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Abstract. We propose a simple way of probing the number of modes
contributing to the channeling in graphene waveguides which are formed by
a gauge potential produced by mechanical strain. The energy mode structure
for both homogeneous and non-homogeneous strain regimes is carefully studied
using the continuum description of the Dirac equation. We found that high strain
values privilege negative (instead of positive) group velocities throughout the
guidance, sorting the types of modes flowing through it. We also show how the
effect of a substrate-induced gap competes against the strain.
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1. Introduction

In the last few decades, new carbon-based structures have been realized in the laboratory.
Of them, graphene, a single-atom-thin sheet of hexagonal arranged carbon atoms, has drawn
considerable attention due to its remarkable properties and a wide variety of potential
applications in nanoelectronic devices [1, 2]. One exciting issue concerning graphene is that
carrier densities can be varied over a large range by external electrostatic gates [3] and, as a
consequence, p–n junctions based on this material can be built [4, 5]. It is possible to produce
graphene-based electronic waveguides using p–n–p junctions in which the charge carriers act
similarly as in optics and where the Fermi energy plays the role of the refraction index [6]. As
a consequence, the guidance in this quasi-one-dimensional channel can be realized simply by
controlling the Fermi energy in the two-dimensional (2D) graphene sheet.

Furthermore, the massless character of Dirac fermions in graphene allows the observation
of the so-called Klein tunneling, which is the perfect transmission of charge carriers through
electrostatic barriers for normal incidence [7–9]. Such a phenomenon leads to a poorer
efficiency in the guidance of charge carriers along the interfaces of graphene p–n–p junctions [6]
and might hamper the performance of graphene-based electronic channeling devices. The
inherent difficulty of controlling such a phenomenon in p–n junctions remains an issue, but
recent advances in strain engineering have opened up the possibility of handling the Klein
tunneling problem.

In-plane strain effects can be understood as a perturbation in the nearest-neighbor hopping
amplitude which induces an effective gauge potential in the Hamiltonian [10]. In fact,
electronic properties in strained graphene are currently being studied both theoretically and
experimentally [11–13]. The local strains in graphene can be tailored to produce new effects to
manipulate electron transport in graphene waveguides [14, 15]. This is an important step toward
all graphene electronics. Theoretical studies on the channeling in such devices are necessary
and, as far as we know, they have not been reported until now.

In this work, we theoretically propose a simple way of probing the modes contributing in
graphene waveguides which are formed through strain engineering. We explore the energy band
structure for both homogeneous and non-homogeneous strain regimes and study these effects
on the modes that contribute to guidance. The non-homogeneous regime can be obtained by
tailoring the local stains and thus producing different magnetic strengths, in such a way that
the magnetic barriers forming the guide should have different heights. In this case, we find
that the energy-mode degeneracy of the total group velocity is lifted and quasiparticles with
negative group velocity become the most likely charge flowing in the waveguide. We also map
out the energy range and angles for which the device should operate more efficiently as the
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Figure 1. The resulting profile potential in the x-direction due to either a
magnetic (dashed lines) or an electrostatic (yellow lines) barrier over the
graphene sheet. In our calculations, we consider that Lb = 10 L .

strain increases. Finally, we explore the effects due to the graphene–substrate interaction versus
the strain parameter.

This paper is organized as follows. Section 2 is devoted to our theoretical formulation
where we define the quantities used to count the guiding modes. In section 3, we present our
numerical results and discussions. Finally, we present our conclusions in section 4.

