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Leiz M. C. Véras1,2, Vanessa R. R. Cunha3, Filipe C. D. A. Lima4, Maria A. Guimarães1, Marianne M. Vieira1,
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Abstract

This paper presents an industrial scale process for extraction, purification, and isolation of epiisopiloturine (EPI) (2(3H)-
Furanone,dihydro-3-(hydroxyphenylmethyl)-4-[(1-methyl-1H-imidazol-4-yl)methyl]-, [3S-[3a(R*),4b]]), which is an alkaloid
from jaborandi leaves (Pilocarpus microphyllus Stapf). Additionally for the first time a set of structural and spectroscopic
techniques were used to characterize this alkaloid. EPI has shown schistomicidal activity against adults and young forms, as
well as the reduction of the egg laying adult worms and low toxicity to mammalian cells (in vitro). At first, the extraction of
EPI was done with toluene and methylene chloride to obtain a solution that was alkalinized with ammonium carbonate. The
remaining solution was treated in sequence by acidification, filtration and alkalinization. These industrial procedures are
necessary in order to remove impurities and subsequent application of the high performance liquid chromatography
(HPLC). The HPLC was employed also to remove other alkaloids, to obtain EPI purity higher than 98%. The viability of the
method was confirmed through HPLC and electrospray mass spectrometry, that yielded a pseudo molecular ion of m/z
equal to 287.1 Da. EPI structure was characterized by single crystal X-ray diffraction (XRD), 1H and 13C nuclear magnetic
resonance (NMR) in deuterated methanol/chloroform solution, vibrational spectroscopy and mass coupled thermal analyses.
EPI molecule presents a parallel alignment of the benzene and the methyl imidazol ring separated by an interplanar spacing
of 3.758 Å indicating a p-p bond interaction. The imidazole alkaloid melts at 225uC and decomposes above 230uC under air.
EPI structure was used in theoretical Density Functional Theory calculations, considering the single crystal XRD data in order
to simulate the NMR, infrared and Raman spectra of the molecule, and performs the signals attribution.
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Introduction

Alkaloids are organic compounds found in plant kingdom,

fungus, bacteria and animals. The majority of these natural

substance exhibits an alkaline character related particularly to the

presence of basic amino groups (frequently heterocyclic) in their

chemical structure. The word alkaloid is derived from the Latin

‘‘alkali’’ (basic) with the suffix ‘‘-oid’’ (-like). In the literature, many

authors claim that a true alkaloid is composed by one or more

basic nitrogen atoms in a heterocyclic ring, beside the intense

biological activity in the presence of living organisms [1].

Additionally, alkaloids are known to be used as therapeutical

agents for anesthetics, analgesics, and psycho-stimulant, among

other pharmacological activities.

Over the past one hundred and fifty years, thousands of

alkaloids have been isolated [2], and several high standard

techniques can now be employed to evaluate the pharmacological

and toxicological activities of these substances. Thus, new

applications of centenarians alkaloids have been discovered, as

the case of Pilocarpine, which has been isolated in 1875 and

applied for decades in the treatment of glaucoma and, recently,

also used for in the treatment of xerostomy [3,4].

Several alkaloids have been isolated from the Pilocarpus genus,

but many of them are still in analysis to evaluate their therapeutic
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applications [5]. The jaborandi species (Pilocarpus sp.) provides

several molecules of the alkaloid class such as: pilocarpine,

isopilocarpine, pilocarpidine, isopilocarpidine, pilosine, isopilosine,

epiisopilosine, epiisopiloturine, 13–7-noria (11)-dehydro-pilocar-

pine, N,N-dimethyl-5-methoxy-tryptamine, N,N-dimethyl trypt-

amine, plastidesmine (1H)-4-methoxy-2-quinolone and dictamine

[5].

The alkaloid epiisopiloturine (EPI) in particular was identified

by Voightlander et al. in 1973 [6]. This substance has shown in

vitro activity against Schistosoma mansoni[7,8], the main agent of

schistosomiasis, a neglected disease of poor, rural and forgotten

populations. The parasitic disease represents one of the main

public health problems in more than 70 tropical and subtropical

countries, especially in Africa, Asia and Latin America[9].

