op

mutation for C

IEEE International Conference on Software Testing, Verification, and Validation, 7, 2014, Cleveland,

Ohio.
http://www.producao.usp.br/handle/BDPI/48409

Downloaded from: Biblioteca Digital da Produção Intelectual - BDPI, Universidade de São Paulo

Biblioteca Digital da Produção Intelectual - BDPI

Departamento de Sistemas de Computação - ICMC/SSC Comunicações em Eventos - ICMC/SSC

http://www.producao.usp.br
http://www.producao.usp.br/handle/BDPI/48409

Experimental Evaluation of SDL and
One-Op Mutation for C

Marcio E. Delamaro,∗ Lin Deng,† Vinicius H. S. Durelli,∗ Nan Li,† and Jeff Offutt†
∗Computer Systems Department

Universidade de São Paulo, São Carlos, SP, Brazil

Emails: {delamaro,durelli}@icmc.usp.br
†Software Engineering

George Mason University, Fairfax, VA, USA

Emails: {ldeng2,nli1,offutt}@gmu.edu

Abstract—Mutation analysis modifies a program by applying
syntactic rules, called mutation operators, systematically to create
many versions of the program (mutants) that differ in small
ways. Testers then design tests to cause the mutants to behave
differently from the original program. Mutation testing is widely
considered to result in very effective tests, however, it is also quite
costly. Cost comes from the many mutants that are created, the
number of tests that are needed to kill the mutants, and the
difficulty of deciding whether mutants behave equivalently to
the original program. One-op mutation theorizes that cost can be
reduced by using a single, very powerful, mutation operator that
leads to tests that are almost as effective as if all operators are
used. Previous research proposed the statement deletion operator
(SDL) and found promising results. This paper investigates the
use of SDL-mutation in a new context, the language C, and poses
additional empirical questions, including whether other operators
can be used. We carried out a controlled experiment in which
cost and effectiveness of each individual C mutation operator
were collected for 39 different subject programs. Experimental
data are used to define a cost-effectiveness metric to choose the
best single operator for one-op mutation.

Index Terms—Software testing; Mutation testing; Mutation
operators; SDL-mutation; One-op mutation

I. INTRODUCTION

Program mutation analysis or mutation testing [4, 5] creates

modified versions of programs, called mutants. Mutants con-

tain small syntactic changes that mimic possible programmer

mistakes or that encourage specific high quality tests. Testers

then design inputs that kill the mutants by causing them to

have different behaviors from the original program. Mutants

that always have the same behavior as the original program

and are called equivalent mutants. The syntactic changes that

generate mutants are defined by mutation operators. Thus,

mutation operators play a pivotal role in helping testers design

high quality tests. Well-designed mutation operators can lead

to effective testing whereas poorly designed operators can

result in ineffective tests. A mutation score is a ratio of killed

mutants over all non-equivalent mutants. Mutation scores often

are used to evaluate the effectiveness of test sets, but this

paper uses the same tests with different mutation operators

to evaluate the effectiveness of the operators.

Mutation operators have been defined for several program-

ming languages, including Fortran 77 [4, 14], C [3], and

Java [13, 17]. The mutation operators that modify individual

statements (statement-level operators) have remained rela-

tively stable since the Mothra project [14], with the major

change being from the selective operator study [26]. That study

found that using five mutation operators in Mothra produced

tests that kill most other mutants. Most mutation systems since

have used operators based on the selective set.

Mutation analysis helps testers design very good tests, but it

creates many test requirements (that is, mutants) as compared

to other test criteria. Several papers have reported on the

number of mutants.

Budd [2] found that the number of mutants is roughly pro-

portional to the product of the number of variable references

times the number of data objects: Offutt et al. [26] used

a statistical regression analysis of actual programs to show

that the number of lines did not contribute to the number

of mutants, and confirmed Budd’s equation. That paper also

introduced selective mutation, defining five Mothra operators

for which the number of mutants is proportional to the number

of variable references: O(Refs).
Although selective mutation generates far more test require-

ments than the edge-pair, all-uses, and prime path criteria,

Li et al. [16] found that it needs fewer tests. An important

implication of this finding is that many mutants are redundant,

leading us to postulate that mutation testing can be effective

with fewer mutants.

The hypothesis in this study is tests that kill all mutants of

a single mutation operator can be effective at killing “almost”

all the other mutants, at a much lower cost. We refer to this

approach as one-op mutation.

Deng et al. [7] found that the SDL (statement deletion)

operator works well. SDL generates relatively few mutants

and leads to tests that are highly effective at killing other

mutants. This paper extends that work by first reproducing

the experiment for the C language, and then extending it by

considering all other C mutation operators as possible choices.

Based on these experimental results, we propose a metric

to choose between mutation operators. Such a metric takes

effectiveness and cost into consideration to select the best

single operator to use.

The remainder of this paper is organized as follows. Sec-

2014 IEEE International Conference on Software Testing, Verification, and Validation

978-0-7695-5185-2/14 $31.00 © 2014 IEEE

DOI 10.1109/ICST.2014.33

203

tion II presents previous work that attempts to reduce the

cost of mutation and in particular SDL-mutation. Section III

discusses details of the SDL operator for the C language.

Section IV presents the experimental setup that evaluates the

characteristics of the SDL operator and then compares it with

the other operators for C. Section V discusses the results and

threats to validity, and Section VI presents final remarks and

recommendations.

II. BACKGROUND AND RELATED WORK

The statement deletion operator was included in the first

mutation tools, including Mothra [4]. It has also been designed

for other languages, including C [3] and Java [7].

Offutt and Untch [24] categorized approaches to reduce the

computational cost of mutation into three general strategies:

do-fewer, do-smarter, and do-faster. Do-fewer approaches try

to reduce the number of mutants that need to be run without

losing much effectiveness. Do-smarter approaches distribute

the computational expense over several computers or over mul-

tiple executions by storing run-time information between runs.

Do-faster approaches speed up the generation and execution

of mutants.

Mutant sampling is a do-fewer approach. Wong [30] sug-

gested a straightforward technique: randomly select a subset of

all mutants according to a uniform distribution. He found that

the resulting tests were significantly weaker when the sampling

rate was low enough to yield significant savings.

Selective mutation [31, 32] uses the most critical mutation

operators. The idea was investigated by Offutt et al. [26], who

found that Mothra’s mutation operators could be reduced from

22 to five operators and still achieve almost the same test

strength as non-selective mutation.

Namin et al. [20] expanded selective mutation by adapting

statistical techniques to support the identification of selective

sets. They started with an initial set of 108 C mutation

operators, and used their procedure to reduce to 28 operators,

a reduction of 92% in the number of mutants. Rather than only

looking at how well the selective set performs, their approach

also looks at the entire range of possible scores.

