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Abstract

Different from measures of global dependence, measures of local dependence
evaluate the dependence along the support of the variables. The aim of
this paper is to study a measure of local dependence proposed by Bairamov,
Kotz and Kozubowski (2003) in the context of variables not indexed by time
and also for stationary time series. We propose similar estimators for both
cases. The consistency of the estimators are obtained, and their behavior
are studied through simulations. Some empirical illustrations are provided.
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Keywords and phrases. Local dependence, nonparametric estimation, kernel,
time series.

1 Introduction
In this section, some measures of local dependence found in the literature

are introduced briefly.
Holland and Wang (1987) proposed a measure of local dependence for two

continuous variables by extending an rc contingence table for two discrete
variables to the case of two continuous variables by taking partitions in a thin
rectangular grid. The function of local dependence proposed by Holland and
Wang (1987) does not consider the marginal distributions and is constant
under the bivariate normal case.

Another local measure, proposed by Bjerve and Doksum (1993), is the
correlation curve between X and Y , that is a generalization of Pearson cor-
relation coefficient for linear models to nonlinear models. However, it is only
conditional on X and not on X and Y . An application of this measure to
financial markets was studied by Bradley and Taqqu (2005) under the case
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of random sample. Latif and Morettin (2012a) investigated this correlative
curve in the context of univariate and bivariate stationary time series.

Sibuya (1960) proposed a function of dependence between two continuous
random variables X and Y , that is the ratio between the joint distribution
function and the product of their marginal distribution functions. It was
initiated from the study of the notion of extreme statistics for the bivariate
case. For this function, Latif and Morettin (2009, 2011) studied nonpara-
metric estimators under random sample as well as for time series.

Aiming to create a measure of local dependence with an explicit repre-
sentation for copulas, Anjos and Kolev (2005) proposed a measure that could
be interpreted as a standardized distance between the copula and product
copula. In Latif and Morettin (2012b), we can find the nonparametric esti-
mation of this function for both random vectors and stationary time series.

Also in Nelsen (2006), among others, we can find the concept of cop-
ula (and copula density) which was studied in the context of time series by
Fermanian and Scaillet (2003) who used kernel estimators and also by
Morettin et al. (2011) who used estimators through wavelets.

The aim of this work is to study the estimation of the measure of local
dependence of Bairamov et al. (2003), that is also called the local measure
of dependence of Bairamov and Kotz by Mari and Kotz (2001). From now
on we will call it measure of local correlation. Both the context of random
variables and univariate and bivariate stationary process are considered. To
this end, we propose estimators based on the estimator of Nadaraya–Watson
for conditional expectations. The consistency of the three estimators are
proved, and simulations are presented to assess the estimators properties.
Empirical illustrations are shown considering two indices of performance of
large companies in Brazil in 2006, and for the time series the daily returns of
Petrobras (Brazilian Oil Company) and also of CAC 40 (French stock market
index) and FTSE (Financial Times Stock Exchange - UK stock index) were
used.

2 Measure of local correlation
The measure of local dependence between two variables X and Y pro-

posed by Bairamov et al. (2003) is given by the following expression:

H(x, y) =
E[(X − E[X|Y = y])(Y − E[Y |X = x])]

√
E[(X − E[X|Y = y])2]

√
E[(Y − E[Y |X = x])2]

, ∀(x, y) ∈ S,

(2.1)
which refers to the known Pearson’s correlation coefficient with the replace-
ment of E[X] by E[X|Y = y] and the replacement of E[Y ] by E[Y |X = x].
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Here S denotes the support of (X, Y ). This measure can also be written as

H(x, y) =
ρXY + ϕX(y)ϕY (x)

√
1 + ϕ2

X(y)
√

1 + ϕ2
Y (x)

, ∀(x, y) ∈ S, (2.2)

where

ϕX(y) =
E[X] − E[X|Y = y]

√
V ar[X]

, ϕY (x) =
E[Y ] − E[Y |X = x]

√
V ar[Y ]

and ρXY is the usual Pearson’s correlation coefficient.
In Figure 1, the plots (a) to (d) and the corresponding plots of contour

curves (e) to (h), show the theoretical behavior of this measure for a bivariate
random vector with standard normal distribution and correlation coefficients
equal to +0.80, −0.80, +0.20 and −0.20, in this order.

Bairamov et al. (2003) observe that:

• H(x, y) refers to the localized version of the Pearson’s correlation co-
efficient ρXY ;

• this measure of local dependence characterizes the effect of X on Y and
the effect of Y on X, conditional to (X, Y ) equal to (x, y), allowing the

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1: Plots and contour curves of the measure of local correlation (Equa-
tions (2.1) or (2.2)) for (X, Y ) with standard normal distribution and cor-
relation coefficient ρ = +0.80 in (a) and (e), ρ = −0.80 in (b) and (f),
ρ = +0.20 in (c) and (g), and ρ = −0.20 in (d) and (h).
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identification of the variable values with stronger or weaker association
than the global one;

• E[H(X, Y )] is nearly equal to Pearson’s linear correlation coefficient.
This approximation can be made through weighted integration of H
with respect to the joint density f of (X, Y ), and the result is always
finite because |H(x, y)| ≤ 1.