2. Theoretical formalism

Figure 1 shows schematically the potential profile of the system under study. An electronic
waveguide (of width L) in the y-direction is formed between different strained regions in the
x-direction. Mechanical strain in graphene can be described by a gauge vector potential and
produces high pseudo-magnetic fields [16]. But furthermore, a waveguide can be formed by
strain-induced magnetic barriers in different regions. The magnetic barrier height is accounted
for by the magnetization intensity 0y . The expression for such an intensity is shown and
discussed below. The sample can be further covered by a thin layer of a dielectric material,
over which the top-gate contacts might be placed forming the yellow barriers of height U0.
In practice, the strain-induced gauge potential produces magnetic barriers, which creates a
potential offset shown by dotted lines in figure 1. This offset creates three different regions
for carriers. In contrast to the electrostatic potential, this sort of strain should be responsible
for creating an effective confinement region where the guidance should take place, avoiding
the weak confinement (Klein tunneling) usually seen when one is dealing with electrostatic
barriers alone. Note that these regions could form the sort of potential profile resembling a
p–n–p junction. In fact, if an electrostatic gate is applied to this region, it will induce a potential
U0 in graphene with the same locations as the magnetic barriers helping to further create the
junction, but now with a real possibility of confinement, so that the guidance occurs through
region II. Incident angles θ for carriers inside the guide should be considered and total internal
reflection permitted, in principle, by virtue of the presence of the magnetic barriers alone. In this
sense, quasibound states in region II should form quantized modes which eventually contribute
to the guidance.

For single-layer graphene in the presence of both a smooth electrostatic-gate potential
and the mechanical strain, the low-energy quasiparticle Hamiltonian for a single valley can
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be described by the 2D Dirac equation [14]

H = γ Eσ · (Ek + e EA/h̄) + U (x)1̂ + σzβ, (1)

where Ek = (kx , ky) is the wavevector, U (x) is the electrostatic potential as indicated in figure 1,
which is assumed to be zero in region II and U0 = 100 meV in regions I and III, Eσ = (σx , σy)

is the 2D Pauli vector and γ =
√

3a0t /2 is the lattice parameter with a0 = 0.246 nm and the
hopping energy between the nearest neighbor t = 2.53 eV. Here β accounts for the coupling
between graphene and the substrate that served as a host to the graphene. The substrate
introduces different numbers of electrons in the sublattices A and B that form the unit cell
of the graphene honeycomb. This is responsible for inducing a gap varying from 50 to 260 meV
in substrates such as boron nitride [17]. The graphene is then tuned to the Dirac point when
β = 0.

Note that the gauge potential EA = Ay ŷ, which represents the mechanical strain, must be
properly chosen to guarantee a constant (vector) potential in regions I and III. In fact, Ay should
be a result of a combination of Heaviside functions which are reached when one considers
the magnetic field as delta-functions provided by the two antiparallel magnetic fields [18–22]
shown in figure 1. The magnetic barriers form a quantum well in the x-direction (region II) with
a constant vector potential in regions I and III. The effective magnetic field in such a device is
taken in the z-direction alone and is modeled by

Bz(x) = BlB0 × [δ(x − L/2) − δ(x + L/2) + δ(x + L/2 + Lb) − δ(x − L/2 − Lb)], (2)

where Lb (L) is the width of the magnetic barriers (well), with lB0 =
√

h̄/eB0 the magnetic
length, lB0 = 81.16 nm and field intensity B0 = 0.1 T. Here we consider that Lb = 10 L .

The translational invariance along the y-direction enforces solutions of equation (1) in the
form 9m(x, y) = eiky yφm(x), with m = A and B being the sublattice indices (or the two pseudo-
spinor components). Introducing this solution into the Hamiltonian H and after some algebra,
we find a Helmholz-like equation

d2φm(x)

dx2
+

{
[(E − U0)

2
− β2]

(h̄v f )2
−

(
ky −

0y

lB0

)2
}

φm(x) = 0, (3)

where 0y = B/B0 is a dimensionless parameter accounting for the strain intensity. Note that
equation (2) is similar to the Helmholz equation [23] for electromagnetic waves. In obtaining
this equation, one indeed demonstrates the real chances of treating optics-like phenomena in
graphene electronic systems within the continuum description of the 2D Dirac equation.