Kaminski et al. [12] investigated a do-fewer approach.

The relational operator replacement mutation operator (ROR)

creates seven mutants per relational operator. Kaminski et al.

showed that only three of these seven mutants are needed: tests

that kill these three mutants are guaranteed to kill the remain-

ing four. Just et al. had similar results with the conditional
operator replacement (COR) mutation operator [11].

Most do-smarter approaches have used advanced computer

architectures to distribute the computational expense of run-

ning mutants among several processors. Each mutant execution

is independent, so this problem is well-suited to parallelism.

Researchers have used vector processors [18], SIMD [15]

machines, and Hypercube (MIMD) [25] machines.

Another do-smarter approach is weak mutation [10]. Rather

than running the entire program to completion and then check-

ing the output, weak mutation halts the execution immediately

after the mutated portion of the program is executed. The

intermediate state is then examined, and the mutant is killed if

the state differs from the expected state. While the intermediate

state may not propagate to the end of execution, ergo “weak,”

experiments have shown that weak mutation tests are almost

as effective as strong mutation tests but save 50% or more on

computation cost [22].

As mentioned, do-faster approaches try to generate and run

mutants more quickly. Most early mutation systems used in-

terpretation, so mutants are executed slower than if compiled.

The simplest compilation approach is separate compilation,

which individually compiles, links, and runs each mutant.

These mutation systems are easier to develop and the mutants

are executed faster, however compiling each mutant separately

is very slow and they require a great deal of storage.

Compiler-integrated mutation [6] mutates linked object

code, thereby obviating the need for compiling mutants. Unfor-

tunately, retrofitting this type of mutation system to a compiler

is complex, time consuming, error-prone, and expensive.

The mutant schema generation (MSG) [29] is also designed

to avoid the slow speed of interpreters. MSG embeds many

mutants into each line of source code, so that one source

file incorporates all mutants. The resulting file only needs to

be compiled once. During execution, parameters are used to

specify which mutant to run.

Untch carried out an experiment across four sufficient

sets of mutation operators, including the sets proposed by

Wong, Offutt, and Namin, and the single statement deletion

operator [28]. Untch used regression analysis to show that SDL

generates the fewest mutants, and it was best at predicting the

mutation score of the given test suite. Using only the SDL

operator is a do-fewer approach that we call SDL-mutation.

Deng et al. [7] confirmed this result with an experimental

study with muJava, showing that SDL generates relatively few

mutants and leads to tests that are highly effective at killing

other mutants.

Mresa and Bottaci [19] presented an empirical evaluation

of Fortran operators, considering cost and effectiveness. Then

they used several high efficiency (cost-effective) mutation

operators to form three selective sets of mutation operators

and evaluate their cost-effectiveness, by comparing them with

two sets of randomly selected mutants.

The effectiveness of the mutation operators was defined in

terms of mutation scores, which is the same as this paper.

They also proposed a cost metric for mutation operators

that considers the cost of generating tests and identifying

equivalent mutants. They used a metric to measure the cost

of test generation in terms of the number of mutants for

a special case in which testers have an automatic test data

generation tool (using Godzilla [21]) and testers only needed

to generated about 3% of the tests by hand. Therefore, this

metric is not applicable when testers generate all tests by

hand. Their cost metric was based on both the number of

mutants and the number of program states examined. The

authors did this because most equivalent mutants required

humans to investigate program states, and many mutants could

be generated for the same statement. Therefore, after the

204

first equivalent mutant on a statement was identified, other

equivalent mutants were often quite easy to identify. The

average number of mutants per statement for a selective or

random set of mutation operators in Mresa and Bottaci’s paper

was between nine and 14. However, the number of mutants per

statement of a single mutation operator (one-op mutation) in

our paper is much lower: 0.04 to 0.5. Thus, we do not gain the

benefit by separating the cost of investigating program states

from identifying mutants and this cost metric is not applicable

for our case.

Section V proposes metrics to normalize the experimental

results, compute the cost, and calculate the cost-effectiveness

for each mutation operator. In addition, our metric incorporates

different weights for the cost of test generation and identifying

equivalent mutants, making it more widely applicable.

The current paper makes several contributions. First, we

evaluate SDL with a new tool in a new language, Proteum for

C. Second, we evaluate cost and effectiveness of each mutation

operator, and third, compare them with random sampling.

III. THE STATEMENT DELETION OPERATOR FOR C

The SDL operator has appeared in several mutation tools

for several different languages. This study uses Proteum’s

(Program Testing Using Mutants) operators [3]. They fol-

low, as closely as possible, the original C operators defined

by Agrawal et al. [1]. Proteum’s operators are divided into

four classes: statement, operator, variable, and constant. In

Proteum, following the original C operators proposition, SDL

is named SSDL.1

SSDL in Proteum has some differences from SDL for Java

in muJava [7]. It systematically removes each statement as

well as all inner statements. In contrast with SDL for Java,

SSDL does not change the conditions of selection or loop

statements. It also does not change declarations, even when

declarations include initialization assignments. The eleven

mutants generated for the program in Figure 1(a) are shown

in Figure 1(b).

An advantage of SDL-mutation is the low number of

mutants, which is proportional to the number of statements in

the program. Intuitively, one might think there should be no

equivalent SDL mutants unless the statement is unreachable

or otherwise useless. However Deng et al. [7] found a few

situations when SDL mutants might be equivalent in Java.

C SSDL mutants could also be equivalent because C com-

pilers are more permissive than Java compilers, allowing some

unusual situations. Consider the example in Figure 2.

The first example is the mutant that deletes the initialization

of variable i at line 5. This produces what we call a “quasi-

equivalent” mutant. In C, the initial value of local variables

that are not explicitly initialized is undefined: these variables

are not set to a default value. The initial value of these

variables depends on the contents of the stack frame at

function activation time. Therefore, the mutant in Figure 2 is

1For convenience, we use “SDL” generically to mean an operator that
deletes statements, and “SSDL” to refer to the C version of the operator.
Thus, they are sometimes used interchangeably.

01 void test()
02 {
03 int a, b, c, t, i;
04
05 if (a == 0)
06 {
07 b = 3;
08 }
09 for (i = 0; i < 5; i++)
10 t = t + b + c;
11 }

12 void test_while()
13 {
14 int a, b, c, t;
15
16 while (a < 5)
17 {
18 t = t + b + c;
19 a++;
20 }
21 }

(a) Original program

Lines removed
M1: 7
M2: 6, 7, 8
M3: 5, 6, 7, 8
M4: 10
M5: 9, 10
M6: 3, 4, 5, 6, 7, 8, 9, 10
M7: 18
M8: 19
M9: 17, 18, 19, 20
M10: 16, 17, 18, 19, 20
M11: 14, 15, 16, 17, 18, 19, 20

(b) SSDL mutants

Fig. 1. Examples of SSDL generated mutants.

not equivalent because it may be killed by chance, if a value

different from zero is in the storage slot assigned to i. On

the other hand, the tester is not able to provide input values

that would kill this mutant. Mutants like this are normally

considered to be equivalent, since no test is guaranteed to kill

them.