Approximately 240 million of people have been infected world-

wide and about 700 million of people are at risk areas [10,11].

In adults and young (schistosomula) forms of S. mansoni, the EPI

alkaloid had schistomicidal activity at a concentration of 150 mg/

mL and 300 mg/mL, respectively [7,9]. Besides the death, the sub

lethal dose (100 mg/mL) of this alkaloid promotes the total

reduction of the egg laying in the paired adult form, differently

from what has been observed when praziquantel (the drug

reference standard) was used in the treatment of schistosomiasis.

Furthermore, the EPI was not cytotoxic in the peritoneal

macrophages, and can be obtained, in large scales, by sustainable

and economical process [7,8].

The activity against S. mansoni, no toxicity to mammalian cells

and the plant extraction by sustainable form turn up the studies

and characterization of EPI indispensable. The meticulous

investigation of the waste from the extraction of a natural product

could introduce an important strategy for the discovery and

development of a new drug [7].

This work reports the industrial extraction, purification and

isolation of EPI from jaborandi leaves, and also its physicochem-

ical characterization by single crystal X-ray diffraction, 1H and
13C nuclear magnetic resonance (NMR) in deuterated methanol/

chloroform solution, vibrational infrared (FT-IR) and Raman (FT-

Raman) spectroscopies, and mass coupled thermal analyses. The

spectroscopic characterization data are further supported by

computational calculations performed in the framework of the

Density Functional Theory (DFT).

Materials and Methods

Industrial extraction, pre-purification and isolation of
alkaloid from jaborandi leaves

The initial step is based on the alkalinization of 1,500 kg of

jaborandi leaves with a solution of potassium carbonate, followed

by the extraction of all alkaloids (solid-liquid extraction) with

toluene and methylene chloride solvents (Figure 1). The organic

phase was submitted to liquid-liquid extraction with an aqueous

solution of sulfuric acid. Hereafter, 250 L of the aqueous solution

with a mean content of 2% (m/v) of EPI in the sulfate salt form

was cooled, alkalinized with ammonium hydroxide solution and

treated with activated carbon and diatomaceous sand.

After treatment with carbon and diatomaceous sand, the

impure EPI was dissolved in an aqueous solution containing

hydrochloric acid and filtered on a pressure lentil filter (filter

medium: cloth/two filter papers/cloth) under reduced pressure.

The filtrate containing EPI hydrochloride was alkalinized with

ammonium hydroxide solution to precipitate the EPI neutral form,

and then the solution was filtered under reduced pressure [8]. The

aim of the previous step was to remove the impurities such as

carbon and diatomaceous sand in order to submit EPI to further

purification process by high performance liquid chromatography

(Figure 1) (all details from this steps is in patently process –

000121-INPI, Brazil).

The crude EPI (Figure 1) at a concentration of 10 mg/mL was

dissolved in the mobile phase with potassium phosphate 5% (v/v),

filtered by a membrane of 0.45 mm and set to the preparative high

performance liquid chromatography – HPLC (SHIMADZU

Prominence, AUTOSAMPLER SIL-10AF, CTO-20A, DGU-

20A5, LC-6AD, CBM-20A, SPD-20A, Tokyo, Japan).

The preparative chromatographic conditions set were per-

formed in a column of LiChrospher 60 RP Select B (250625 mm,

5 mm). The mobile phase was 367.59 mM potassium phosphate

adjusted at pH 2.5 with a flow rate of 10 mL/min for a time run

of 90 min. The detection was done using a UV detector at a

wavelength of 216 nm and the column oven was set to 50uC.

The injection volume was 1000 mL and 500 mL fractions were

collected with a concentration of 100 mg/L of crude EPI. The

solution obtained after preparative HPLC was alkalinized between

pH 9 to 9.5 and subjected to liquid-liquid extraction with

industrial chloroform. The organic phase was evaporated with a

vacuum controller V-850, a water bath – B – 491 and an

evaporator – R – 215 (BUCHI, Switzerland).