The form and symmetry of H(x, y) for the symmetrical elliptical distri-
butions can be found in Kotz and Nadarajah (2003), and for the distributions
of extreme values in Nadarajah, Mitov and Kotz (2003).

Let (X, Y ) be a continuous random vector with support S. Then H(x, y)
satisfies the following properties (see Bairamov et al., 2003):

(i) |H(x, y)| ≤ 1, ∀(x, y) ∈ S ;

(ii) if H(x, y) = ±1 for some (x, y) ∈ S, then ρXY �= 0 ;

(iii) if Y = aX + b almost surely, then H(X, Y ) = 1 × sign(a);

(iv) if ρXY = ±1, then H(X, Y ) = ±1 almost surely;

(v) if U = a + bX and V = c + dY , with bd �= 0, then HUV (u, v) =
sign(bd)HXY (x, y), where u = a + bx and v = c + dy;

(vi) if X and Y are independent, then H(x, y) = 0, ∀(x, y) ∈ S;

(vii) if H(x, y) = 0, ∀(x, y) ∈ S, then E[X] = E[X|Y = y] or E[Y ] =
E[Y |X = x], ∀(x, y) ∈ S, and ρXY = 0;

(viii) the point (x∗, y∗) satisfying ϕX(y∗) = ϕY (x∗) = 0 is a saddle point of
H and, at this point, H(x∗, y∗) = ρXY , with (x∗, y∗) ∈ S;

(ix) H(μX , μY ) = ρXY if (X, Y ) has a normal distribution with vector
mean equal to (μX , μY )′.

For the case where (X, Y ) has a Gaussian distribution with mean μ =
(μX , μY )′ and vec(Σ) = (γXX , γY X , γXY , γY Y )′, where γXY = γY X , then
E[X|Y = y] = μX+(γXY /γY Y )(y−μY ) and E[Y |X = x] = μY +(γXY /γXX)
(x − μX), and for this case

H(x, y) =
ρXY

(
1 + (ρXY /(γXXγY Y )1/2)(x − μX)(y − μY )

)

√
1 + (ρ2

XY /γXX)(x − μX)2
√

1 + (ρ2
XY /γY Y )(y − μY )2

,
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∀(x, y) ∈ S.

To estimate the measure given by Equation (2.1) (or Equation (2.2)),
Bairamov et al. (2003) suggest to use the moment estimators for E[X], E[Y ],
V ar[X], V ar[Y ] and ρXY , and kernel estimators of conditional expectations.

Let ((X1, Y1), ..., (Xn, Yn)) be a random sample observed from (X, Y ).
Considering the estimator of Nadaraya-Watson (proposed independently by
Nadaraya, 1964 and Watson, 1964) for conditional expectations, then an
estimator of H(x, y) can be given by:

Ĥ(x, y) =
RXY + ((X̄ − m̂X(y))/SX)((Ȳ − m̂Y (x))/SY )

√
1 + ((X̄ − m̂X(y))/SX)2

√
1 + ((Ȳ − m̂Y (x))/SY )2

,

∀(x, y) ∈ S, (2.3)

where

X̄ =
1
n

n∑

i=1

Xi , Ȳ =
1
n

n∑

i=1

Yi,

S2
X =

1
n − 1

n∑

i=1

(Xi − X̄)2 , S2
Y =

1
n − 1

n∑

i=1

(Yi − Ȳ )2,

RXY =
1

n − 1

n∑

i=1

(
Xi − X̄

SX

)(
Yi − Ȳ

SY

)
,

m̂Y (x) =

∑n
i=1 YiK1

(
x−Xi
h1n

)

∑n
i=1 K1

(
x−Xi
h1n

) , m̂X(y) =

∑n
i=1 XiK2

(
y−Yi

h2n

)

∑n
i=1 K2

(
y−Yi

h2n

) ,

with Ki being symmetric, bounded and real kernel functions such that∫
Ki(u)du = 1 and Ki(x; hin) = 1/hinKi (x/hin), i = 1, 2, with hin > 0

being functions of n such that hin → 0 as n → ∞. Here m̂Y (x) and m̂X(y)
are estimators of mY (x) = E[Y |X = x] and mX(y) = E[X|Y = y], respec-
tively.