The second example deletes the return statement, causing

the function to return an unknown value. But if we analyze

how the executable code is generated, the mutant could be

equivalent. For a particular compiler we may have the follow-

ing sequence of instructions: (1) expression k∗j is computed in

register R; (2) the value of R is stored in variable i; (3) value

of i is moved to register R; (4) function foo returns its value

on register R. Removing the return statement corresponds to

not executing step (3) but the value of variable i is returned

because it was already in R. So, with or without the return
statement, the correct value is returned to the calling function

through register R. Testers will not want to analyze at this

level to mark mutants equivalent, so a reasonable approach is

to ignore mutants of this nature if the tests do not kill them.

205

1 int foo (int j, int k)
2 {
3 int i;
4
5 i = 0;
6 // do something
7 i = k * j;
8 return i;
9 }

Fig. 2. Equivalent SSDL mutants.

IV. EFFECTIVENESS OF INDIVIDUAL C OPERATORS

The experiment in this paper is divided into two parts. We

first reproduce the analysis of effectiveness and cost using SDL

as a single operator. Then we ask the general question, how

effective is each mutation operator by itself?

Our experiment attempts to develop an overview of the ef-

fectiveness and cost of each mutation operator. We first design,

collect, and refine a set of mutation-adequate test cases for

each mutation operator. This section describes the experiment,

including the tool used, steps followed, and results.

A. Experimental Tool

We used Proteum for four reasons. First, it is one of the

most advanced tools for mutation analysis, including features

such as generating mutants for a given program, automatically

executing test cases against mutants, and calculating and show-

ing results such as mutation scores. Second, it has been used

for teaching and research activities for more than 15 years.

Third, it implements 75 mutation operators for C, providing

us with a fundamental environment to evaluate and search an

appropriate set of mutation operators in practice. Fourth, the

SSDL operator has already been defined and implemented in

Proteum.

B. Experimental Design

This study collects mutation-adequate test sets for each

mutation operator, and then computes their effectiveness in

terms of how many total mutants they can kill. We define the

following research questions:

RQ1: What is the cost of applying each individual C

language mutation operator?

RQ2: How effective are the test sets created using each C

language mutation operator?

This study uses six steps:

1) Subjects: We chose 39 C programs as experimental

subjects, S = {s1, s2, . . . , s39}. These programs

are described in the next section.

2) Generating mutants: We used Proteum to generate all

the mutants M = {m1, m2, . . . , m39}, where mi is

the set of mutants for subject si. Because Proteum has

75 mutation operators, each mi consists of 75 subsets of

mutants mi = miop1
∪ miop2

∪. . .∪ miop75
. Each miopj

corresponds to the mutants of operator j for program si.
3) Collecting the test pool: We used a “universe” [8] of

tests for each subject si by manually designing a pool of

tests T = {t1, t2, . . . , t39}, where ti kills all mutants

of subject si (mutation adequate).

4) Identifying equivalent mutants: Equivalent mutants

were identified by hand while designing adequate test

sets. They are labeled EQ = {eq1, eq2, . . . , eq39}.
5) Finding adequate subsets: For each set of mutants from

one subject and one operator, miopj
, we ran tests within

ti until all mutants were killed. This resulted in a subset

of tests, tiopj ⊆ ti, that was mutation-adequate for all

mutants of miopj
.

6) Calculating mutation scores: The mutation score of a

test set directly indicates its effectiveness. To evaluate

the effectiveness of each mutation operator, we ran each

mutation-adequate set of tests tiopj against all mutants

mi, calculating their mutation scores as MSiopj
.

MSiopj
= MS(tiopj ,mi) i = 1, . . . , 39, j = 1, . . . , 75

where MS(t,m) is the mutation score of test set t
against the set of mutants m.

In steps 3 and 4, test cases were selected to kill all non-

equivalent mutants by hand. Some programs had test sets

from previous studies, and we added new tests by hand until all

mutants were killed. For programs with no tests, we used the

usual strategy in testing research, analyzing the mutants and

generating tests by hand. When used in the order they were

introduced, all the test cases are necessary, in the sense that all

of them kill at least one mutant. Using previous terminology,

our test sets are effective but some may be redundant [19].

In step 5 test sets for each mutation operator were selected

from the adequate test set. We randomly picked tests from

the adequate test set, discarding tests that did not kill new

mutants, until a subset was constructed that killed all mutants

of that operator (adequate for that operator). Again, these test

sets are effective and may be redundant. To avoid possible

bias caused by the selection process, we repeated this process

10 times, each time with a different random selection of test

cases. So, the mutation score and the number of test cases for

each operator, computed in step 6, are the average of the 10

different test sets adequate for each mutation operator.

C. Subjects

We chose 39 C programs of varying sizes and domains

as experimental subjects. The subject programs vary in size

from one to 20 functions, and from seven to 394 lines of

code, totaling 189 functions and 2808 lines of code. Program

mutation is primarily used for unit testing, so we focused on

program units (C functions) rather than large systems. Table I

summarizes the subject programs used in this experiment,

showing the number of functions and total lines of code for

each program.

D. SDL-mutation Results

This study replicates the Java SDL-mutation study [7] with

four differences. (1) This study includes additional operators.

206

TABLE I
EXPERIMENTAL RESULTS FOR SSDL-MUTATION.

SSDL Mutants All Proteum Mutants
Program Functions LOCs Mutants Equiv. Tests Mutants Equiv. Tests Killed MS