For fine analyses an analytical HPLC was employed to verify

each process step, with the LiChrospher 60 RP Select B

(25064.6 mm, 5 mm), using external standard (EPI standard at

20 mg/mL and pilocarpine standard at 50 mg/mL, Merck,

Darmstadt, Germany). The mobile phase was 367.59 mM

potassium phosphate adjusted at pH 2.5. The flow rate was

1 mL/min, the column oven was set to 50uC for a time run of

50 min with UV detection at a wavelength of 216 nm.

The molecular mass confirmation was performed by mass

spectrometry (AmaZon SL, Bruker Daltonics, Bremen – Ger-

Figure 1. Scheme of all necessary steps in obtaining Epiisopi-
loturine with .98% purity from Jaborandi leaves.
doi:10.1371/journal.pone.0066702.g001

Isolation and Characterization of Epiisopiloturine
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Figure 2. Analytical HPLC used LiChrospher 60 RP column and eluted with potassium phosphate. (A) Standard EPI (20 mg/mL), (B)
Standard pilocarpine (50 mg/mL), (C) ‘‘cultivated jaborandi leaves’’ solution, resulted from first extraction step, (D) ‘‘cultivated jaborandi acid’’ solution,
obtained EPI under salt form, (E) Solution of ‘‘crude EPI’’ with some impurities as pilocarpine and other alkaloids, (F) last step of isolation showing EPI
.98% purity.
doi:10.1371/journal.pone.0066702.g002

Figure 3. Mass spectrum obtained from ESI+/Ion Trap. (A) free EPI with a pseudo molecular ion m/z 287.1 Da [M+H]+, (B) MS2 with
characteristic fragment at m/z 269.1 Da [M – H2O + H]+, (C) MS3 with fragments at m/z 251.0 Da [M – 2H2O + H+] and 168.06 Da with proposed
chemical structure.
doi:10.1371/journal.pone.0066702.g003

Isolation and Characterization of Epiisopiloturine
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many), which was used in positive electrospray ionization mode.

The capillary voltage was – 1,800 V, temperature at 250uC, and

the mass spectra were acquired in mass range of m/z 160 –

300 Da. MS/MS was carried out in manual mode with

fragmentation of the precursor ion by collision induced dissoci-

ation (CID) using helium (He) as the collision gas. Precursor ions

were selected within an isolation width of 2 u and scans were

accumulated with variable RF signal amplitudes. The m/z scale of

the mass spectrum was calibrated using the external calibration

standard G2421A electrospray ‘tuning mix’ from Agilent Technol-

ogies (Santa Rosa, USA).

Physical measurements
Nuclear Magnetic Resonance (NMR). 10 mg of EPI was

dissolved in 2 mL of CD3OD/CDCl3 1:1 mixture. Afterward

600 mL of this solution was transferred to a 5 mm NMR sample

tube. For the measurements of NMR data, standard parameter

sets created for the Bruker CMC-se (complete molecular

confidence-structure elucidation) program were uniformly em-

ployed. Gradient COSY (Correlation Spectroscopy) (2 scans per

increment) and 1H -13C HMBC (Heteronuclear Multiple-Bond

Correlation spectroscopy) (8 scans per increment) were acquired

using 4 k complex data points in F2 and 512 points in F1

dimension. A 1H-15N HMBC was acquired with 32 scans per

increment with a time domain of 256 in F1 and 2 k points in F2.

The multiplicity edited gradient HSQC (Heteronuclear Single

Quantum Correlation) (2 scans per increment) was acquired with

2k data points in F2 and 400 points in the F1 dimension. The

instrument used was an AVANCE III 600 MHz NMR spectrom-

eter equipped with a 5 mm TXI probe head (Bruker Biospin,

Rheinstetten, Germany). The NMR data acquired were processed

according to the general experimental procedures.

