
 

 Universidade de São Paulo

 

2013 

Synthetic aperture sonar images segmentation

using dynamical modeling analysis
 
 
Revista Brasileira de Geofísica, Rio de Janeiro, v. 31, n. 3, p. 455-462, 2013
http://www.producao.usp.br/handle/BDPI/45694
 

Downloaded from: Biblioteca Digital da Produção Intelectual - BDPI, Universidade de São Paulo

Biblioteca Digital da Produção Intelectual - BDPI

Escola de Artes, Ciências e Humanidades - EACH Artigos e Materiais de Revistas Científicas - EACH

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)

https://core.ac.uk/display/37521652?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.producao.usp.br
http://www.producao.usp.br/handle/BDPI/45694


�

�

“main” — 2014/3/22 — 15:14 — page 455 — #1
�

�

�

�

�

�

Revista Brasileira de Geof́ısica (2013) 31(3): 455-462
© 2013 Sociedade Brasileira de Geof́ısica
ISSN 0102-261X
www.scielo.br/rbg

SYNTHETIC APERTURE SONAR IMAGES SEGMENTATION
USING DYNAMICAL MODELING ANALYSIS

Luis Américo Conti1 and Murilo Baptista2

ABSTRACT. Symbolic Models applied to Synthetic Aperture Sonar images are proposed in order to assess the validity and reliability of use of such models and
evaluate how effective they can be in terms of image classification and segmentation. We developed an approach for the description of sonar images where the pixels

distribution can be transformed into points in the symbolic space in a similar way as symbolic space can encode a trajectory of a dynamical system. One of the main
characteristic of approach is that points in the symbolic space are mapped respecting dynamical rules and, as a consequence, it can possible to calculate quantities that

characterize the dynamical system, such as Fractal Dimension (D), Shannon Entropy (H) and the amount of information of the image. It also showed potential to classify
image sub-patterns based on the textural characteristics of the seabed. The proposed method reached a reasonable degree of success with results compatible with the

classical techniques described in literature.

Keywords: Synthetic Aperture Sonar, image processing, dynamical models, fractal, seabed segmentation.

RESUMO. Este estudo apresenta uma proposta de metodologia para segmentação e classificação de imagens de sonar de Abertura Sintética a partir de modelos de

Dinâmica Simbólica. Foram desenvolvidas, em um primeiro momento, técnicas de descrição de registros de sonar, com base na transformação da distribuição dos
pixels da imagem em pontos em um espaço simbólico, codificado a partir de uma função de interação, de modo que as imagens podem ser interpretadas como sistemas

dinâmicos em que trajetórias do sistema podem ser estabelecidas. Uma das caracteŕısticas marcantes deste método é que, ao descrever uma imagem como um sistema
dinâmico, é possı́vel calcular grandezas como dimensão fractal (D) e entropia de Shannon (H) além da quantidade de informação inerente a imagem. Foi possı́vel

classificar, posteriormente, caracteŕısticas texturais das imagens com base nas propriedades dinâmicas do espaço simbólico, o que permitiu a segmentação automática
de padrões de “backscatter” indicando variações da geologia/geomorfologia do substrato marinho. O método proposto atingiu um razoável grau de sucesso em relação

à acurácia de segmentação, com sucesso compat́ıvel com métodos alternativos descritos em literatura.

Palavras-chave: sonar de abertura sintética, processamento de imagens, modelos dinâmicos, fractal, segmentação.

1Escola de Artes Ciências e Humanidades, Universidade de São Paulo, R. Arlindo Bettio, 1000, São Paulo, SP, Brazil – E-mail: lconti@usp.br
2Institute for Complex Systems and Mathematical Biology, SUPA, University of Aberdeen, United Kingdom – E-mail: murilo.baptista@abdn.ac.uk.



�

�

“main” — 2014/3/22 — 15:14 — page 456 — #2
�

�

�

�

�

�

456 SYNTHETIC APERTURE SONAR IMAGES SEGMENTATION USING DYNAMICAL MODELING ANALYSIS

INTRODUCTION

The increasing demand for submarine information, coupled with
the rapid expansion of seafloor survey technology, has created a
need for new methods of seafloor imagery processing (Reed &
Hussong, 1989). Of all remote sensing modalities available for
underwater applications, acoustic methods, covering frequency
ranges from a few Hz to several MHz, are by far the most flexible
and widely used (Capus, 2008). Thus, sonar registers revealing
the geophysical characteristics of the seabed represent an essen-
tial tool for the effective knowledge of the marine environment.