boundedQueue 6 49 45 4 5 1053 95 13 890.94 0.93
cal 1 18 11 0 3.5 845 67 8 723.54 0.93
Calculation 7 46 36 4 6.3 1059 101 13 881.36 0.92
checkIt 1 9 6 0 2 97 3 9 61.1 0.65
CheckPalindrome 1 10 8 0 3.1 158 18 8 130.2 0.93
countPositive 1 9 7 0 1.6 143 9 5 119.26 0.89
date-plus 3 132 89 1 15.2 2329 151 44 2090.88 0.96
DigitReverser 1 17 15 0 1.3 462 39 5 410.31 0.97
findLast 1 10 7 0 2 185 17 6 132.72 0.79
findVal 1 7 5 0 1.7 182 18 7 144.32 0.88
Gaussian 6 23 24 0 4.3 1009 19 21 950.4 0.96
Heap 7 41 38 2 3.4 1003 92 8 883.67 0.97
InversePermutation 1 15 13 0 3.3 551 61 12 450.8 0.92
jday-jdate 2 49 32 1 4.3 2660 75 27 2481.6 0.96
lastZero 1 9 7 0 1 165 9 5 134.16 0.86
LRS 5 51 37 3 3.1 1075 243 8 807.04 0.97
MergeSort 3 32 23 0 3.3 937 46 18 846.45 0.95
numZero 1 10 7 0 1.3 143 17 5 117.18 0.93
oddOrPos 1 9 7 0 1.9 335 63 7 223.04 0.82
pcal 8 204 136 3 15.2 6109 740 49 5046.86 0.94
power 1 11 9 0 2.5 256 12 9 234.24 0.96
print tokens 17 349 227 26 10.1 4172 530 34 3605.58 0.99
print tokens2 18 275 232 26 6.5 4482 626 27 3778.88 0.98
printPrimes 2 35 25 1 2.1 686 62 7 611.52 0.98
Queue 6 64 51 0 7.6 437 25 12 407.88 0.99
quicksort 1 23 22 1 2.2 992 82 13 873.6 0.96
RecursiveSort 1 17 14 1 1.4 535 43 8 462.48 0.94
replace 20 394 256 30 19.6 10, 617 2000 143 8358.49 0.97
schedule 18 213 148 17 10.5 2026 211 45 1760.55 0.97
schedule2 16 195 143 24 10.9 2515 396 41 2034.24 0.96
Stack 6 56 49 9 5.1 435 42 11 389.07 0.99
stats 1 19 17 2 1.8 843 97 7 701.24 0.94
sum 1 7 5 0 1.5 157 11 6 124.1 0.85
tcas 8 63 46 4 11.5 2285 404 62 1636.47 0.87
testPad 1 24 16 1 3.7 596 55 14 503.13 0.93
totInfo 7 214 126 9 10.6 6326 653 49 5446.08 0.96
trashAndTakeOut 2 19 15 2 3.6 564 26 12 484.2 0.90
twoPred 1 10 7 1 2 232 24 10 162.24 0.78
UnixCal 4 119 101 4 7.3 4619 336 27 4154.51 0.97
Total 189 2857 2062 176 203.3 63, 275 7518 815 53, 254.33 0.96
Min 1 7 5 0 1 97 3 5 61.1 0.65
1st qu. 1 10.5 8.5 0 2 295.5 21.5 7.5 228.64 0.91
Mean 4.85 73.26 52.87 4.51 5.21 1622.44 192.77 20.90 1365.50 0.92
Trim. Mean 3.61 51.39 37.94 2.26 4.41 1131.10 111.84 15.87 962.15 0.94
3rd qu. 6.5 63.5 50 4 6.9 2155.5 181 27 1698.51 0.97
Max 20 394 256 30 19.6 10, 617 2000 143 8358.49 0.99

(2) The subjects are in C, not Java. (3) The tool used was

Proteum, not muJava, and the SSDL operator is implemented

differently. (4) Different subject programs were used.

Table I shows the data from the study. The columns under

SSDL show the results from the SSDL-adequate tests. For

example, boundedQueue had 45 SSDL mutants, four were

equivalent, and five tests were needed to kill the rest (on

average, since this number is the average size of 10 test

sets). The columns under Proteum show data from running

adequate tests on all mutants. For example, Proteum generated

1053 mutants for boundedQueue, 95 were equivalent, and 13

tests were needed to kill all mutants. The SSDL-adequate

tests killed 93% of all non-equivalent mutants. The “Killed”

column shows how many total mutants were killed by the

SSDL test sets. This value is the average over the 10 test

sets and is computed by MS ∗ (Mutants − Equiv). The

“Equiv.” column shows the number of equivalent mutants. The

first author determined these by hand over a period of several

months.

The 39 subjects had a total of 2062 mutants from the SSDL

operator, and 63,275 from all operators. This is a percentage

increase of 2968%. The number of SSDL mutants ranged from

five (in findVal and sum) to 256 (in replace). The total number

of mutants ranged from 97 (in checkIt) to 10,617 (in replace).

As can be seen in Table I, the program replace had the most

total and SSDL mutants, increasing 4047% from the SSDL

mutants to all mutants.

Given that the size of the programs varies significantly, we

used the trimmed mean (at 25%) because it is less sensitive

to outliers than the mean. Also, the trimmed mean does not

require the subjective removal of outliers. According to the

results, SSDL generated an average of 37.94 mutants while

all operators generated an average of 1131.10 mutants.

Table I shows an advantage of SSDL: it generates few

equivalent mutants. 176 of the 2062 SSDL mutants were found

equivalent (8.54%), while 7518 out of all 63,275 mutants

were found equivalent (11.88%). On average (trimmed mean),

SSDL generated approximately 2.26 equivalent mutants per

program and the complete set of operators generated 111.84.

For both SSDL and the complete set of operators, the program

207

with the most equivalent mutants was replace (30 and 2000).

In terms of the number of tests, SSDL required only 203.3

tests, 24.94% of the number of tests needed to kill all other

mutants (815). Again, replace required the most tests, 19.6

for the SSDL mutants and 143 for all mutants (a 629.59%

increase). lastZero had the fewest tests, one for the SSDL

mutants and five for all mutants (countPositive and numZero
also only needed five tests).

These results indicate that SSDL-mutation is a cost-effective

alternative to using the complete set of operators. Although

the mean mutation score of .92 (.94 for the trimmed mean)

may suggest that SSDL is not as strong, 76.92% (30) of the

mutation scores in Table I are greater than .92. In addition,

considering the total number of mutants killed, SSDL test

cases were able to kill approximately 96% of all mutants. The

lowest mutation score was .65 (checkIt) and four programs had

a mutation score of .99. However, as shown in Figure 3, the

scores for checkIt, twoPred (.78), findLast (.79), and oodOr-

Pos (.82) are outliers. If we discard these outliers, the average

mutation score is .94. A .90 mutation score is commonly

regarded as difficult to obtain [9, 27], indicating that SSDL is

a viable alternative to using all mutation operators, although

not necessarily better.

Fig. 3. Boxplot of the mutation scores obtained by executing the SSDL-
adequate test set against the complete set of mutants.

E. One-op Mutation Results

The results in the last section confirm previous results for

SDL-mutation in Java [7], showing that SSDL can reduce cost

while still resulting in effective tests.

Our choice to investigate SSDL as a single mutation oper-

ator is based on the following analysis: it is guaranteed that

every program will generate SDL mutants, the number of SDL

mutants is bound by the LOC in the program, and the operator

tends to generate few equivalent mutants according to previous

studies. One thing missing from the previous studies is a

similar empirical analysis with other operators. We generalize

SDL-mutation to one-op mutation, where only one mutation

operator is used, and ask whether other operators could be

equally effective by themselves.