The Bruker structure elucidation package CMC-se (Topspin

3.1) was used to get the peak and multiplet lists in a fully

Figure 4. Isolated Epiisopiloturine molecular structure.
doi:10.1371/journal.pone.0066702.g004

Figure 5. Epiisopiloturine Crystalline form with the molecules represented in stick format. Color code: carbon (gray), hydrogen (white),
nitrogen (blue) and oxygen (red). Cyan lines are only guide lines to illustrate hydrogen bonds between the hydroxyl group and the imidazole ring of
neighboring molecules in the solid.
doi:10.1371/journal.pone.0066702.g005

Isolation and Characterization of Epiisopiloturine
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automated way. The multiplet lists are collected into a correlation

table. The automatic step is usually followed by short visual

inspection of the results. The SELU module contains combined

display linking the correlation table and the spectra display. This

allows fast inspection and correction of generated HSQC, HMBC

and COSY multiplet lists. After the correlation table is populated

and inspected, the structure generator calculates structures which

are consistent with the NMR data acquired. Finally an indepen-

dent 13C chemical shift prediction method is used to validate the

result.

Single crystal X-ray diffraction (XRD). The X-ray

diffraction data were collected at room temperature using a

KAPPA-CCD Diffratometer with MoKa radiation (l= 0.71073

Å). The cell refinements were performed using the software Collect

Table 1. EPI bond distances obtained through x-ray diffraction (Experimental) and DFT results (Calculated).

Experimental (Å) Calculated (Å) Difference (Experimental -Calculated) (Å)

O1–C9 1.419 (3) 1.429 20.010

O1–H1 0.82 0.963 20.143

C1–N1 1.314 (3) 1.312 0.002

C1–N2 1.341 (3) 1.364 20.023

C1–H1A 0.93 1.080 20.150

N1–C3 1.379 (3) 1.379 0.000

C3–C2 1.359 (3) 1.374 20.015

C3–C4 1.481 (3) 1.496 20.015

N2–C2 1.369 (3) 1.381 20.012

N2–C16 1.452 (3) 1.453 20.001

– 1.511 (3) 1.520 20.009

C9–C8 1.536 (3) 1.543 20.007

C9–H9 0.98 1.098 20.118

C5–C4 1.531 (3) 1.546 20.015

C5–C6 1.532 (3) 1.539 20.007

C5–C8 1.537 (3) 1.539 20.002

C5–H5 0.98 1.090 20.110

C2–H2 0.93 1.078 20.148

C10–C11 1.383 (3) 1.396 20.013

C10–C15 1.390 (3) 1.398 20.008

C4–H4A 0.97 1.095 20.125

C4–H4B 0.970 1.095 20.125

C8–C7 1.515 (3) 1.533 20.018

C8–H8 0.980 1.092 20.112

O3–C7 1.345 (3) 1.353 20.008

O3–C6 1.446 (3) 1.448 20.002

C16–H16A 0.960 1.092 20.132

C16–H16B 0.960 1.089 20.129

C16–H16C 0.960 1.092 20.132

O2–C7 1.207 (3) 1.199 0.008

C11–C12 1.381 (3) 1.394 20.013

C11–H11 0.930 1.083 20.153

C15–C14 1.382 (3) 1.392 20.010

C15–H15 0.930 1.086 20.156

C6–H6A 0.970 1.090 20.120

C6–H6B 0.970 1.090 20.120

C13–C12 1.371 (4) 1.392 20.021

C13–C14 1.376 (4) 1.394 20.018

C13–H13 0.930 1.084 20.154

C12–H12 0.930 1.084 20.154

C14–H14 0.930 1.085 20.155

Atom labels accordingly to Figure 4.
doi:10.1371/journal.pone.0066702.t001

Isolation and Characterization of Epiisopiloturine
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Table 2. EPI bond angles obtained through x-ray diffraction (Experimental) and DFT results (Calculated).