Due to this growing interest, several studies have proposed
methods of segmentation of sonar registers with distinct objec-
tives. There are two basic approaches to addressing the image
processing methods in sonar registers: 1) The segmentation and
classification of image based on seabed texture. According to
the definition of Martin et al, 2008: “segmenting” an image con-
sists in dividing the image into homogeneous zones delimited by
boundaries so as to separate the different entities in the image
and “classification” consists in labeling the various components
visible in an image texture (e.g. sedimentary patterns; benthic
habitats). 2) feature extraction and survey underwater objects and
structures such as shipwrecks, tubes, pipelines etc, and also for
military purposes as called mine-like objects (MLOs).

One of the challenging issues in both approaches is the
use of automatic techniques that could identify and define some
characteristics of the seabed without any sort of direct human
intervention. Estimations of seabed roughness and MLOs can
be time consuming and often produce inconsistent results, due
to the subjective nature of the analysis, automated algorithms
can potentially process sonar images in a more consistent and
timely manner. Several post processing techniques have been
proposed in order to increase the enhancing and identification
capability of classification of the seabed sonar images (Ste-
wart, 1994; Carmichael et al., 1996; Reed et al., 2006; among
others).

Most of the methods of classification is based on image pro-
cessing, which uses the acoustic image of the sonar, including
both echo structure and shadow shape to establish an analy-
sis of the seabed. The image classification, also called Geospa-
tial Bitmaps (GB) processing (Lohrenz & Gendron, 2007) is of-
ten based on the statistical and/or their geometrical distribution
of the sonar image pixels. Three basic kinds of regions can be
visualized in a GB (i.e. pixel response): i. echo, ii. shadow, and
iii. sea-bottom reverberation (SBR). The echo is caused by the
reflection of the acoustic wave on an object while the shadow
zone corresponds to a lack of acoustic reverberation behind this

object. The remaining information constitutes what can be called
a reverberation (Mignotte, 2000).

An usual approach to simultaneous analysis of combined
texture in characterization and segmentation of patterns of re-
sponse in remoted sensing images is based on autoregressive
analysis. These models are based on the premise that a range of
pixels in the image (2D models) exhibit certain complex behaviors
similar to a quasi-periodic process in time and as such, it can be
investigated by models as wavelets and the hidden Markov tree
(HMT). Alternatively, we propose a dynamical approach for the
description of the image where the pixels distribution in the GB
can be transformed into points in the symbolic space in a simi-
lar way as symbolic space can encode a trajectory of a dynami-
cal system. One of the main power of this approach is that that
points in the symbolic space are mapped respecting dynamical
rules and, as a consequence, it can possible to calculate quan-
tities that characterize the dynamical system, such as Fractal Di-
mension (D), Shannon Entropy (H) and the amount of informa-
tion of the system (or in the case, the GB), which is also related to
the way points in the symbolic space are mapped to other points.
All this characteristics provide a fully description of what the orig-
inal image contains.

The dataset used was based on Synthetic Aperture Sonar im-
ages collected by the NATO Undersea Research Centre (NURC).
The sonar platform was a MUSCLE AUV equipped with a 300 kHz
sonar with a 60 kHz bandwidth that can achieve an along-track
image resolution of approximately 3 cm. The studied area is in
the Baltic Sea off the coast of Latvia (Williams & Coiras, 2010).

We have used a series of 9 images with different seabed pat-
terns such as mud flat, sand rippled, rock etc. The main objective
of the project was to assess the performance of a proposed classi-
fication and segmentation framework and compared it with other
methods proposed on the literature.

METHODOLOGY

The creation of symbolic sequences is based on a specific en-
coding algorithm of a sequence of intensity levels in the sonar
image (representing the echo intensity detected by the sensor).
Each group with “L” pixels is codified in a symbolic sequence of
length “L”, with each intensity level encoded by a real number (N).
The symbolic sequences were constructed using pixels along the
horizontal direction of the image since it is consistent with the di-
rection of the sonar acquisition that places the shadows along the
horizontal axis (i.e. the shadow is the back part of the target). The
length of the symbolic sequence (L) should vary depending on the
goal and target type and the overall characteristics of the area.
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The encoding of the sequences into real numbers need to
satisfy two conditions in order to try to capture the determinis-
tic behavior of the image:

A. Specify the closeness of two symbolic sequences, i.e. two
similar symbolic sequences should be encoded by two
real numbers that are close.

B. Encode the symbolic sequences in a way that a shift in
two different symbolic sequences does not alter strongly
the encoded sequences. And then, two nearby points of
the pixel sequence representing the symbolic sequences
N diverge according to the deterministic principles previ-
ously described.

In order to conform with conditions A and B, the encoding of
the symbolic sequences should take into consideration that sym-
bols near the pixel (i; j) are more representative than symbols
appearing far from the pixel (i; j) and that exactly equal symbolic
sequences, but one appearing in the past sequence (previous
pixels) and the other appearing in the future sequence (posterior
pixels) should be close but not so close.