Theorem 2.1. Let (X, Y ) be a continuous random vector with support S
whose components have finite second order moments, and hin → 0 such that
nhin → ∞, i = 1, 2, then

Ĥ(x, y) P−→
n→∞

H(x, y), for every (x, y) ∈ S.
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Proof. Because the second order moments of X and Y are finite, then
we know that the estimators X̄, Ȳ , S2

X , S2
Y , RXY are consistent for their

true parameters μX , μY , σ2
X , σ2

Y , ρXY , respectively, as n → ∞. According
to Härdle (1991), if hin → 0 such that nhin → ∞, i = 1, 2, then m̂Y (x)
converges in probability to mY (x), and m̂X(y) to mX(y), as n → ∞. There-
fore, by the continuous mapping theorem, Ĥ(x, y) is a consistent estimator
of H(x, y).

3 Measure of local correlation for time series
Let {Xt, t ∈ Z} be a stochastic process with continuous values. Consider

a random vector (Xt1 , Xt2), t1, t2 ∈ Z, t1 �= t2, with support S. Then,
using Equation (2.2), the measure of local correlation can be defined in the
following way:

H(x1, x2; t1, t2)=
ρ(t1, t2) + ϕt1,t2(x2)ϕt2,t1(x1)√
1 + ϕ2

t1,t2
(x2)

√
1 + ϕ2

t2,t1
(x1)

, ∀(x1, x2)∈S, ∀t1, t2 ∈ Z,

where
ϕt1,t2(x2) = (E[Xt1 ] − E[Xt1 |Xt2 = x2])/

√
V ar[Xt1 ],

ϕt2,t1(x1) = (E[Xt2 ] − E[Xt2 |Xt1 = x1])/
√

V ar[Xt2 ],

ρ(t1, t2) = E[(Xt1 − E[Xt1 ])(Xt2 − E[Xt2 ])]/
√

V ar[Xt1 ]V ar[Xt2 ].

Now, assuming that the process {Xt, t ∈ Z} is strictly stationary,
then, the finite dimensional distributions remain the same under transla-
tions of time. In particular, the univariate distributions are invariant under
translations of time which imply that the mean and the variance are con-
stants, and the bivariate distributions depend on the time lag τ and then ρτ ,
E[Xt+τ |Xt = x] and E[Xt|Xt+τ = x] depend of τ . Therefore, considering
the random vector (Xt, Xt+τ ), ∀t, τ ∈ Z, τ �= 0, we have

Hτ (x1, x2)=
ρτ + ((μ − E[Xt|Xt+τ = x2])/σ) ((μ − E[Xt+τ |Xt = x1])/σ)

√
1 + ((μ − E[Xt|Xt+τ = x2])/σ)2

√
1 + ((μ − E[Xt+τ |Xt = x1])/σ)2

,

(3.1)

∀(x1, x2) ∈ S, ∀t, τ ∈ Z, τ �= 0.



48 S.A. Latif and P.A. Morettin

Proposition 3.1. Let {Xt, t ∈ Z} be a strictly stationary process with
continuous values. Then, Hτ (x1, x2) satisfies the following properties:

(i) −1 ≤ Hτ (x1, x2) ≤ +1, ∀(x1, x2) ∈ S, ∀τ ∈ Z
∗ ;

(ii) if Hτ (x1, x2) = ±1 for some (x1, x2) ∈ S, then ρτ �= 0, ∀τ ∈ Z
∗ ;

(iii) the point (x∗
1, x

∗
2) satisfying ϕ(x∗

1; τ) = ϕ(x∗
2; τ) = 0 is a saddle point

of Hτ and, at this point, Hτ (x∗
1, x

∗
2) = ρτ , with (x∗

1, x
∗
2) ∈ S, ∀τ ∈ Z

∗ ;

(iv) H−τ (x1, x2) = Hτ (x1, x2), ∀(x1, x2) ∈ S, ∀τ ∈ Z
∗ ;

(v) Hτ (μ, μ) = ρτ , ∀τ ∈ Z
∗, if {Xt} is a Gaussian process with mean μ.

The proofs of these properties are immediate.
As an example, consider a strictly stationary, second order AR(1) process

{Xt, t ∈ Z} of the form Xt = φ0 + φ1Xt−1 + at, at ∼ iid(0, σ2
a). Then

Hτ (x1, x2) =
φ
|τ |
1 σ2

a(1 − φ1)2 + φ
2|τ |
1 (1 − φ2

1) ((1 − φ1)x2 − φ0) ((1 − φ1)x1 − φ0)
[∏2

i=1

(
σ2

a(1 − φ1)2 + φ
2|τ |
1 (1 − φ2

1){(1 − φ1)xi − φ0}2
)]1/2

,

|τ | ≥ 1,

which presents an exponential decay to zero from the saddle point, a behavior
similar to the a.c.f. of an AR(1) process.

