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RESUMO

Uma nova abordagem para modelagem e controle de sis-
temas não-lineares via inclusões diferenciais lineares li-
mitadas por norma
Este artigo propõe um método sistematico para modelagem
de sistemas não-lineares na forma de inclusões diferenciais
limitadas por norma (IDLNs). O modelo de IDLN resul-
tante é adequado para aplicação de técnicas de projeto de
controle linear, o que possibilita atender critérios especı́ficos
de desempenho dinâmico para o sistema não linear origi-
nal em uma região de operação de interesse no espaço de
estados, a partir de um controlador linear projetado para
a sua representação na forma de IDLN. Então, um proce-
dimento para projeto de um controlador por realimentação
dinâmica de saı́da para um sistema descrito na forma de
IDLN é também proposto neste artigo. Uma das principais
contribuições da abordagem proposta de modelagem e con-
trole é a aplicação do teorema do valor intermediário para
representar sistemas não-lineares na forma de um modelo li-
near com parâmetros variantes no tempo, o qual é então ma-
peado em uma inclusão diferencial linear politópica (IDLP).
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Revisado em 05/05/2011, 24/08/2011, 06/09/2011
Aceito sob recomendação do Editor Associado Prof. Daniel Coutinho

Para evitar o problema combinatório inerente aos modelos
politópicos para sistemas de médio e grande porte, a IDLP
é transformada em uma IDLN, e este processo é feito de tal
forma que todas as trajetórias do sistema não-linear origi-
nal sejam também trajetórias do modelo resultante de IDLN.
Além do mais, é também possı́vel escolher uma estrutura
particular para os parâmetros da IDLN de forma à reduzir o
conservadorismo na representação do sistema não-linear pelo
modelo de IDLN, e esta caracterı́stica é também uma impor-
tante contribuição deste artigo. Quanto ao projeto do contro-
lador, ele é formulado como um problema de busca por uma
solução que satisfaça um conjunto de restrições escritas na
forma de desigualdades matriciais bilineares (ou BMIs, do
inglês bilinear matrix inequalities). Tal solução é então en-
contrada usando-se um procedimento de separação em duas
etapas que transforma o conjunto original de BMIs em um
conjunto correspondente de desigualdades matriciais lineares
(ou LMIs, do inglês linear matrix inequalities). Dois exem-
plos numéricos são apresentados para demonstrar a eficiência
da abordagem proposta.

PALAVRAS-CHAVE: sistemas não-lineares; controle por
realimentação dinâmica de saı́da; inclusões diferenciais li-
neares; controle robusto; desigualdades matriciais lineares.
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ABSTRACT

A systematic approach to model nonlinear systems using
norm-bounded linear differential inclusions (NLDIs) is pro-
posed in this paper. The resulting NLDI model is suitable for
the application of linear control design techniques and, there-
fore, it is possible to fulfill certain specifications for the un-
derlying nonlinear system, within an operating region of in-
terest in the state-space, using a linear controller designed for
this NLDI model. Hence, a procedure to design a dynamic
output feedback controller for the NLDI model is also pro-
posed in this paper. One of the main contributions of the pro-
posed modeling and control approach is the use of the mean-
value theorem to represent the nonlinear system by a linear
parameter-varying model, which is then mapped into a poly-
topic linear differential inclusion (PLDI) within the region of
interest. To avoid the combinatorial problem that is inherent
of polytopic models for medium- and large-sized systems,
the PLDI is transformed into an NLDI, and the whole process
is carried out ensuring that all trajectories of the underlying
nonlinear system are also trajectories of the resulting NLDI
within the operating region of interest. Furthermore, it is also
possible to choose a particular structure for the NLDI pa-
rameters to reduce the conservatism in the representation of
the nonlinear system by the NLDI model, and this feature is
also one important contribution of this paper. Once the NLDI
representation of the nonlinear system is obtained, the paper
proposes the application of a linear control design method to
this representation. The design is based on quadratic Lya-
punov functions and formulated as search problem over a set
of bilinear matrix inequalities (BMIs), which is solved using
a two-step separation procedure that maps the BMIs into a
set of corresponding linear matrix inequalities. Two numer-
ical examples are given to demonstrate the effectiveness of
the proposed approach.

KEYWORDS: nonlinear systems; linear dynamic output
feedback control; linear differential inclusions; robust con-
trol; linear matrix inequalities.