So, given a symbolic sequence a−L/2a−L/2+1 · · ·a−1 ·
a1a2 . . . aL/2 the encoding of the past (left) symbolic sequence,
a−L/2a−L/2+1 . . . a−1, is given by

dk =

k∑
i=1

(N − 1− a−1) mod (N − 1) (1)

δ = 1−
L/2∑
k=1

dkN
−k (2)

and the encoding of the future (right) sequence, a1a2 . . . aL/2,
is given by

ck =

k∑
i=1

mod (N − 1) (3)

γ =

L/2∑
k=1

ckN
−k (4)

Usually, the encoding would be done using a mod (N)
operation. In this work, we have considered a mod(N-1) in or-
der to artificially create the empty spaces in the symbolic spaces
(where no points observed) of Figures 2 and 3. These empty
spaces caused by the existence of artificially induced forbidden
sequences allow us to better visually identify different patterns in
the images.

The real number (ε[0; 1]) encoding the past symbolic se-
quence is represented by δ and the real number representing the

future symbolic sequence is represented by γ(ε[0; 1]). The en-
coding proposed in Eqs. (1, 2) and (3, 4) is an extension of the
encoding originally proposed to study 2D chaotic maps that could
be encoded by an order –2 Generating Markov Partition (GPM)
(Cvitanovic; 1988).

The symbolic sequence encoding can be summarized by the
Figure 1.

A 2D picture showing all the points with coordinates (δ; γ)
is called the symbolic space of the image. Examples of symbolic
spaces from a sonar image can be seen in Figure 2. Figure 2A
represents the whole image codified into the symbolic space. The
Figures 2B, 2C and 2D represent the details of image in some
specific seabed types, (object, flat and rippled respectively).

The symbolic space has its own dynamical characteristics.
As such, all the tools, quantities, and approaches employed to
characterize a dynamical system can be used for the proper char-
acterization of the symbolic spaces. There are two quantities that
are relevant for the purpose of characterizing symbolic spaces
from sonar images. 1) The fractal dimension and the linear func-
tion f(a; b) from which it can be estimate the fractal dimension
of the symbolic space; and 2) The average mutual information be-
tween past and future symbolic sequences. To extract the fractal
dimension it is necessary to make a grid of the symbolic space
Σ(i; j) (of a selected area in the image). This grid is constructed
with boxes of sides e, as illustrated in Figure 3.

The fractal dimension of the points in the space Σ(i; j) is
defined as

D0

(∑
(i, j)

)
= lim
ε→0−

log[N0(ε)]

log(ε)
(5)

where N0(ε) refers to the number of boxes that are being occu-
pied by points.

The linear fitting of the points with coordinates [logN0(ε)−
log(ε)] is a linear function f(a; b) with the parameters a
representing the constant term of the linear function and b the lin-
ear coefficient reflecting the fractal dimension.

Mutual information measures the degree of uncertainty from
one sequence by observing the another. Consider two sequences
given by S1 (past) and S2 (future). The average mutual infor-
mation between past and future sequences in the symbolic space
Σ(i; j) (from a selected area) can be represented by MI(S1; S2).
In order for MI to be large, S1 and S2 should be highly correlated.
If S1 is either not correlated to S2 (or they contain few informa-
tion) then MI(S1; S2) value will be small. Baptista et al. (2011)
shows a simple way to calculating the mutual information between
points laying in symbolic spaces using Lyapunov exponents and
the fractal dimension of the symbolic space. The Lyapunov expo-
nent measures how much nearby points spread exponentially.

Brazilian Journal of Geophysics, Vol. 31(3), 2013
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Figure 1 – Scheme of the symbolic space creation. Each pixel is encoded by a sequence of N pixels to its left (past encoded) and right (future encoded)
given by equations [1, 2] and [3, 4]. The values of the intensity levels are reduced to N partitions or symbols (“a”, “b”, “c” and “d” in the figure).

Figure 2 – Symbolic spaces of a sonar register image (A), in (B) of a selected area around a target, in (C) within the at a flat
sea bed and in (C) within the ripple sea bed. Selected boxes have size LB=200 pixels and symbolic sequences have length
of L=50. Horizontal axis represent δ; (past symbolic sequences) and vertical axis represents γ (future symbolic sequences).
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Figure 3 – Illustration of a grid of boxes of sides used to calculate the fractal
dimension of the symbolic space of a selected area in the image.