Now, if the strictly stationary second order process {Xt, t ∈ Z} follows
a MA(1) model of the form Xt = θ0 − θ1at−1 + at, at ∼ (0, σ2

a), we have that

Hτ (x1, x2) =

⎧
⎪⎨

⎪⎩

−θ1σ
2
a + (θ1x2 − θ0θ1)(θ1x1 − θ0θ1)√∏2

i=1{σ2
a(1 + θ2

1) + (θ1xi − θ0θ1)2}
, |τ | = 1

0 , |τ | ≥ 2,

which is non null only on the first lag, as occurs with the a.c.f. of a MA(1)
model.

When the process {Xt, t ∈ Z} follows an ARMA(1,1) model with zero
mean of the form Xt = φXt−1 − θat−1 + at, at ∼ iid(0, σ2

a), it follows that

Hτ (x1, x2) =
σ2

aφ
|τ |−1(1 − φθ)(φ − θ) + x1x2φ

2(|τ |−1)(φ − θ)2(1 − φ2)
√∏2

i=1

(
σ2

a(1 + θ2 − 2φθ) + φ2(|τ |−1)(φ − θ)2(1 − φ2)x2
i

) ,

|τ | ≥ 1,

which shows a similar behavior to the a.c.f. of an ARMA(1,1) model.
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In the context of time series, given observations (X1, ..., XT ) from a
strictly stationary, second order process with continuous values, one esti-
mator for Hτ (x1, x2) is

Ĥτ (x1, x2) =
rτ +

(
X̄−m̂1(x2)√

c0

) (
X̄−m̂2(x1)√

c0

)

√

1 +
(

X̄−m̂1(x2)√
c0

)2
√

1 +
(

X̄−m̂2(x1)√
c0

)2
, ∀(x1, x2) ∈ S, ∀t ∈ Z,

(3.2)
where

X̄ =
1
T

T∑

t=1

Xt,

cτ =
1
T

T−τ∑

t=1

(Xt − X̄)(Xt+τ − X̄), with c−τ = cτ ,

rτ =
cτ

c0
, with r−τ = rτ ,

m̂1(x2) =

∑T−τ
t=1 XtK2

(
x2−Xt+τ

h2T

)

∑T−τ
t=1 K2

(
x2−Xt+τ

h2T

) , m̂2(x1) =

∑T−τ
t=1 Xt+τK1

(
x1−Xt

h1T

)

∑T−τ
t=1 K1

(
x1−Xt

h1T

)

where τ = 1, 2, ..., T − 1, Ki is a kernel function with short tails, hiT is a
sequence of bandwidth converging to zero in an appropriate rate, i = 1, 2,
and m̂1(x2) and m̂2(x1) are estimators of E[Xt|Xt+τ = x2] and E[Xt+τ |Xt =
x1], respectively. We observe that the the first three estimators are those
usually used in time series and the last is the estimator of Nadaraya-Watson
whose version for time series can be found in Härdle, Lütkepohl and Chen
(1997, page 55).

Consider the following regularity conditions:

(C1) Xt =μ+
∑+∞

j=−∞ αjet−j , where et ∼ iid(0, σ2), E[e4
t ]= ησ4,

∑+∞
j=−∞ |αj |

< ∞ and
∑∞

k=−∞ |γk| < ∞;

(C2) the smoothing parameter hiT > 0 is such that hiT → 0 and ThiT → ∞,
i = 1, 2, as T → ∞;

(C3) the kernel Ki, i = 1, 2, is a bounded density function, symmetric
(around zero) and such that

lim
x→∞

xKi(x) = 0 and
∫

x2Ki(x)dx < +∞;
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(C4) Ki, i = 1, 2, is a Lipschitz continuous function of order γ on R, that
is, |Ki(x1)−Ki(x2)| ≤ c|x1 −x2|γ with x1, x2 ∈ R, i = 1, 2, and γ > 0;

(C5) Xt is an α-mixing process, with geometrical decay coefficients, that is,
∃u ∈]0;∞[ and ∃v ∈ [0; 1[ such that α(k) ≤ uvk, k ≥ 1;

(C6) r and f are functions twice continuously differentiable and with values
on R, such that

||f ||∞ = inf{a : P [f > a] = 0} ≤ b and ||f (2)||∞ ≤ b,

||r||∞ = inf{a : P [r > a] = 0} ≤ b and ||r(2)||∞ ≤ b,

for some b, where r(x1) =
∫

x2f(x1, x2)dx2 is the numerator of the
conditional expectation;

(C7) E[exp{a|Xt|s}] < +∞, for some a > 0 and some s > 0, ∀t ∈ Z;

(C8) ThT /(logT )2+1/s → +∞ when T → ∞ and s > 0;

(C9) S is a compact set such that inf
x∈S

f(x) > 0;

(C10) hT �
(
(logT )2−1/s/T

)1/5
, s > 0.