Experimental (6) Calculated (6) Difference(Experimental – Calculated) (6)

C9–O1–H1 109.50 108.21 1.29

N1–C1–N2 112.37 (19) 112.32 0.05

N1–C1–H1A 123.80 125.88 22.08

N2–C1–H1A 123.80 121.80 2.00

C1–N1–C3 105.62 (17) 105.54 0.08

C2–C3–N1 108.60 (18) 109.82 21.22

C2–C3–C4 130.68 (19) 129.22 1.46

N1–C3–C4 120.60 (18) 120.95 20.35

C1–N2–C2 106.14 (17) 106.27 20.13

C1–N2–C16 126.60 (20) 126.76 20.16

C2–N2–C16 127.24 (19) 126.96 0.28

O1–C9–C10 112.88 (16) 112.61 0.27

O1–C9–C8 107.18 (16) 106.45 0.73

C10–C9–C8 111.68 (16) 113.75 22.07

O1–C9–H9 108.30 109.79 21.49

C10–C9–H9 108.30 108.25 0.05

C7–C8–C5 103.81 (17) 103.80 0.01

C9–C8–C5 114.85 (17) 116.96 22.11

C7–C8–H8 109.20 107.96 1.24

C9–C8–H8 109.20 107.18 2.02

C5–C8–H8 109.20 111.91 22.71

C7–O3–C6 109.86 (17) 110.48 20.62

N2–C16–H16A 109.50 110.89 21.39

N2–C16–H16B 109.50 110.70 21.2

H16A–C16–H16B 109.50 108.64 0.86

N2–C16–H16C 109.50 108.87 0.63

H16A–C16–H16C 109.50 109.10 0.4

H16B–C16–H16C 109.50 108.57 0.93

O2–C7–O3 121.60 (20) 122.96 21.36

O2–C7–C8 126.90 (20) 127.01 20.11

O3–C7–C8 111.48 (18) 110.03 1.45

C12–C11–C10 121.60 (20) 120.53 1.07

C8–C9–H9 108.30 105.75 2.55

C4–C5–C6 113.10 (17) 111.44 1.66

C4–C5–C8 112.45 (18) 112.38 0.07

C6–C5–C8 102.70 (17) 101.97 0.73

C4–C5–H5 109.50 108.19 1.31

C6–C5–H5 109.50 110.75 21.25

C8–C5–H5 109.50 112.07 22.57

C3–C2–N2 107.27 (17) 106.04 1.23

C3–C2–H2 126.40 132.04 25.64

N2–C2–H2 126.40 121.80 4.6

C11–C10–C15 117.60 (20) 118.84 21.24

C11–C10–C9 122.62 (18) 121.49 1.13

C15–C10–C9 119.79 (18) 119.67 0.12

C3–C4–C5 112.38 (16) 113.42 21.04

C3–C4–H4A 109.10 108.57 0.53

C5–C4–H4A 109.10 109.84 20.74

C3–C4–H4B 109.10 109.96 20.86

Isolation and Characterization of Epiisopiloturine
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and Scalepack [12]. The final unit cell parameters were obtained

on all reflections. Data reduction was carried out using the

software Denzo-SMN and Scalepack. The structure was solved by

Direct Methods and anisotropically refined with full-matrix least-

squares on F2 using SHELXL97 [13]. The hydrogen atoms

bonded to C and N atoms were positioned geometrically and

refined with riding constraints with distance restraints of N-

H = 0.86 Å, aromatic C-H = 0.93 Å and with Uiso(-

H) = 1.2 Ueq(N,C). The crystallographic data were deposited at

the Cambridge Crystallographic Data Center under the numbers

CCDC 915132. Copies of the data can be obtained, free of charge,

via www.ccdc.cam.ac.uk.

Vibrational FT-IR and FT- Raman. FT-IR spectrum of

EPI sample diluted in KBr was recorded in the 4000–400 cm21

range on a Bomen spectrophotometer, model MB-102, with a

coupled diffuse reflectance accessory (Pike Technologies, Inc.). FT-

Raman spectrum was recorded in a FT-Raman Bruker FRS-100/

S spectrometer using 1064 nm exciting radiation (Nd:YAG laser

Coherent Compass 1064–500 N) and a Ge detector.

Mass coupled thermal analyses (TGA-DSC-MS). The

thermal analyses were recorded on a Netzsch thermoanalyser

model TGA/DSC 490 PC Luxx coupled to an Aëolos 403 C mass

spectrometer, using a heating rate of 10uuC/min and under

synthetic air flow of 50 mL/min.