The mutual information between past and future sequences
should provide important characteristic to identify patterns in the
image. For example, a flat sea bed, with lower signal response,
produces sequences that exchange no mutual information, on the
other hand, rippled seabed should exchange some information,
but typically is expected that this amount is quite small, since the
symbolic sequences will reproduce a repetitive periodic pattern.
The mutual information between two periodic signals is zero, de-
spite the fact that two signals are highly correlated. And we ex-
pect that the mutual information between symbolic sequences in
zones with high complex seabed patterns are be large, since past
and future symbolic sequences will not only be correlated but also
when isolated they should be composed by many different sym-
bols, which implies large amount of information.

RESULTS AND DISCUSSION
Analyzing different sonar images patters modulating values of
N and L and the parameters a and b from the function given
by eq. [3] it was possible to characterize several features of the
sonar images and thus allowing segmenting the images based
on the symbolic encoding of texture patterns. The segmenta-
tion process itself was based on a empirical characterization of
these parameters in the images in specific target areas where
the seabed pattern was visually identified (training). The variation
of the size of the training areas also resulted in different segmen-
tation performances.

In most of the analyzed datasets, it was possible to achieve a
successful rate of identification between different types of seabed,

specifically flat and rippled patterns.
We have encoded a set of 9 images and have scanned the im-

ages considering training areas of sides BL=100 and 50 pixels.
Figure 4 shows an example of a typical complex image with

different patterns of seabed (4A) based on the segmentation pro-
cess using different patterns of symbolic parameters (the colour
points are given by certain values of the function f(a; b)). Fig-
ure 4B shows a segmentation using 9 symbols (N=9) with se-
quences of 50 pixels (L=50) and training box of 100 (BL=100)
presented the better overall results to separate the flat to the rip-
pled patters indicating the clear border between the acoustic en-
vironments. We noticed that if the scanning of the image is done
with considering smaller training areas, finer details are captured.
The example of the Figure 4C, shows that with smaller L and BLs,
specific characteristics inside the rippled pattern area can be rec-
ognized. The same happen inside of a pre-classified “flat seabed”
area showed in Figure 4D.

Detailed analysis of these areas shows evidences that the
symbolic sequences are identifying subtle nuances of the seabed
with specific characteristics reflected in changes in the backscat-
tering properties of the imaged and the surrounding environment.
Figure 5 shows the detailed part of the top right part of the image
displayed on the Figure 4 with the delimited pattern character-
ized by the model parameters from 4D (N=7, L=12, BL=50). It is
observed that the model could correctly identify darker pattern of
pixels probably associated to different type of seabed composition
or signal lost.

The application of the method in different images also showed
that it is not clear how the parameters can be adjusted in order
to determine a set of pre-defined settings to optimize the seg-
mentation in all images. Therefore the training parameters are still
crucial to segment each image. However, future studies concer-
ning changes of parameters from the model could establish opti-
mum adjustments to treat any sort of image dismissing the need
of training making the process more automatic.

Works evolving seabed classification based on the back-
scattering characteristics of the bottom surface is often associ-
ated to the texture of the echoes/shadows and several of these
methods of textural segmentation can be found in the literature.
Most of them are based on co-occurrence matrices based on pa-
rameters such as directivity, homogeneity, contrast estimation,
entropy estimation, uniformity, etc. The efficiency of such meth-
ods is quite variable, depending of the type of the analyzed sur-
face and the quality of the register, scale etc. Table 1 shows some
results of method accuracy of seabed segmentation based on dif-
ferent approaches.

Brazilian Journal of Geophysics, Vol. 31(3), 2013
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(a)

(b)

(c)

(d)

Figure 4 – Image of a sonar register (a – Top). The red dots filled representing the location of the centre of a selected
sequence that has produced a value of f(a;b) ≥ 4:5. The scanning of the image done with BL=100 and L=50. (b – top
Centre). BL=50 and L=24 (c – bottom centre) and BL=50 and L=12 (d – Bottom).

Figure 5 – Detail of a segment of the sonar image shown in Figure 4d. The yellow line indi-
cates the area with lower intensity levels associated with a distinct pattern of signal reflection.
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Table 1 – Summary of results for method accuracy of seabed segmentation based on different methods.

Author Method Accuracy

92.6% (sediment pond)

Stewart et al., 1994 Neural Networks 88% (ridge flank)

81% (axial valley)

Carmichael et al., 1996 Multifractal 80.69–99.37% (overall)

fusion of methods: weighted vote, 87% (rock)

Martin, 2006 possibility theory and 61.3% (ripple)
evidence theory. 71% (shadow)

power spectrum feature

Reed et al., 2006 fused within a Markovian framework 87.5% (overall)
and two fusion models

Lohrenz & Gendron, 2007 Automated Roughness Algorithm 84.5% (overall)

Williams & Coiras, 2010 ripple model 77–100% (overall)

Conti & Baptista, 2013 (present work) Dynamical Model 70-90% (overall)
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