This section provides results similar to those in section

IV-D, but for each individual operator Opi. We use the same

universe of tests and find 10 subsets of tests that are adequate

for each operator Opi, and then measure their mutation scores

against all mutants, as was done with SSDL. The test sets are

reduced so that every test kills at least one Opi mutant.

Proteum has 75 operators, 52 of which created mutants for

the programs, as shown in Table II.2 Some C operators did not

generate mutants for any of our subjects because they mutate

language features that are not commonly used. Operators are

defined by their four-character acronyms, as described by

Agrawal et al. [1]. The mutation score (MS) column shows

the average mutation score (MSiopj
) across the 39 subject

programs. For example, the tests that killed all Cccr mutants

killed 92% of all mutants across the 39 subjects. The Test

Cases column shows the average percentage of all adequate

tests needed to kill all non-equivalent mutants of that operator.

For instance, Cccr adequate test sets are, on average, 31.79%

the size of the test set that killed all mutants. The Mutants

column shows the percent of all mutants that are created from

this operator. The Equiv Mutants column shows the percentage

of mutants from that operator that are equivalent. So, 31.79%

of the complete universe of tests were needed to kill all the

Cccr mutants, 4.98% of all mutants were Cccr, and 10.30% of

Cccr mutants were equivalent. We also included sets of 5%,

10%, 15%, and 20% randomly sampled mutants at the bottom

for comparison. These mutants were selected by choosing X%

of mutants from each operator, thus the sets were not always

exactly X% of the total.

Most operators had high mutation scores (only nine were

below 70%, which is considered a very low mutation score),

several were as high or higher than SSDL’s score. Table III

shows the 16 highest mutation scores, using 90% as the cutoff.

Although the overall mutation score is certainly important,

it is not the only important criterion for choosing an operator

for one-op mutation. The mutation score is a good measure

for effectiveness, but we also want to decrease cost, which is

more complicated. The number of mutants contributes to the

cost, as each mutant must be executed until it is killed. The

number of tests needed also contributes to cost, as each test

has to be stored, run, and checked, possibly many times. The

number of equivalent mutants also contributes to cost, as they

need to be analyzed separately, often by hand, and sometimes

with great difficulty.

To choose the “best” one-op mutation operator, we perform

a cost-effectiveness analysis (CEA) by aggregating cost and

effectiveness into one formula. We focus primarily on human

costs, as computer costs are orders of magnitude lower, and

can be reduced by using faster computers.

The number of mutants directly affects only computer costs

as the cost is in storage and execution. The number of test

cases and the number of equivalent mutants, on the other hand,

also affect human effort. The tester must design and construct

the tests, then run each test potentially many times, each time

evaluating the results. The tester also must identify equivalent

mutants, usually by a difficult manual analysis. Therefore we

base our cost estimation on the number of tests and equivalent

mutants, and not the number of mutants.

Ideally, we would like a mutation operator that maximizes

the mutation score, while minimizing the tests and equivalent

mutants. Clearly, no single operator satisfies all three goals.

2Operators not used in the experiment are listed in Table V.

208

TABLE II
OPERATOR SUMMARY.

Operator MS Test Cases Mutants Equiv.
Cccr 0.92 31.79% 4.98% 10.30%
Ccsr 0.95 36.75% 6.90% 2.57%
CRCR 0.96 40.58% 14.00% 3.07%
OAAA 0.76 11.66% 0.74% 0.62%
OAAN 0.85 20.47% 2.34% 4.89%
OABA 0.74 10.58% 0.45% 0.95%
OABN 0.84 22.66% 1.61% 7.98%
OAEA 0.79 11.23% 0.20% 0.00%
OALN 0.82 16.74% 1.27% 0.95%
OARN 0.83 19.24% 3.81% 1.72%
OASA 0.74 9.83% 0.30% 0.00%
OASN 0.83 18.68% 1.07% 5.03%
OBAN 0.73 5.88% 0.45% 1.90%
OBBN 0.69 4.57% 0.18% 2.38%
OBLN 0.72 5.39% 0.18% 2.38%
OBNG 0.72 6.00% 0.27% 0.00%
OBRN 0.84 9.72% 0.54% 0.79%
OBSN 0.73 6.28% 0.18% 0.00%
OCNG 0.79 17.65% 0.83% 0.57%
OCOR 0.26 2.04% 0.57% 93.49%
OEAA 0.88 25.59% 4.06% 17.44%
OEBA 0.82 22.40% 2.28% 33.59%
OESA 0.80 19.04% 1.52% 12.13%
Oido 0.78 13.49% 0.53% 0.57%
OIPM 0.55 3.70% 0.04% 0.00%
OLAN 0.78 16.59% 1.68% 25.15%
OLBN 0.73 12.90% 1.00% 41.58%
OLLN 0.67 10.84% 0.34% 2.05%
OLNG 0.77 12.43% 1.03% 0.59%
OLRN 0.85 23.50% 2.06% 10.78%
OLSN 0.76 14.42% 0.67% 3.30%
ORAN 0.92 31.79% 3.77% 11.73%
ORBN 0.91 28.33% 2.25% 15.64%
ORLN 0.89 24.40% 1.66% 8.64%
ORRN 0.95 39.53% 4.15% 14.33%
ORSN 0.87 22.90% 1.50% 11.39%
SBRC 0.45 3.60% 0.09% 41.67%
SBRn 0.87 10.71% 0.16% 0.00%
SCRB 0.69 3.47% 0.03% 0.00%
SGLR 0.62 2.04% 0.16% 80.00%
SMTC 0.80 13.56% 0.34% 2.66%
SMTT 0.76 12.31% 0.34% 0.00%
SMVB 0.66 10.40% 0.23% 8.00%
SRSR 0.89 24.87% 4.50% 3.83%
SSDL 0.92 28.80% 3.81% 5.11%
SSWM 0.83 10.15% 0.45% 2.94%
STRI 0.87 23.22% 1.12% 1.17%
STRP 0.88 25.02% 3.81% 0.69%
SWDD 0.36 6.73% 0.20% 51.46%
VDTR 0.96 53.09% 8.18% 31.33%
VGAR 0.84 16.87% 1.21% 8.50%
VGPR 0.85 11.96% 1.18% 6.11%
VGSR 0.96 32.55% 9.96% 5.49%
VLAR 0.79 8.61% 0.36% 11.57%
VLPR 0.80 12.47% 1.01% 1.13%
VLSR 0.95 38.72% 11.82% 4.68%
VSCR 0.74 18.63% 2.60% 2.22%
VTWD 0.95 42.55% 5.45% 8.46%
Varr 0.83 14.55% 1.17% 12.67%
Vprr 0.82 14.06% 1.27% 1.50%
Vsrr 0.96 40.39% 13.35% 4.55%
Random 5% 0.96 39.92% 5.12% 9.49%
Random 10% 0.98 49.48% 10.12% 8.70%
Random 15% 0.99 54.66% 14.38% 9.62%
Random 20% 0.99 59.52% 20.11% 8.93%

Table III shows that Ccsr and CRCR have the highest mutation

scores, ORBN has the fewest test cases, and Ccsr has the

fewest equivalent mutants.