The guidance might be obtained because the strain-induced interfaces produce three
different regions for which three different types of solutions to equation (2) should be proposed.
In analogy to the Goos–Hänchen effect [24, 25], we propose the component

φA(x) =


A1eκx for x < −L/2,

B2 sin qx + C2 cos qx for |x |6 L/2,

D3e−κx for x > L/2,

(4)

which must decay exponentially in regions I and III and be stationary in region II. Here,

κ = γ −1
√

(γ ky − γ0yl
−1
B0

)2 + β2 − (E − U0)2 (5)
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and

q ≡ kx = γ −1
√

E2 − (γ ky)2 − β2 (6)

are taken as pure real numbers. By introducing the component φA(x) into the Hamiltonian in
equation (1), the other pseudo-spinor component can be obtained straightforwardly and written
as

φB(x) =


i f− A1eκx for x < −L/2,

iγ
(E+β)

[B2(λ sin qx − q cos qx) + C2(λ cos qx + q sin qx)] for |x |6 L/2,

i f+ A1e−κx for x > L/2,

(7)

where f± = c(ky ± κ − 0yl
−1
B0

)/(E − U0 + β) and k ≡ ky. The usual boundary condition for the
Goos–Hänchen effect is that both components φA(x) and /B(x), but not their derivatives, should
be continuous functions at the interfaces x = ±L/2. Such a condition leads to a transcendental
equation, whose roots provide the dispersion relation En(ky) for the guiding mode n [26, 27].
Note that θ = arctan(ky/q) is the incident angle throughout the waveguide.

In order to study the guiding efficiency and probe (or sort) the modes contributing to it,
we now consider the total flux 8 = 8I + 8II + 8III of quasiparticles flowing in the y-direction.
Such a quantity is the total group velocity of charges flowing in the whole structure, i.e. in
regions I–III all together. Here each flux 8i=I,II,III is calculated by integrating the corresponding
current density iγ

h̄ (φAφ∗

B − φ∗

AφB) over the x-coordinate limiting each region [28]. The current
densities (and so the group velocity) in regions I and III, where both pseudospinor components
decay exponentially, are negative. In region II, where the pseudospin components are stationary
wavefunctions, the current density (and also the group velocity) turns out to be positive.
Because we are interested in the efficiency in the guidance region II, we define a dimensionless
quantity

η(E, θ) =
8II

8
, (8)

where 8II is the flux in region II. We claim that the efficiency along the waveguide can be
probed through equation (8), by sorting the type of modes contributing to the guidance. In the
following, we show and discuss interesting and conclusive results based on such a definition.

3. Numerical results

In figure 2(a), we show how the dispersion relations En(θ) for the n = 6 lowest guiding modes
change as the parameter 0y in the sample increases. Different colors show different intensities
for the mechanical strain. We recall that θ = arctan(ky/q) is the incident angle throughout
the waveguide, so that the existence of different branches should indicate that the guidance
might have been carried out with the same energy, but with different (quantized) values of
the incident angle. As far as the strain is concerned, we consider here two different cases: (i)
homogeneous and (ii) non-homogeneous mechanical strains. For such a purpose, we define an
auxiliary parameter δ =

∣∣0I
y − 0III

y

∣∣, which shows the difference between the strain intensity in
regions I and III. Note that δ = 0 corresponds to the homogenous case as shown in figure 2(a)
where the potential vector Ay is the same in regions I and III. Figure 2(a) shows the dispersion
relation En(θ) for 0y = 0I

y = 0III
y running from 0 to 20. We see the dispersion relation En(θ)
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(a)

(b)

Figure 2. (a) Dispersion relation En(θ) surfaces for the six lowest guiding
modes. The surface surges as the strain parameter 0y is continuously changed
from 0 to 20. This range is shown in color scale. (b) The same as in part (a),
but for the non-homogeneous case δ 6= 0. Here, we keep 0I

y = 8 and vary 0III
y

from 0 to 20 to obtain the color scale. The sample parameters are L = 50 nm,
U0 = 100 meV, Lb = 10 L and β = 0 meV.

becoming more and more asymmetric with respect to θ when 0y increases, indicating clearly
the breaking of mirror symmetry with respect to θ = 0◦ when only the K valley is considered.
With increasing strain, each single branch En turns into a surface, shifting slightly to larger
angles and allowing different values for the reflection mechanism. The most important effect
here is perhaps the prevalence of negative angles over the positive ones as the mechanical strain
reaches high values. Some branches even vanish for positive angles when the strain increases.
We emphasize that this does not mean some particular excited (or fundamental) states that are
missing because they are always present for negative values of θ . In fact, the prevalence for
negative angles might be indicating a preferred way for K -valley holes (instead of electrons) to
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flow in the waveguide. By the same token, these results show that electrons (instead of holes)
in the valley K ′ might be preferred to flow in the waveguide as the mechanical strain increases.
This point has been addressed earlier [14] and will be further discussed below.