1 INTRODUCTION

Stability analysis and control synthesis for complex systems
(such as, nonlinear systems involving saturation or time-
varying uncertainties) can be simplified by the use of linear
descriptions of these dynamical systems in the form of linear
differential inclusions (LDIs). Generally speaking, it may be
possible to ensure that the trajectories of such a system ex-
hibit certain features by analyzing a corresponding model in
the form of an LDI. Necessary conditions that guarantee, for
example, the existence of a polytopic LDI (PLDI) containing
all trajectories of a particular nonlinear system are discussed
and demonstrated in (Boyd et al., 1994; Hu and Chen, 2007).

A wide variety of analysis and control problems have been
formulated and solved for different classes of LDIs, most
of them in the form of linear matrix inequalities (LMIs)
(e.g., (Boyd et al., 1994); (Xie and de Souza, 1992; Bernard
et al., 1997)). The LMI approach makes it easy to include
stability and performance specifications (such as, a minimum
decay rate and bounds on the output peak values) in the for-
mulation of analysis and synthesis problems for LDIs. Once
the problem is written in terms of LMIs, efficient convex
search or optimization methods can be used to find a solu-
tion to it (Boyd et al., 1994). Based on this feature, it may
be easier to design a controller for a nonlinear system using
a linear description of it in the form of an LDI.

The modeling, analysis and control of nonlinear systems via
linear models are not restricted to approaches based on LDIs.
In this sense, Mamdani and Takagi Sugeno fuzzy systems
play also an important role (Montagner et al., 2010; Mozelli
et al., 2010; Tognetti and Oliveira, 2010). These type of
fuzzy systems allow nonlinear systems to be approximated
by means of an averaged sum of linear models. Then, the
problems of analysis and synthesis can be written in terms of
LMIs (Montagner et al., 2010; Mozelli et al., 2010). Also,
based on feedback linearization technique, adaptative neu-
ral networks or fuzzy control schemes have been introduced
to approximate nonlinear systems into linear models (Chen
et al., 1996).

This paper addresses both modeling and control of nonlin-
ear systems via a particular class of LDIs: the class of the
norm-bounded LDIs (NLDIs). The main idea behind the
modelling technique is to represent the nonlinear system by a
linear parameter-varying (LPV) system using the mean value
theorem (Vidyasagar, 1993; Zemouche et al., 2005; Hossain
et al., 2009). This LPV system can be particularly repre-
sented by a PLDI, provided that a certain set of conditions
(that will be presented later in the paper) are satisfied.

It is possible to use LMIs to check the quadratic stability of
a PLDI, but this requires the solution of one LMI for each of
the vertices of the polytopic domain. One major drawback of
this approach is the fact that, in general, the number of ver-
tices of this polytope is high (see the numerical examples in
(Hu and Chen, 2007; Hu, 2007)), and this translates into sig-
nificant (and sometimes intractable) computational burden.

For some applications – especially the ones involving high
dimensional problems (e.g. (Ramos et al., 2004; de Oliveira
et al., 2009; Hossain et al., 2009)) – it may be easier to use a
system description in the form of an NLDI, because check-
ing its quadratic stability involve only two LMI constraints
(Boyd et al., 1994). In this case, an efficient outer approxima-
tion (or overbounding) of a PLDI can be given by an NLDI
(Boyd et al., 1994), which means that every trajectory of the
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former is also a trajectory of the latter. The formulation pro-
posed in (Boyd et al., 1994) is based on the solution of an
LMI feasibility problem and considers only the case where
a specific matrix parameter of the NLDI is square and in-
vertible. This condition is substituted here by a weaker one
in which this matrix parameter must only have full column
rank (and this is another important contribution of this pa-
per). Using this weaker condition, it is possible to choose
a particular structure of the NLDI parameters in order to re-
duce the conservatism in the representation of the underlying
nonlinear system by the NLDI model.

Based on this approach for modeling a nonlinear system
via an NLDI, this paper proposes the design of a linear
dynamic output feedback (LDOF) controller for the NLDI
model, in such a way that stability and performance speci-
fications can be satisfied for the closed-loop nonlinear sys-
tem using a linear controller. The motivation for focusing
on this type of control comes from problems in the area of
power systems stability (see, for example, (Basler and Schae-
fer, 2008; Ramos et al., 2004; Hossain et al., 2009)), in which
linear controllers are often applied to a system with highly
nonlinear behaviors, and these controllers must satisfy stabil-
ity and performance specifications over a wide range of op-
erating conditions. The control problem is formulated in this
paper using quadratic Lyapunov functions and constraints in
the form of bilinear matrix inequalities (BMIs).