To account for all three factors, we have designed a

weighted cost function, which is then divided by the mutation

score. The weighted cost is based on relative cost rather than

absolute cost, by hypothesizing a perfect operator whose tests

kill all mutants (MS is 100%), has no equivalent mutants

(%Equiv is 0%), and uses a minimum, but positive, number

of tests. We calculate the cost of the other mutation operators

by comparing them with this hypothetical perfect operator.

The ranges for %Test Cases and %Equiv Mutants are

different, so we normalize them. We first subtract the smallest

value (2.04% for the tests and 0.0% for the equivalent mutants)

then divide by the difference between the smallest and largest

values (60.15% for the tests and 93.49% for the equivalent

mutants). The normalization formula is:

Normalized Data =
data−MINvalue

MAXvalue−MINvalue
(1)

The normalized numbers are in the %Norm Test Cases and

%Norm Equiv Mutants columns in Table III. The cost column

is the sum of the two normalized numbers, and represents the

cost of using just the one operator. The cost function of a

mutation operator is formally defined as:

Cost(OP) = %Norm Test Cases(OP)×Wt+

%Norm Equiv Mutants(OP)×We

(2)

where Wt and We are constant weighting factors. Setting

Wt and We to 1 assumes the cost of generating tests and

determining equivalent mutants is the same. This assumption

is used in Table III. However, if an organization has a very

good automatic test generator, then Wt might be smaller.

Likewise, if an automatic equivalent mutant detector is used,

then We might be smaller. This definition assumes that the

number of test cases and the number of equivalent mutants

are independent.

Finally, the cost-effectiveness measure to evaluate the best

mutation operator, MOCEA (Mutation Operator Cost Effec-

tiveness Analysis) is given by formula 3. As is usual with

cost-effective formulas, low values are more cost-effective.

MOCEA(OP) =
Cost(OP)

MS(OP)
(3)

The normalization procedure we used is common, but of

course could be done differently. In fact, we tried several

alternatives, and they all resulted in the same cost-effectiveness

ordering among the mutation operators. The free variables are

the weights, so we also looked into how different weights

would affect the results. Table IV presents several possible

combinations of values for the weights Wt and We in the

computation of MOCEA according to the data collected in

the present experiment. The best operator value is marked in

bold, and SSDL is the most cost-effective for three of the five

combinations. If test generation is free (Wt = 0), the CRCR or

Ccsr operators become more cost-effective, and if equivalent

detection is irrelevant (We = 0), the ORBN operator becomes

more cost-effective.

209

TABLE III
OPERATORS WITH MUTATION SCORES OVER .90.

Operator MS %Test Cases %Norm Test Cases %Mutants %Equiv Mutants %Norm Equiv Mutants Cost MOCEA
Random 20% 0.99 59.52 100.00 20.11 8.93 9.55 109.55 1.11
Random 15% 0.99 54.66 91.54 14.38 9.62 10.29 101.83 1.03
Random 10% 0.98 49.48 82.53 10.12 8.70 9.31 91.84 0.94
VDTR 0.96 53.09 88.81 8.18 31.33 33.51 122.33 1.27
CRCR 0.96 40.58 67.05 14.00 3.07 3.28 70.33 0.73
Random 5% 0.96 39.92 65.90 5.12 9.49 10.15 76.05 0.79
VGSR 0.96 32.55 53.08 9.96 5.49 5.87 58.95 0.61
Vsrr 0.95 49.31 82.24 13.81 4.83 5.17 87.40 0.92
VTWD 0.95 42.55 70.48 5.45 8.46 9.05 79.53 0.84
ORRN 0.95 39.53 65.22 4.15 14.33 15.33 80.55 0.85
VLSR 0.95 38.72 63.81 11.82 4.68 5.01 68.82 0.72
Ccsr 0.95 36.75 60.39 6.90 2.57 2.57 63.14 0.66
ORAN 0.92 31.79 51.76 3.77 11.73 12.55 64.30 0.70
Cccr 0.92 31.79 51.76 4.98 10.30 11.02 62.77 0.68
SSDL 0.92 28.80 46.56 3.81 5.11 5.47 52.02 0.57
ORBN 0.91 28.33 45.74 2.25 15.64 16.73 62.47 0.69

TABLE IV
DIFFERENT WEIGHTS FOR COMPUTING MOCEA

Wt = 1 Wt = .5 Wt = 0 Wt = 1 Wt = 1
Operator We = 1 We = 1 We = 1 We = .5 We = 0
Random 20% 1.11 0.60 0.10 1.06 1.01
Random 15% 1.03 0.57 0.10 0.98 0.92
Random 10% 0.94 0.52 0.09 0.89 0.84
VDTR 1.27 0.81 0.35 1.10 0.93
CRCR 0.73 0.38 0.03 0.72 0.70
Random 5% 0.79 0.45 0.11 0.74 0.69
VGSR 0.61 0.34 0.06 0.58 0.55
Vsrr 0.92 0.49 0.05 0.89 0.87
VTWD 0.84 0.47 0.10 0.79 0.74
ORRN 0.85 0.50 0.16 0.77 0.69
VLSR 0.72 0.39 0.05 0.70 0.67
Ccsr 0.66 0.35 0.03 0.65 0.64
ORAN 0.70 0.42 0.14 0.63 0.56
Cccr 0.68 0.40 0.12 0.62 0.56
SSDL 0.57 0.31 0.06 0.54 0.51
ORBN 0.69 0.44 0.18 0.59 0.50
Minimum 0.57 0.31 0.03 0.54 0.50

V. DISCUSSION

This paper introduces the concept of one-op mutation
analysis, in which only one mutation operator is used as

a reasonably effective, less expensive alternative. This is an

example of a do-fewer approach. Previous papers [7, 28] have

suggested using only the statement deletion operator (SDL),

so we began by investigating it.

Deng et al. [7] studied SDL in Java programs using the

muJava system. Section IV-D presents similar results but uses

C, the Proteum tool, and a somewhat different version of

the SDL operator (SSDL in Proteum). Table I shows that

the number of SSDL mutants is only 3.26% of all mutants.

muJava’s SDL mutants were 18.8% of all mutants, primarily

because muJava applies a selective strategy [26] and thus

has fewer mutation operators. The tests that killed all SSDL

mutants killed on average 92% of all Proteum’s mutants, which

is the same number killed for muJava’s mutants.