In figure 2(b), we show the same kind of perspective as in figure 2(a), but for δ 6= 0. Here,
we keep 0I

y = 8 and vary 0III
y from 0 to 20. We recall that such a non-homogeneous strain

can be achieved by considering in figure 1 two different strengths, in such a way that the
magnetic barriers in regions I and III are of different heights. We claim that this case should
not be considered to be of pure academic interest only because the experimental setup seems
to indicate that this might be some non-ideal situation that might eventually be reachable in the
experiment. With this kind of picture one can clearly notice different guiding modes mixing up
with each other as different surfaces join together. In fact, we see a strong coupling between
different surfaces for some particular values for the parameter 0III

y . For instance, when the strain
intensity 0III

y ' 8 there is a strong coupling between the fundamental and the first-excited modes
for energies near U0. Their surfaces split into two parts, which can be seen for angles of about
−60◦, getting further coupled to the next excited mode. The dispersion relations as we saw
here completely map out all the possible configurations for the dispersion relation En(θ) in the
presence of the strain. It should serve as a motivation for further experimental studies concerning
the coupling between different modes.

Based on the above discussion, one might be interested in knowing how strain can be
used to probe (and sort), in a simple way, the number of modes contributing to the guidance
efficiency. We will restrict ourselves here to the homogenous case alone, since our discussion
will be similar whether the strain regime is changed or not. In the remaining study, we should be
able to analyze the circumstances under which either the electron or the hole states are supposed
to flow in the waveguide. As a consequence, we might be able to sort out which quasiparticle is
mostly contributing to the efficiency of the waveguide.

In order to do that, we explore the definition in equation (8), which is the ratio of group
velocities accounting for the effective (dimensionless) probability of having quasiparticles
guided throughout region II. Note that η is a function of both the mode’s energy En and the
incident angle θ . In figure 3(a), we show all the projected planes when calculating and plotting
η(En, θ) → y(z, x) for the case where δ = 0. Here, we keep 0y = 0I

y = 0III
y = 5 so that all

other parameters are the same as in figure 2(a). Part (a) shows the dispersion relation En(θ)

(the z–x plane) for the six lowest modes. We label the mode n by a superscript + (−) for
positive (negative) angles. This result is a single curve of the surface seen in figure 2(a). The
strain introduces an anisotropy with respect to the angles of incidence discussed before. Part (b)
shows the corresponding z–y plane when plotting η(En, θ). Negative values for η account for
those states that decay exponentially outside the waveguide, but still contribute to the guidance
efficiency. These modes can also be seen as states that Klein-tunnel through the p–n interface,
but equally contribute to the efficiency. In figure 3(c), we show the projection of the calculated
η onto the x–y plane. Two points should be stressed here. (i) Note that the number of modes
that reach η = −1 is larger than those reaching η = 1, since the mode n = 5− (but not the mode
n = 5+) shows up due to increasing strain. Therefore, the modes with negative values of η should
be the ones that contribute the most to the guidance. In this sense, the strain is also sorting
the type of quasiparticle flowing throughout the waveguide. This is an effect that only strain
imposes on the sample. (ii) The magnetic (vector) strain (potential) is responsible for breaking
the energy degeneracy of the modes n− and n+ with respect to negative angles. Such a breaking
is also seen in the z–y plane when the branches En=0− and En=0+ appear to be different from
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Figure 3. Different projections of the calculated η(En, θ) → y(z, x) for 0y = 5
and δ = 0: (a) the z–x plane En(θ), (b) the z–y plane En(η) and (c) the
efficiency η as a function of the incident angle θ . Different branches indicate
the corresponding projection onto the z–x plane. The sample parameters are the
same as in the previous figure.

each other. In this sense, the negative (positive) values for θ represent holes (electrons) flowing
in the waveguide.