Computational methods for solving BMIs are still under de-
velopment and, in general, the existing ones are restricted
to small dimensional problems (Polanski, 1997; Yfoulis and
Shorten, 2004). However, it is possible to transform the par-
ticular set of BMIs resulting from the approach proposed in
this paper into a set of LMIs, using a separation procedure
presented in (de Oliveira et al., 2000). With this technique, it
becomes possible to design a linear controller for the NLDI
model of the original nonlinear system and, therefore, ensure
that the closed-loop nonlinear system fulfills the stability and
performance requirements within the whole operating region
of interest.

This paper is organized as follows. Section 2 provides the
problem formulation. Section 3 deals with the modeling
problem, and this section is divided into five parts. The first
part gives the basis for rewriting a nonlinear system as an
LPV system; the second one defines a PLDI using the pre-
viously obtained LPV system; the third part presents a re-
sult that enables the overbounding of the PLDI by the NLDI
model; the fourth part discusses the estimation of regions
of attraction of nonlinear systems using NLDIs models and,
the last part presents a numerical example that illustrate the
application of the modeling procedure. Section 4 describes
the fundamentals of the proposed controller design method,
based on the NLDI model that was previously obtained. Sec-

tion 6 presents some tests of the proposed control design pro-
cedure and its corresponding results. Finally, section 7 con-
tains the conclusions and some final remarks on the proposed
approach.

Notation: the notation used throughout this paper is stan-
dard. Rn denotes the n-dimensional Euclidean space, Rn×m

is the set of n×m real matrices. The closed convex polytope
defined by a finite number of vertices, say S1, S2, ..., Sv, is
defined as the convex hull of those elements and is denoted
simply as Co(S1, S2, ..., Sv). For two elements a and b in
Rn, {a, b} denotes the set constituted by only these two ele-
ments, while [a, b] denotes the set containing all the points in
the line segment between a and b. For matrices and vectors
()′ means transposition. For a symmetric matrix P , P≻ 0
(P≺ 0) denotes positive (negative) definitess. Positive (nega-
tive) semi-definiteness is denoted by P≽ 0 (P≼ 0). An iden-
tity matrix with appropriate dimensions is denoted simply by
I . For a matrix, ∥ · ∥ denotes the largest singular value of
the matrix. For singular matrices, (·)+ denotes the pseudo-
inverse of the matrix.

2 PROBLEM FORMULATION

Consider a continuous-time nonlinear system described in
the state-space form by

ẋ(t) = f(x(t)) +Bu(t), x(0) = x0, (1)

where x(t) = [x1(t) ... xn(t)]
′ ∈ X ⊂ Rn is the state

vector, u(t) ∈ U ⊂ R is the control input, B is a constant
matrix of proper dimension and f :X 7→ Rn is a nonlinear
function of class C1. Here, the subset X of Rn represents
a state-space region of interest of (1) given by (Rohr et al.,
2009)

X := {x : akx ≤ 1, k = 1, . . . , ne}, (2)

where ak ∈ Rn are given constant row vectors and ne is the
number of edges of X .

This form of system (1), in which the nonlinearities are
present only in the dynamics of the state with respect to it-
self, is a peculiarity of some practical systems (see (Ramos
et al., 2004; de Oliveira et al., 2009)). For convinience, we
assumed x = 0 (with u = 0) as being the equilibrium point
of interest, so f(0) = 0, 0 ∈ X and 0 ∈ U . This assumption
is quite standard and can be satisfied by a simple change of
coordinates (Vidyasagar, 1993).

Initially, our goal is to model the nonlinear system (1) in the
form of a linear differential inclusion defined as

ẋ(t) ∈ D(x(t), u(t)), x(0) = x0, (3)

where D(x(t), u(t)) := {z(t) : z(t) = Λx(t) +
Bu(t), ∀Λ ∈ Ω}, being Ω a non-empty, closed set of
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real (n × n)-matrices (Boyd et al., 1994; Pyatnitskiy and
Rapoport, 1996). Depending on the form of the set Ω, dif-
ferent types of LDIs can be obtained. In this paper, we are
interested in the class of norm-bounded LDIs, in which the
set Ω has the particular form given by

Ω = ΩNLDI := {A0 + FEG : ∥E∥ ≤ 1}, (4)

where A0 ∈ Rn×n, F ∈ Rn×np and G ∈ Rnq×n are known
fixed matrices, while E is any real (np×nq)-matrix satisfying
∥E∥ ≤ 1. As is already well-known (Boyd et al., 1994), this
NLDI (3)-(4) is equivalent to the linear time-varying system

ẋ(t) = (A0 +∆A(t))x(t) +Bu(t), x(0) = x0, (5)

where ∆A(t) = FE(t)G, being E(t) an unknown matrix
satisfying ∥E∥ ≤ 1 for all t > 0.