The weakest results were on very small programs. The

SSDL tests had mutation scores less than 80% on three

programs that had 10 lines or less (checkIt, twoPred and

findLast). We found no general correlation between mutation

score and program size, but since this effect was only on very

small programs, the cost of using more mutants, or even all

mutants, is relatively small.

One of the most important advantages of the SSDL operator

is that it generates relatively few equivalent mutants. Only

8,5% of the SSDL mutants were equivalent, compared with

11.9% of all mutants. This matches intuition – every statement

should contribute something to the program, so if removing it

does not change the program’s behavior, why is it there? Some

SSDL mutants are equivalent because of idiosyncrasies of C,

and others because of an engineering practice of including

redundancy to add strength and stability.

A related advantage is that many equivalent SSDL mutants

can be detected automatically. This is generally an undecidable

problem [23], but static analysis can detect many equivalent

mutants, and, based on our observation, is easier for many

SSDL mutants than for most other types of mutants.

The second empirical result is a study to evaluate other

mutation operators as a candidate for one-op mutation. We

collected data for each C operator in Proteum and computed

a mutation score for each operator. We then introduced a

cost-effectiveness analysis metric, MOCEA, to use a multi-

dimensional comparison of the operators in terms of cost and

effectiveness. We concluded that the SSDL operator is the

most cost-effective one-op operator if the two factors associ-

ated with the cost are equally balanced. In other configurations,

other operators may perform better, as, for instance if a very

good automatic test data generator is used so the cost to

generate test cases can be neglected.

Another advantage of the SSDL operator, one that is not

captured in the cost-effectiveness function, is that all programs

will contain SSDL mutants. This is not true, for instance, for

Ccsr, another of the more cost-effective operators. Such an

operator should be avoided since it is not applicable in some

cases. Table V shows how many of our 39 subject programs

had at least one mutant of each type.

Our metric can be tailored to local conditions by adjusting

the weight values (Wt and We). It does not take into account

all factors, for example, the variance in scores or the applica-

bility of the operator for all programs.

210

TABLE V
NUMBER OF PROGRAMS IN WHICH EACH OPERATOR APPEARS

Operators present in ...
all programs none of the programs

CRCR, OCNG, SSDL, SRSR,
STRP, VDTR, Vsrr, VTWD,

OBAA, OBBA, OBEA, OBSA,
OSAA, OSAN, OSBA, OSBN,
OSEA, OSLN, OSRN, OSSA,
OSSN, SCRn, SDWD, Vtrr

some programs
Ccsr (39), ORLN (39), ORRN (39), ORAN (39), OEAA (38),
OEBA (38), OESA (38), ORBN (38), ORSN (38), STRI (37),
Oido (35), SMTC (35), SMTT (35), Cccr (31), OAAN (31),
OALN (30), OARN (30), OABN (29), OASN (29), SMVB (25),
OLAN (20), OLBN (20), OLLN (20), OLNG (20), OLRN (20),
OLSN (20), SWDD (16), Varr (9), Vprr (9), OAAA (8),OAEA (8),
VSCR (8), OABA (7), OASA (7), SBRC(7), SSWM (7), OCOR (5),
OBAN (3), OBBN (3), OBLN(3), OBNG (3), OBRN (3), OBSN (3),
SBRn (3), OIPM (1), SCRB (1), SGLR (1)

A. Threats to Validity

The threats to validity in this paper are common in software

engineering experiments. As is usually the case, we cannot be

sure the subject programs are representative. We mitigated this

problem by selecting programs from various sources, various

domains, and to be of different sizes.

The process of building an adequate test set for each

subject program (the universe of test cases) was tedious and

time consuming. This made building more than one test set

per program prohibitively expensive. This may represent a

threat but the potential error associated with selecting test sets

adequate to the operators was minimized by selecting, for each

program, 10 different sets from the original complete test set,

for each target operator.

When selecting test sets for each mutation operator, the

complete universe of tests was scanned, in order, until an

adequate test set was obtained. To reduce the effect of the

order of the individual tests, we randomly selected 10 different

test sets.

Identifying equivalent mutants in a large experiment like

this is also error-prone. This was done manually by the first

author. Effort data was not collected, but it was done over a

period of months. Some non-equivalent mutants may have

been incorrectly assessed as equivalent. This error is probably

at the noise level.

The MOCEA cost-effectiveness metric is a new way to

evaluate mutation operators. It poses a construct validity threat

and more extensive use is required to validate and tune it.

VI. CONCLUSIONS AND FUTURE WORK

This paper generalizes the concept of SDL-mutation [7]

to one-op mutation, and presents substantial experimental

results of the concept on C programs. It introduces a novel

cost-effectiveness measure (CEA) for one-op mutation and

evaluates the measure on 39 C programs with all 75 Proteum

C mutation operators. The CEA uses the average mutation

score of tests that kill all mutants for the single operator being

measured as a measure of approximation, and incorporates two

elements of cost, the number of tests needed and the number

of equivalent mutants.

The empirical data show that the statement deletion operator

(SSDL in C) is the most cost-effective single mutation operator

if the number of tests and the number of equivalent mutants

are weighted equally. However, if test generation is given a

zero weight, CRCR and Ccsr become more cost-effective. This

can be a valuable tradeoff for practicing testers who might

have different tools or expertise on the testing team. Future

mutation systems for C should allow testers to choose one-

op mutation, and define it to be either the SSDL, the CRCR,

or the Ccsr operator. Despite the differences in C and Java

and the differences in how Proteum and muJava implement

SDL, the results presented here are very consistent with the

evaluation of SDL for Java. We are not able to definitively

evaluate how these differences affect our results.

In the future, we want to consider the idea of two-op
mutation, where two operators are used to complement each

other to be more cost-effective than either by themselves. The

operators that modify arithmetic or logical operators seem to

be likely candidates.

In section V, we observed that some operators did not create

any mutants of our programs, and the tester would not need to

create any tests. The cost-effective formula does not measure

this effect, but if it did, would rank SSDL even higher for

one-op. It would also be useful to compare one-op mutation

with other techniques, such as selective mutation and random

sampling.

ACKNOWLEDGMENTS

Prof. Marcio Delamaro’s research is supported by FAPESP

(Fundação de Amparo a Pesquisa do Estado de São Paulo,

Brazil), process number 2012/16950-5. He also thanks Ms.

Lisa Campos for her support during the conduct of this work.

REFERENCES

[1] H. Agrawal, R. DeMillo, R. Hathaway, W. Hsu, W. Hsu,

E. Krauser, R. J. Martin, A. Mathur, and G. Spafford.

Design of mutant operators for the C programming

language. Technical report SERC-TR-41-P, Software

Engineering Research Center, Purdue University, West

Lafayette IN, March 1989.

[2] T. A. Budd. Mutation Analysis of Program Test Data.

PhD thesis, Yale University, New Haven CT, 1980.