Theorem 3.1. Let {Xt, t ∈ Z} be a strictly stationary, second order
process, with continuous values and conditions (C1) to (C10) valid. Then

Ĥτ (x1, x2)
P−→

T→∞
Hτ (x1, x2), for every (x1, x2) ∈ S, |τ | ≥ 1.

Proof.

By (C1) and by Corollary 6.1.1.2 of Fuller (1996), we have that X̄ is
a consistent estimator for μ, and by (C1) and by Theorem 6.2.2 of Fuller
(1996) cτ is consistent for γτ . By Theorem 3.2 of Bosq (1998), with the
conditions (C3) to (C10) valid, then m̂i(x) a.s.−→

T→∞
mi(x), that is, m̂i(x) P−→

T→∞
mi(x) for hiT → 0 and ThiT → ∞, both when T → ∞, i = 1, 2, for every
fixed x ∈ S. Therefore, by the continuous mapping theorem, we have that
Ĥτ (x1, x2)

P−→
T→∞

Hτ (x1, x2).

Let {(Xt, Yt), t ∈ Z} be a strictly stationary process with continuous
values and support S. Take ρXY (τ) at τ = 0, denoted by ρXY (0), the
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contemporaneous or instantaneous correlation coefficient between Xt and
Yt. Then, the local measure of correlation can be written as

H0(x, y) =
ρXY (0) + ((μX − E[Xt|Yt = y])/σX) ((μY − E[Yt|Xt = x])/σY )

√
1 + ((μX − E[Xt|Yt = y])/σX)2

√
1 + ((μY − E[Yt|Xt = x])/σY )2

,

(3.3)

∀(x, y) ∈ S, ∀t, τ ∈ Z.

This measure satisfies properties similar to those of the local measure
given by Equation (2.1) (see Section 2).

We propose the same type of estimator, that is, observed ((X1, Y1), ...,
(XT , YT )) from the process under study, then

Ĥ0(x, y)=
rXY (0) +

(
(X̄ − m̂X(y))/σ̂X

) (
(Ȳ − m̂Y (x))/σ̂Y

)

√
1 +

(
(X̄ − m̂X(y))/σ̂X

)2
√

1 +
(
(Ȳ − m̂Y (x))/σ̂Y

)2
, ∀(x, y)∈S,

(3.4)
where

σ̂2
X =

1
T

T∑

t=1

(Xt − X̄)2, σ̂2
Y =

1
T

T∑

t=1

(Yt − Ȳ )2,

rXY (0) =
cXY (0)
σ̂X σ̂Y

where cXY (0) =
1
T

T∑

t=1

(Xt − X̄)(Yt − Ȳ ),

m̂X(y) =

∑T
t=1 XtK2

(
y−Yt

h2T

)

∑T
t=1 K2

(
y−Yt

h2T

) , m̂Y (x) =

∑T
t=1 YtK1

(
x−Xt
h1T

)

∑T
t=1 K1

(
x−Xt
h1T

) ,

with Ki and hiT , i = 1, 2, as before.
Theorem 3.2. Let {(Xt, Yt), t ∈ Z} be a strictly stationary, second order

process, with continuous values. With regularity conditions similar to (C1)
to (C10) valid, we have

Ĥ0(x, y) P−→
T→∞

H0(x, y), for every (x, y) ∈ S.
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4 Simulations
In simulations of this section, we use bivariate grid with 25 × 25 points

corresponding to 98% of the central data, Gaussian kernel, optimal band-
width according to Bosq (1998) (see the Section 3 for more details) and the
R package.

(1) For the case of two random variables, we consider a bivariate random
vector with Gaussian distribution with mean μ = (3.05; 6.44)′ and
vec(Σ) = (1.13; 1.49; 1.49; 3.99)′, that is, X and Y have correlation
equal to 0.70. The measure H(x, y) was calculated using Equation
(2.1) (or Equation (2.2)) and the estimator given by Equation (2.3)
was simulated using 1,000 random samples of sizes 250, 500 and 1,000

(a) (b)

(c) (d)

Figure 2: For a random vector (X, Y ) with normal distribution, mean μ =
(3.05; 6.44)′ and vec(Σ) = (1.13; 1.49; 1.49; 3.99)′ (correlation 0.70), we have
(a) plot of H (Equation (2.1) or (2.2)), (c) the contour plot. For 1,000
random samples of size n = 1, 000 observed from (X, Y ), we have (b) plot of
Ĥ (Equation (2.3)) and (d) contour plot.
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observed from (X, Y ). Then, some plots and statistics (bias and mean
squared error) at specified points of the bivariate grid are obtained.

In Figure 2 we see the plots and the contour curves of H in (a) and
(c) and of Ĥ in (b) and (d) based on 1,000 samples of size 1,000. We

Table 1: Actual value of H (Equation (2.1) or (2.2)), bias and mean squared
error of Ĥ using Equation (2.3) at some points of the bivariate grid consider-
ing 1,000 series of size 1,000, observed from a normally distributed random
vector (X, Y ) with μ = (3.05; 6.44)′ and vec(Σ) = (1.13; 1.49; 1.49; 3.99)′

(correlation 0.70).