Consider again the nonlinear system (1). The mean value
theorem guarantees the existence of a matrix J(t) such that
f(x(t)) = J(t)x(t), for every x(t) ∈ X . Hence, by an ade-
quate choice of matrices A0, F and G of (5), it can be possi-
ble to guarantee that J(t) ∈ ΩNLDI for all t > 0, which
follows immediately that every trajectory of the nonlinear
system (1) is also a trajectory of the NLDI (5).

In this paper, A0 is assumed to be the Jacobian matrix ob-
tained by truncating the Taylor series expansion of (1) (with
u = 0) at the first-order term, so the local properties of (1) are
well described by (5). On the other hand, by a proper choice
of matrices F and G, the nonlinear behavior of (1) within the
set X is expected to be well described by the term ∆A(t).
Section 3 discusses the main fundamentals of the proposed
procedure to calculate these two matrices of the model.

Once we have a model of (1) in the form of the NLDI (5), the
problem of interest is the determination of a linear dynamic
output feedback controller in the state-space form

ẋc(t) = Acxc(t) +Bcy(t), (6)
u(t) = Ccxc(t), (7)

that stabilizes the system (5) and guarantee a desirable per-
formance to the controlled system, where xc(t) ∈ Rnc and
y(t) = Cx(t) is the measured output of (1). This will be
discussed in section 4.

3 MODELING A NONLINEAR SYSTEM
VIA NLDI

The procedure proposed in this paper to calculate matrices F
and G is based on the description of (1) in the form of an LPV
system, within the state-space region of interest specified by
X in the previous section. This is done using the mean
value theorem (Vidyasagar, 1993; Zemouche et al., 2005),

as it is discussed in section 3.1. Using this reformulation
of (1), section 3.2 shows that it is possible to define a poli-
topic LDI whose set of trajectories contains all the solutions
of the LPV system. Finally, in section 3.3 we calculate the
matrices F and G by solving an optimization problem in the
form of LMIs which guarantees that ΩNLDI⊇ΩPLDI , where
ΩPLDI is the particular form of Ω associated to the politopic
LDI (Boyd et al., 1994; Pyatnitskiy and Rapoport, 1996).

3.1 Rewriting the nonlinear system as an
LPV system

We present the version of the mean value theorem that is ap-
plicable to the general case where f(x) = [f1(x) ... fq(x)]

′,
with fi : Rn 7→ R, i = 1, ..., q. Consider the canoni-
cal basis of the vectorial space Rs, for s ≥ 1, given by
Es = {es(i) : es(i) = (0, ..., 0, 1, 0, ..., 0)′, i = 1, ..., s}.
Using the canonical basis Eq of the vectorial space Rq , it is
possible to write f(x) as f(x) =

∑q
i=1 eq(i)fi(x). Now, we

can state the following proposition (Zemouche et al., 2005).

Proposition 1 Let f(x) : Rn 7→Rq . Let a and b two elements
in Rn, and assume that f is differentiable on Co(a, b). Then,
there are constant vectors ci ∈ Co(a, b), ci ̸=a, ci ̸=b, i =
1, ..., q, such that

f(a)− f(b) =

 q∑
i=1

n∑
j=1

eq(i)e
′
n(j)

∂fi
∂xj

(ci)

 (a− b).

For the proof, see (Zemouche et al., 2005). In this paper,
we use this version of the mean value theorem to rewrite
the nonlinear system (1) as an LPV system. We first as-
sume that f is differentiable on the line segment between
x(t) and the equilibrium point at the origin x = 0, i.e., on
the set Co(x(t), 0) = {λx(t) : λ ∈ [0, 1]}, ∀t > 0. Hence,
Proposition 1 guarantees the existence of n vectors xsi(t)∈
Co(x(t), 0), xsi(t) ̸=x(t), xsi(t)̸=0, i = 1, ..., n, such that

f(x(t)) =

 n∑
i=1

n∑
j=1

Qij
∂fi
∂xj

(xsi(t))

x(t),∀t > 0, (8)

where Qij = en(i)en(j)
′. Now, let us define the functions

hij(t) =
∂fi
∂xj

(xsi(t))−
∂fi
∂xj

(0), (9)

where i, j = 1, ..., n and the second term in the right side of
the equality (9) is the element i × j of the Jacobian matrix
obtained by truncating the Taylor series expansion of (1) at
the first-order term. This Jacobian matrix will be denoted
simply by matrix A0 and it describes the linear properties of
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(1) in the neighbourhood of the origin. So, we can write (8)
as being

f(x(t)) =

A0 +
n∑

i=1

n∑
j=1

Qijhij(t)

x(t). (10)