Computational analysis
The Density Functional Theory (DFT) [14] in the Kohn-Sham

(KS) scheme [15] was used to investigate the electronic structure,

vibrational properties and NMR 13C and 1H isotropic chemical

shifts for the isolated EPI alkaloid molecule. The B3LYP [16]

exchange correlation functional and the 6–311++G** basis set

were used as implemented in the Gaussian 09 computational

package [17]. Gauge Including Atomic Orbitals (GIAO) method

[18–20] and diffuse functions in the basis set were applied for the

calculation of the C and H NMR spectra. All simulations were

carried out in vacuum conditions and T = 0 K.

Results and Discussion

The results, here presented, describe a methodology for

extraction, purification and isolation of EPI from jaborandi leaves.

The HPLC (Figure 2) and LC/MS ESI+/Ion Trap (Figure 3)

techniques have demonstrated the purity and initial characteriza-

tion of each process step. For industrial scale, 1,500 kg of

jaborandi leaves have been used through all steps described in

Figure 1, what lead to obtain around 2 kg of pure EPI, used in

the structural and spectroscopic characterization described in this

work.

The MS/MS analysis showed a pseudomolecular ion with m/z

287.1 Da [M + H]+ and a MS2 fragment with m/z 269.1 Da [M –

H2O + H]+. This ‘‘molecular fingerprint’’ of EPI has been

previously reported in the literature[6]. Structural and spectro-

scopic characterizations were also performed to assure the

integrity of the EPI molecule.

The EPI molecular structure is shown in Figure 4, created by

the ORTEP [21] software. An interesting feature of this molecule

is the parallel alignment of the benzene and the methyl imidazole

Table 2. Cont.

Experimental (6) Calculated (6) Difference(Experimental – Calculated) (6)

C5–C4–H4B 109.10 108.00 1.10

H4A–C4–H4B 107.90 106.80 1.10

C7–C8–C9 110.25 (17) 108.68 1.57

C12–C11–H11 119.20 120.25 21.05

C10–C11–H11 119.20 119.22 20.02

C14–C15–C10 121.0 (2) 120.05 0.95

C14–C15–H15 119.50 120.09 20.59

C10–C15–H15 119.50 119.85 20.35

O3–C6–C5 107.00 (18) 106.26 0.74

O3–C6–H6A 110.30 107.92 2.38

C5–C6–H6A 110.30 111.82 21.52

O3–C6–H6B 110.30 107.06 3.24

C5–C6–H6B 110.30 113.48 23.18

H6A–C6–H6B 108.60 109.98 21.38

C12–C13–C14 119.80 (20) 119.60 0.2

C12–C13–H13 120.10 120.22 20.12

C14–C13–H13 120.10 120.18 20.08

C13–C12–C11 119.9 (2) 120.26 20.36

C13–C12–H12 120.00 120.09 20.09

C11–C12–H12 120.00 119.65 0.35

C13–C14–C15 120.10 (20) 120.05 0.05

C13–C14–H14 120.00 120.09 20.09

C15–C14–H14 120.00 119.85 0.15

Atom labels accordingly to Figure 4.
doi:10.1371/journal.pone.0066702.t002
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Figure 6. Epiisopiloturine FT-IR spectra: A) experimental and B) calculated.
doi:10.1371/journal.pone.0066702.g006

Figure 7. Epiisopiloturine FT-Raman spectra: A) experimental and B) calculated.
doi:10.1371/journal.pone.0066702.g007
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Table 3. Infrared (IR) and Raman wavenumbers (cm21) of solid state EPI.

Epiisopiloturine Assignment

Experimental Calculated

IR Raman

412 407 d (all structure)

433 438 d (all structure)

498 499 501 C-C-C out of plane bending (benzene)

526 525 528 C-C-C out of plane bending (benzene)

567 568 575 C-C-C in-phase bending (benzene)

621 620 628 ring puckering (imidazole)

634 C-C-C in-phase bending (benzene)

644 657 sc (O3-C7-C8)

663 664 670 C-C-C in-phase bending (benzene)

712 711 713 C-C-C in-phase puckering (benzene)

729 717 C-H out-of-plane in-phase (benzene)