0.01 0.05 0.25 0.50 0.75 0.95 0.99

Actual 0.01 0.918 0.883 0.690 0.366 -0.024 -0.401 -0.535
Bias -0.012 -0.019 -0.021 0.013 0.057 0.071 0.063
MSE 0.000 0.000 0.001 0.002 0.005 0.007 0.006

Actual 0.05 0.883 0.870 0.734 0.460 0.103 -0.265 -0.401
Bias -0.008 -0.014 -0.017 0.012 0.054 0.072 0.065
MSE 0.000 0.000 0.001 0.001 0.004 0.006 0.006

Actual 0.25 0.690 0.734 0.753 0.636 0.402 0.103 -0.024
Bias 0.004 0.001 -0.008 0.005 0.039 0.063 0.061
MSE 0.001 0.000 0.000 0.000 0.002 0.005 0.005

Actual 0.50 0.366 0.460 0.636 0.700 0.636 0.460 0.366
Bias 0.031 0.030 0.012 -0.001 0.011 0.031 0.033
MSE 0.002 0.002 0.001 0.000 0.001 0.002 0.002

Actual 0.75 -0.024 0.103 0.402 0.636 0.753 0.734 0.690
Bias 0.057 0.060 0.038 0.004 -0.007 0.002 0.006
MSE 0.005 0.005 0.002 0.000 0.000 0.000 0.001

Actual 0.95 -0.401 -0.265 0.103 0.460 0.734 0.870 0.883
Bias 0.065 0.073 0.057 0.013 -0.016 -0.014 -0.009
MSE 0.005 0.006 0.004 0.001 0.001 0.000 0.000

Actual 0.99 -0.535 -0.401 -0.024 0.366 0.690 0.883 0.918
Bias 0.064 0.074 0.062 0.016 -0.018 -0.019 -0.013
MSE 0.006 0.007 0.005 0.002 0.001 0.001 0.000
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can see that the behavior of the measure and their estimator are very
similar, both showing positive dependence. The actual values, biases
and the mean squared errors for simulations with 1,000 samples of
sizes 250, 500 and 1,000 were computed, and in Table 1 we present the
case of T = 1, 000. The biases and the mean squared errors generally
decrease as n increases.

(2) To assess the behavior of the local correlation measure for a stationary
process, we calculate the theoretical measure Hτ (x1, x2), τ = 1, 2, 3,
given by Equation (3.1) and simulate their estimator Ĥτ (x1, x2) given
by Equation (3.2) considering 1,000 experiments of Monte Carlo with
series of sizes 250, 500 and 1,000 observed from a stationary Gaussian
process with zero mean, unit variance and autoregressive structure,
with φ1 = 0.70. Then, at some points of the bivariate grid, we calculate
the biases and the mean squared errors.

Figure 3: The first line shows Hτ , τ = 1, 2, 3, (Equation (3.1)) and the second
line shows the contour curves, for a Gaussian process with zero mean, unit
variance and autoregressive autocorrelation, φ1 = 0.7.
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In Figure 3, the plots and the contour curves of Hτ show positive
dependence with decay from the saddle point along the lags. The cor-
responding plots of their estimator Ĥτ , are presented in Figure 4. We
see that both theoretical and estimated measure have similar behavior.
Table 2 shows the actual values, biases and the mean squared errors
of the estimator for the case T = 1, 000, showing a similar behavior to
the case of random variables (Table 1).

(3) Finally we consider a bivariate stationary process, where we evaluate
the estimator of the function of local correlation using 1,000 experi-
ments of Monte Carlo with series of sizes 250, 500 and 1,000 observed
from a VAR(1) model.

Let the stationary vector autoregressive model of order one given by

Zt = Φ0 + Φ1Zt−1 + εt,

Figure 4: The first line shows Ĥτ , τ = 1, 2, 3, (Equation (3.2)) and the second
line shows the contour curves, for 1,000 series with T = 1, 000 observed
from a Gaussian process with zero mean, unit variance and autoregressive
autocorrelation, φ1 = 0.7.
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Table 2: Actual value of Hτ (Equation (3.1)), bias and mean squared error
of Ĥτ using Equation (3.2) at some points of the bivariate grid considering
1,000 series of size 1,000, observed from a Gaussian process with zero mean,
unit variance and autoregressive autocorrelation with φ1 = 0.7.