We further explore these results and show in figure 4 that the strain effects might manifest
themselves in experimental observations along the wire (waveguide). In order to do that, we
define an auxiliary quantity

I (E) =

∑
n

|η(θn)| (9)

and plot it as a function of the energy E for 0y running from 0 to 5 with a step of 0.33.
Note that, in figure 4, the thresholds of the plateaus occur at the positions as En(ky) reaches
its minimum value. The quantity I (E) simply serves as a useful theoretical quantity for the
transport experiments, since each minimum in the En(ky) should contribute with an amount of
e2/h per spin and per valley to the conductance [24, 27]. Here, θn is the nth incident mode
allowed for a given energy E . We claim that this quantity, as a function of energy, is a measure
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Figure 4. (a) The calculated I (E) resembling the conductance along the wire for
0y = 0. The same quantity is shown for 0y running up to 5 with a step of 0.33.
Each plateau indicates the different modes getting into guidance as the energy
increases. (b) Upper panel: the dispersion relation En(k) for 0y = β = 0; lower
panel: En(k) for 0y = 5 and β = 0.

of the total mode contribution to the guidance. In fact, the lowest curve in figure 4(a), for
0y = 0, resembles the expected conductance along the wire in the absence of strain, because the
mirror asymmetry in not present. Note that each additional plateau indicates a different mode
contributing to guidance with increasing energy. The energy threshold for each plateau n is the
lowest value of the corresponding energy En(ky) shown in the dispersion relation pictures in
the lower panel of figure 4(b). As the strain 0y increases, the different modes which are studied
above start contributing to the guidance and a richer structure appears by virtue of the breaking
of the energy degeneracy of the modes n− and n+. To illustrate that, we show in the upper panel
the same dispersion relation as in the lower one but now for 0y = 5. This is a reliable and simple
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Figure 5. The same quantity as in figure 4, but now we keep 0y = 5 and vary the
parameter β from 0 to 65 meV. The inset shows the dispersion relation En(k) for
0y = 5 and β = 65 meV.

way to view, probe and sort the modes contributing to the channeling in the waveguide which
is treated within the continuum description of the 2D Dirac equation. We point out that the
conductivity through the channel always takes place, even when β = 0, as shown by the lowest
curve in figure 4. These effects are also studied in the literature by other authors [24].

For the sake of completeness, we plot in figure 5 the same quantity as in figure 4, but
now we keep 0y = 5 and vary the parameter β from 0 to 65 meV, with a step of 2.6 meV. For
the highest curve, β = 65 meV, the energy threshold for each plateau n is exactly given by the
lowest value of the corresponding energy En(ky) shown in figure 5(b). We see that the substrate-
induced gap is responsible for recovering the mirror symmetry with respect to ky = 0 when a
single valley K is considered. Such a symmetry is lost when strain is applied, but it is naturally
recovered when both valleys K and K ′ are considered even in the absence of the induced gap.

4. Conclusions

In summary, we theoretically propose a simple way of probing and sorting the modes
contributing to the guidance efficiency in a strained-graphene-based waveguide treated within
the continuum description of the Dirac equation. We also took into account an electrostatic gate

New Journal of Physics 15 (2013) 023015 (http://www.njp.org/)

http://www.njp.org/


11

potential in our formulation. We analyze the dispersion relation for both the homogeneous and
the non-homogeneous strain and found different modes becoming mixed for certain incident
angles. Our results show that Klein-tunneling (hole) states equally contribute to guidance when
strain is applied, so that strain can sort and probe the kind of quasiparticle contributing to the
efficiency. We have also shown that the substrate-induced gap in graphene might recover the
mirror symmetry with respect of ky = 0 even if just a single valley is considered.
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