758 730 740 C-H out of plane bend (imidazole)

775 783 C-H out-of-plane in-phase (benzene)

800 sh 796 804 ring puckering (imidazole)

831 821 C-H out of plane bend (imidazole)

846 854 r CH2 (C4)

893 894 900 r CH2 (C4), r CH2 (C6)

910 911 923 C-H out of plane (benzene), r CH2 (C4)

932 932 944 r CH2 (C4), b (lactone)

984 993 sh 983 b (lactone)

1004 1016 C-C-C trigonal bending

1022 1025 1038 b (lactone), r CH2 (C4)

1046 1048 C-H in plane bending (benzene)

1063 1073 1076 w CH3 (C16)

1088 1078 w CH3 (C16), C-H in plane bending (benzene)

1105 1107 1116 t CH2 (C4), c (lactone)

1148 1148 1145 w CH3 (C16)

1169 1156 1165 t CH2 (C4), c (lactone)

1184 1172 1182 b (lactone)

1207 1198 C-H in plane bending (benzene), t CH2 (C4)

1197 1210 C-H in plane bending (benzene)

1236 1220 t CH2 (C4), t CH2 (C6)

1254 1235 1244 b (lactone)

1254 1256 t CH2 (C6), C-H in plane bending (imidazole)

1263 1264 1266 t CH2 (C4), t CH2 (C6), C-H in plane bending (imidazole)

1286 1286 1292 w CH2 (C4)

1312 1312 1315 C-C stretching (benzene)

1330 1318 C-N stretching (imidazole) w CH2 (C4)

1348 1349 C-C stretching (benzene)

1362 1354 w CH2 (C4)

1385 1387 1376 sc(C9-O1-H), nas(C8-C9-C10)

1423 1426 1418 ns(N1-C1-N2), w CH3 (C16), nas(C16-N2-C1)

1450 1445 1455 w CH3 (C16)

1472 1472 1484 C-C stretching (benzene)

1494 1486 sc CH3 (C16)

1508 1520 sc CH2 (lactone), w CH3

1524 1535 nas N-C-N (imidazole)
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ring separated by an interplanar spacing of 3.758 Å, indicating a

p-p bond interaction. Another feature of the crystalline packing is

the presence of a hydrogen bond between hydroxyl H group, from

one molecule, and the N1 of the methyl imidazole ring of another,

forming in this way a continuous chain of hydrogen bonded

molecules, as can be seen in Figure 5.

Table 1 shows the differences between experimental X-ray

diffraction and structural relaxation results obtained through DFT

calculations, where we can notice that the largest absolute

differences are related with hydrogen atoms. It can be seen, from

the bond angle results shown in Table 2, that the maximum

distortion difference is 5.64u in the C3-C2-H2 angle.

The EPI was further characterized through 1H and 13C NMR

spectroscopy. The standard way of chemical shift assignments [22]

was compared with theoretical DFT calculations for the isolated

molecule and can be seen in Supporting Information S1. The
1H NMR data obtained in this work are in conformity with

seminal results reported by Voigtlander et al [6].

Measured and calculated FT-IR and FT-Raman EPI molecule

spectra are shown in Figure 6 and Figure 7. The vibrational

band assignments, presented in Table 3, were proposed based on

general literature about organic molecules [22–25] and a study

reported about an isomer of EPI named epiisopilosine [26]. The

vibrational assignments were supported by DFT calculations

performed in this work as can be seen in Table 3. The very strong

band at 1769 cm21 is assigned to C = O stretching of the lactone

ring, in the FT-IR spectrum shown in Figure 6, and corresponds

to the medium intensity band at 1758 cm21 in the FT-Raman

spectrum, shown in Figure 7. The FT-Raman spectrum reveals

three strong bands of EPI around 1602–1568 cm21 (Figure 7)

characteristic of the C-C stretching vibrational mode of benzene

and imidazole rings; these bands are weak in the FT-IR spectrum.