0.01 0.05 0.25 0.50 0.75 0.95 0.99

Actual 0.01 0.918 0.883 0.690 0.366 -0.024 -0.401 -0.535
Bias -0.019 -0.021 -0.013 0.033 0.087 0.105 0.099
MSE 0.001 0.001 0.001 0.003 0.009 0.012 0.011

Actual 0.05 0.883 0.870 0.734 0.460 0.103 -0.265 -0.401
Bias -0.021 -0.021 -0.013 0.029 0.084 0.109 0.106
MSE 0.001 0.001 0.001 0.002 0.008 0.013 0.012

Actual 0.25 0.690 0.734 0.753 0.636 0.402 0.103 -0.024
Bias -0.013 -0.013 -0.013 0.010 0.055 0.088 0.092
MSE 0.001 0.001 0.001 0.001 0.004 0.009 0.010

Actual 0.50 0.366 0.460 0.636 0.700 0.636 0.460 0.366
Bias 0.032 0.028 0.010 -0.003 0.010 0.032 0.037
MSE 0.003 0.002 0.001 0.001 0.001 0.003 0.004

Actual 0.75 -0.024 0.103 0.402 0.636 0.753 0.734 0.690
Bias 0.087 0.084 0.055 0.010 -0.012 -0.011 -0.010
MSE 0.010 0.008 0.004 0.001 0.001 0.001 0.001

Actual 0.95 -0.401 -0.265 0.103 0.460 0.734 0.870 0.883
Bias 0.105 0.109 0.088 0.032 -0.011 -0.021 -0.021
MSE 0.012 0.013 0.009 0.002 0.001 0.001 0.001

Actual 0.99 -0.535 -0.401 -0.024 0.366 0.690 0.883 0.918
Bias 0.099 0.106 0.091 0.036 -0.010 -0.021 -0.019
MSE 0.011 0.012 0.010 0.004 0.001 0.001 0.001

where Zt = (Xt, Yt), Φ0 = (1, 1)′, vec(Φ1) = (0.25, 0.2, 0.2, 0.75)′ and
εt ∼ N(0,Σ) with vec(Σ) = (0.75, 0.5, 0.5, 1.25)′. Then, the parame-
ters of the stationary Gaussian distribution are μ = (3.05, 6.44)′ and
vec(Γ(0)) = (1.13, 1.49, 1.49, 3.99)′ (correlation 0.70), which are used
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to obtain the theoretical function H0 (Equation (3.3)). The estima-
tor Ĥ0 given by Equation (3.4) was simulated through 1,000 series of
size 1,000 observed from this model. In Figure 5 we see the behavior
of both theoretical (plots (a) and (c)) and estimated (plots (b) and
(d)) functions, which are similar. The actual values, biases and mean
squared errors of the estimator Ĥ0 for simulations with series of sizes
250, 500 and 1,000 show similar behavior as that of H, Ĥ, Hτ and Ĥτ .
See Table 3 for the case of T = 1, 000.

(a) (b)

(c) (d)

Figure 5: For a VAR(1) model with mean (3.05; 6.44)′, vec(Γ(0)) =
(1.13; 1.49; 1.49; 3.99)′ (correlation 0.70) and Gaussian innovations, we have
the plot of H0 (Equation (3.3)) in (a), the contour plot in (c), the plot of Ĥ0

(Equation (3.4)) in (b) and contour plot in (d), obtained from 1,000 series
of size T = 1, 000 observed from this model.
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Table 3: Actual value of H0 (Equation (3.3)), bias and mean squared error of
Ĥ0 using Equation (3.4) at some points of the bivariate grid considering 1,000
series of size 1,000, observed from the VAR(1) model with μ = (3.05, 6.44)′,
vec(Γ(0)) = (1.13, 1.49, 1.49, 3.99)′ (correlation 0.70) and Gaussian innova-
tions.

0.01 0.05 0.25 0.50 0.75 0.95 0.99

Actual 0.01 0.920 0.885 0.692 0.370 -0.027 -0.404 -0.537
Bias -0.014 -0.020 -0.021 0.013 0.059 0.073 0.067
MSE 0.000 0.001 0.002 0.003 0.006 0.007 0.007

Actual 0.05 0.855 0.873 0.737 0.462 0.101 -0.268 -0.404
Bias -0.010 -0.015 -0.018 0.012 0.057 0.074 0.070
MSE 0.000 0.000 0.001 0.002 0.005 0.007 0.007

Actual 0.25 0.692 0.737 0.757 0.639 0.402 0.101 -0.026
Bias 0.004 0.000 -0.009 0.004 0.039 0.062 0.063
MSE 0.002 0.001 0.001 0.001 0.003 0.006 0.007

Actual 0.50 0.367 0.462 0.639 0.704 0.639 0.462 0.367
Bias 0.033 0.029 0.010 -0.001 0.011 0.030 0.034
MSE 0.005 0.003 0.001 0.001 0.001 0.003 0.005

Actual 0.75 -0.027 0.101 0.402 0.639 0.757 0.737 0.692
Bias 0.063 0.061 0.038 0.005 -0.008 0.001 0.005
MSE 0.008 0.006 0.003 0.001 0.001 0.001 0.002