[3] M. E. Delamaro and J. C. Maldonado. Proteum-A tool

for the assessment of test adequacy for C programs. In

Proceedings of the Conference on Performability in Com-
puting Systems (PCS 96), pp. 79–95, New Brunswick,

NJ, July 1996.

[4] R. A. DeMillo and J. Offutt. Constraint-based automatic

test data generation. IEEE Transactions on Software
Engineering, 17(9):900–910, September 1991.

[5] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on

test data selection: Help for the practicing programmer.

IEEE Computer, 11(4):34–41, April 1978.

[6] R. A. DeMillo, E. W. Krauser, and A. P. Mathur.

Compiler-integrated program mutation. In Proceedings

211

of the Fifteenth Annual Computer Software and Ap-
plications Conference (COMPSAC’ 92), Tokyo, Japan,

September 1991. Kogakuin University, IEEE Computer

Society Press.

[7] L. Deng, J. Offutt, and N. Li. Empirical evaluation of

the statement deletion mutation operator. In 6th IEEE In-
ternational Conference on Software Testing, Verification
and Validation (ICST 2013), Luxembourg, March 2013.

[8] P. G. Frankl, S. N. Weiss, and C. Hu. All-uses versus

mutation testing: An experimental comparison of effec-

tiveness. Journal of Systems and Software, Elsevier, 38

(3):235–253, 1997.

[9] M. J. Harrold, J. Offutt, and K. Tewary. An approach

to fault modeling and fault seeding using the program

dependence graph. Journal of Systems and Software,
Elsevier, 36(3):273–296, March 1997.

[10] W. E. Howden. Weak mutation testing and completeness

of test sets. IEEE Transactions on Software Engineering,

8(4):371–379, July 1982.

[11] R. Just, G. M. Kapfhammer, and F. Schweiggert. Do

redundant mutants affect the effectiveness and efficiency

of mutation analysis? In Eighth Workshop on Mutation
Analysis (IEEE Mutation 2012), Montreal, Canada, April

2012.

[12] G. Kaminski, P. Ammann, and J. Offutt. Improving logic-

based testing. Journal of Systems and Software, Elsevier,

2012. To appear.

[13] S. Kim, J. A. Clark, and J. A. McDermid. Investigating

the effectiveness of object-oriented strategies with the

mutation method. In Proceedings of Mutation 2000:
Mutation Testing in the Twentieth and the Twenty First
Centuries, pp. 4–100, San Jose, CA, October 2000.

Wiley’s Software Testing, Verification, and Reliability,

December 2001.

[14] K. N. King and J. Offutt. A Fortran language system for

mutation-based software testing. Software-Practice and
Experience, 21(7):685–718, July 1991.

[15] E. W. Krauser, A. P. Mathur, and V. Rego. High

performance testing on SIMD machines. In Proceedings
of the Second Workshop on Software Testing, Verification,
and Analysis, pp. 171–177, Banff, Alberta, July 1988.

IEEE Computer Society Press.

[16] N. Li, U. Praphamontripong, and J. Offutt. An exper-

imental comparison of four unit test criteria: Mutation,

edge-pair, all-uses and prime path coverage. In Fifth
Workshop on Mutation Analysis (IEEE Mutation 2009),
Denver CO, April 2009.

[17] Y.-S. Ma, J. Offutt, and Y.-R. Kwon. MuJava : An

automated class mutation system. Software Testing,
Verification, and Reliability, Wiley, 15(2):97–133, June

2005.

[18] A. P. Mathur and E. W. Krauser. Modeling mutation

on a vector processor. In 10th International Conference
on Software Engineering, pp. 154–161, Singapore, April

1988. IEEE Computer Society Press.

[19] E. S. Mresa and L. Bottaci. Efficiency of mutation

operators and selective mutation strategies: An empirical

study. Software Testing, Verification, and Reliability,
Wiley, 9(4):205–232, 1999. December.

[20] A. S. Namin, J. H. Andrews, and D. J. Murdoch. Suffi-

cient mutation operators for measuring test effectiveness.

In Proceedings of the 30th International Conference
on Software Engineering, pp. 351–360, New York, NY,

USA, 2008. ACM. ISBN 978-1-60558-079-1. doi:

http://doi.acm.org/10.1145/1368088.1368136.

[21] J. Offutt. An integrated automatic test data generation

system. Journal of Systems Integration, 1(3):391–409,

November 1991.

[22] J. Offutt and S. D. Lee. An empirical evaluation of weak

mutation. IEEE Transactions on Software Engineering,

20(5):337–344, May 1994.

[23] J. Offutt and J. Pan. Detecting equivalent mutants and

the feasible path problem. Software Testing, Verification,
and Reliability, Wiley, 7(3):165–192, September 1997.

[24] J. Offutt and R. Untch. Mutation 2000: Uniting the

orthogonal. In Proceedings of Mutation 2000: Mutation
Testing in the Twentieth and the Twenty First Centuries,

pp. 45–55, San Jose, CA, October 2000.

[25] J. Offutt, R. Pargas, S. V. Fichter, and P. Khambekar.

Mutation testing of software using a MIMD computer.

In 1992 International Conference on Parallel Processing,

pp. II–257–266, Chicago, Illinois, August 1992.

[26] J. Offutt, A. Lee, G. Rothermel, R. Untch, and C. Zapf.

An experimental determination of sufficient mutation

operators. ACM Transactions on Software Engineering
Methodology, 5(2):99–118, April 1996.

[27] P. Thévenod-Fosse, H. Waeselynck, and Y. Crouzet.

An experimental study on software structural testing:

Deterministic versus random input generation. In

Fault-Tolerant Computing: The Twenty-First Interna-
tional Symposium, pp. 410–417, Montreal, Canada, June

1991. IEEE Computer Society Press.

[28] R. Untch. On reduced neighborhood mutation analysis

using a single mutagenic operator. In ACM Southeast
Regional Conference, pp. 19–21, Clemson SC, 2009.

[29] R. Untch, J. Offutt, and M. J. Harrold. Mutation

analysis using program schemata. In Proceedings of the
1993 International Symposium on Software Testing, and
Analysis, pp. 139–148, Cambridge MA, June 1993.

[30] W. E. Wong. On Mutation and Data Flow. PhD thesis,

Purdue University, December 1993. (Also Technical

Report SERC-TR-149-P, Software Engineering Research

Center, Purdue University, West Lafayette, IN).

[31] W. E. Wong and A. P. Mathur. Reducing the cost of

mutation testing: An empirical study. Journal of Systems
and Software, Elsevier, 31(3):185–196, December 1995.

[32] W. E. Wong, M. E. Delamaro, J. C. Maldonado, and

A. P. Mathur. Constrained mutation in C programs. In

8th Brazilian Symposium on Software Engineering, pp.

439–452, Curitiba, Brazil, October 1994.

212