On the other hand, the bands around 1524–1494 cm21,

attributed to modes related to imidazole and lactone groups (see

Table 3) are present in the FT-IR spectrum but practically absent

in the FT-Raman spectrum. Well-defined band at 1385 cm21

assigned to the scissoring C9-O1-H vibrational mode of the

secondary alcohol group attached to the organic molecule is

observed in both spectra. The strong band at 1004 cm21 (FT-

Raman) is attributed to the C-C-C trigonal bending of benzene,

Table 3. Cont.

Epiisopiloturine Assignment

Experimental Calculated

IR Raman

1568 1568 1592 n C-C (imidazole)

1587 1586 1627 n C-C (benzene)

1602 1647 n C-C (benzene)

1769 1758 1849 n(C = O lactone)

Calculated vibrational wavenumbers (cm-1) for the isolated EPI molecule. A tentative assignment of the observed vibrational modes is also shown. See text for
theoretical details. n= stretching, d= bending, b= bending in plane, c= bending out of plane, r = rocking, t= twist, sc = scissoring, v= wagging, ns = symmetric
stretching, na = antisymmetric stretching, sh = shoulder.
doi:10.1371/journal.pone.0066702.t003

Figure 8. Epiisopiloturine TGA-DSC (A) and DTG-MS (B) curves under air atmosphere.
doi:10.1371/journal.pone.0066702.g008
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while the bands around 990–930 cm21 are assigned to the

bending of the lactone ring, in both FT-IR and FT-Raman

spectra. Several bands attributed to the vibration of C-H group of

benzene and imidazole rings can be observed in the 900–

730 cm21 range, as listed in Table 3. The low frequency region is

dominated by bands associated to vibrations involving C-C-C of

benzene, imidazole (600–500 cm21) and also to all the EPI

structure bending modes (430–400 cm21).

The TGA-DSC-MS curves of the isolated EPI are shown in

Figure 8, where three events can be observed. The first event (an

endothermic process) occurs at 225uC, and can be attributed to

the melting process of the imidazole alkaloid (Figure 8A). Partly

according to Voigtlander et al [6], the melting point of EPI is

about 218–219uC when measured using a copper block. In line

with the DTG-MS curves (Figure 8B), EPI is decomposed

around 230–350uC (ca. 87 wt. %), in air atmosphere, producing

water (m/z = 18), carbon monoxide (m/z = 28) and carbon

dioxide (m/z = 44) molecules. The third event observed in the

temperature range between 360–695uC (12 wt.%) is related to the

decomposition of the remaining organic molecule, producing H2O

and CO2. Under the experimental conditions used in this work, no

other released gases were identified. A residual product of

0.5 wt.% can be attributed to some impurities from the raw

material and/or introduced during the process of EPI isolation.

Conclusion

This work describes, for the first time, an industrial process to

obtain EPI in high purity. The treatment with low-polarity

solvents combined with HPLC technique allowed the isolation of

the EPI alkaloid from jaborandi leaves. The technique of ESI/Ion

Trap allowed attesting that its purity is higher than 98%, besides

fragment characteristics of imidazole alkaloids produced by MSn.

Single crystal X-ray diffraction data has shown the structure of the

EPI molecule as well as its arrangement in solid state. The 1H and
13C NMR, IR and Raman spectroscopy data were supported by

DFT simulations. Each assay had their contribution to character-

ize the EPI, allowing the interpretation of the experimental data

which shows the integrity of the molecule isolated by the

procedures of extraction and purification presented in this paper.

According to TGA-DSC data, EPI melts at 225uC, and undergoes

decomposition mainly in the 230–350uC range under air

atmosphere.

The results presented in this work contribute to the advance of

the isolation of EPI and provide a set of structural, spectroscopic

and thermal properties of the alkaloid molecule. This study

supports efforts to develop EPI as a new antiparasitic agent.

Supporting Information

Figure S1 Experimental (black) and theoretical (red) 1H
NMR EPI spectra.
(TIF)

Figure S2 Experimental (black) and theoretical (red)
13C NMR EPI spectra.
(TIF)

Supporting Information S1 Chemical Shift Assignments.
(DOCX)

Table S1 EPI 1H and 13C NMR chemical shifts. Atom

labels accordingly to Figure S1.

(DOC)
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