Actual 0.95 -0.404 -0.268 0.101 0.462 0.737 0.873 0.885
Bias 0.068 0.071 0.055 0.011 -0.018 -0.014 -0.009
MSE 0.007 0.006 0.005 0.002 0.001 0.000 0.000

Actual 0.99 -0.537 -0.404 -0.026 0.367 0.692 0.885 0.920
Bias 0.067 0.073 0.060 0.015 -0.021 -0.020 -0.013
MSE 0.007 0.007 0.006 0.003 0.002 0.001 0.000

5 Empirical illustration
In what follows, we use bandwidth equal to the standard deviation of the

data (as suggested by Bjerve and Doksum, 1993) and 99.7% of the central
data.
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(a) (b) (c)

Figure 6: For the net equity and salary (both in millions of dollars) of
companies in 2006, we have the scatterplot in (a), the plot of Ĥ (given by
Equation (2.3)) in (b) and the contour plot in (c), respectively.

(1) The first application consider the net equity (in millions of dollars) and
salary (also in millions of dollars) for 687 companies chosen among the
1,018 largest companies in Brazil, except banks and insurers, in 2006
(see http://app.exame.abril.com.br/servicos/melhoresemaiores/). For
these two variables, we obtain that the Spearman’s correlation coef-
ficient is 0.542, indicating positive association, and also the measure

Figure 7: Plot of daily returns of Petrobras (Xt) (from 3/01/95 to 27/12/00),
histogram, a.c.f. of the serie and squared serie.
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of local correlation. Figure 6 shows the scatterplot in (a), the plot of
Ĥ in (b) and the contour curves in (c), which show asymmetric posi-
tive dependence, and moreover larger values of one variable tend to be
more correlated with larger values of the other one.

(2) Next, we analyze the daily log returns Xt of Petrobras (Brazilian oil
company) from 3 January 1995 to 27 December 2000, which correspond
to 1,498 observations. In Figure 7 we see the graphics of the series,
its histogram and also the a.c.f. of the series and of the squared series

Figure 8: For the daily returns of Petrobras (Xt) (from 3/01/95 to 27/12/00),
we have the scatterplots, plots of Ĥτ (Equation (3.2)) and contour curves,
lags 1 to 3.
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showing serial correlation and dependence. Considering (Xt, Xt+τ ),
τ = 1, 2, 3, we see in Figure 8 the scatterplots, the plots and contour
curves of the Ĥτ , showing positive dependence at lag one.

(3) Finally, to illustrate the case of two series, we consider the data of
daily log returns of CAC 40 (Cotation Assiste en Continu) and FTSE
(Financial Times Stock Exchange - UK stock index) from 03 January
1994 to 8 August 2000 with 1,722 observations. The returns of the CAC
40 (Xt) and FTSE (Yt) have contemporaneous correlation coefficient

Figure 9: Autocorrelation functions of returns and squared returns of CAC
40 (Xt) and FTSE (Yt) (from 3/01/94 to 08/08/00), and their cross-
correlation function.
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(a) (b) (c)

Figure 10: For the returns of CAC 40 (Xt) and FTSE (Yt) (from 3/01/94
to 08/08/00) we have the scatterplot in (a) and the plots of Ĥ0 (Equation
(3.4)) in (b) and (c).

0.71, Spearman’s rho 0.67 and Kendall’s tau 0.49. The a.c.f. and c.c.f.
of the returns and squared returns are shown in Figure 9. In Figure
10, for the returns we have the scatterplot in (a) and the plots of Ĥ0

in (b) and (c). All these graphics show symmetric positive dependence
between the series.

6 Concluding remarks
For the measure of local correlation of Bairamov et al. (2003), we pro-

posed a smoothed kernel estimator for the conditional expectation. Then,
consistency of this estimator was obtained. Using simulations of 1,000 sam-
ples, the estimator was shown to be similar to the theoretical measure, and
with the increasing of the sample’s sizes then the bias and the mean squared
error decreased. The empirical illustration of this estimator was made using
the net equity (in million of dollars) and salary (in million of dollars) of some
companies in Brazil in 2006.

Next we considered the measure of local correlation for univariate and
bivariate stationary time series. Estimators were proposed for these situa-
tions, again using kernel estimators, and their consistency are obtained. For
the univariate process, a stationary Gaussian model was used to make the
simulations, and for the bivariate process, time series are observed from a
VAR(1) model. In both cases, the behavior of the estimator were similar to
the theoretical ones. Empirical illustrations of these estimators were made
using the daily returns of the Petrobras for the univariate process and the
daily returns of the CAC 40 and FTSE for the bivariate process.
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We considered only discrete time processes in the paper. It would be
interesting to extend the results to continuous time.
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