Observe that the second term on right side of the equality (10)
captures only the nonlinear behavior of (1). It is important to
point out that the mean value theorem guarantees the exis-
tence of the vectors xsi(t), i = 1, ..., n, for which the equal-
ity (10) is satisfied, but it does not provide any means to cal-
culate them. We can deal with this problem, however, by set-
ting a bounded range for the functions hij(t), i, j = 1, ..., n.
To do so, let us assume that,

sup
t>0

|hij(t) |< ∞, i, j = 1, ..., n. (11)

This allows us to specify a lower bound hij and an upper
bound hij by

hij = inf
t>0

hij(t), hij = sup
t>0

hij(t). (12)

We can use the fact that the functions hij are bounded (and
their bounds are given by (12)) to obtain a description of the
nonlinear system (1) within the region X via the following
LPV system with bounded parameters

ẋ(t) =

A0 +
n∑

i=1

n∑
j=1

Qijθij(t)

x(t) +Bu(t), (13)

where θij : ℜ+ 7→ [hij , hij ], i, j = 1, ..., n and x(0) = x0.

Observe that the LPV system (13) captures the effects of
the nonlinearities of (1) on the system dynamics by the time
varying-parameters θij(t), i, j = 1, ..., n. It is important to
emphasize, however, that this description of (1) may be quite
conservative, since the exact relationship between θij(t) and
hij(t) (given by (9)) is neglected in (13). As a consequence,
many trajectories of the LPV system (13) may not be trajec-
tories of (1). This is the price we pay for representing the
nonlinear system (1) in a linear form described by (13).

In relation to the practical meaning of the assumption (11)
and the set X , notice that most of the physical systems op-
erate within a bounded range of their variables (such as volt-
ages, frequencies and rotor angles, for an electric power sys-
tem (Basler and Schaefer, 2008; Ramos et al., 2004; Hossain
et al., 2009)), which means that it is generally possible to set
lower and upper bounds to the states of (1). These bounds
will define a certain state-space region of interest X ⊂ Rn

around the equilibrium point of interest. Hence, this set X
contains all the practical values of the state variables. Using
these pre-specified bounds for the states, it is possible then,

by an analysis of the mathematical expressions of (9), to de-
fine the upper and lower bounds to these functions hij(t),
i, j = 1, ..., n. For some cases (when, for example, the func-
tions hij(t), i, j = 1, ..., n are written as combinations of
sine and cosine functions), however, it may be possible to en-
sure the assumption (11) for the entire state-space region Rn.
In these cases, global stabilization of the nonlinear system (1)
can be evaluated via the NLDI model, but this possibility is
not investigated in details in this paper.

Comparing the LPV system (13) to the NLDI in the form
of (5), it becomes clear now that the proposal of this pa-
per is to model the term

∑n
i=1

∑n
j=1 Qijθij(t) by the term

∆A(t) of (5), which amounts to choosing adequately the
matrices F and G. For that, notice that the LPV system
(13) can be particularly represented in a polytopic form when(
A0 +

∑n
i=1

∑n
j=1 Qijθij(t)

)
involves a polytopic domain

of vertices. This particular form of (13) can be interpreted
as a polytopic LDI, where all trajectories of the LPV system
(13) will also be trajectories of this PLDI. This is discussed
in the next section.

3.2 Specifying a PLDI containing all the
trajectories of the LPV system

In this section, we are interested to model the LPV system
(13) as a PLDI model defined in the form of the following lin-
ear time-varying system (Pyatnitskiy and Rapoport, 1996):

ẋ(t) =
v∑

i=1

αi(t)Six(t) +Bu(t), x(0) = x0, (14)

where the elements of the vector function α(t) =
[α1(t) ... αv(t)]

′ satisfy the conditions

0 ≤ αi(t) ≤ 1,

v∑
i=1

αi(t) = 1, ∀t > 0, (15)

and Si ∈ Rn×n, i = 1, ..., v, is the ith vertex of the
convex set ΩPLDI := Co(S1, S2, ..., Sv). So, we have∑v

i=1 αi(t)Si ∈ ΩPLDI for every α(t) whose elements sat-
isfy (15).

Considering the LPV system (13), it is possible to define a set
ΩPLDI such that

(
A0 +

∑n
i=1

∑n
j=1 Qijθij

)
∈ ΩPLDI ,

for all θij ∈ [hij , hij ], i, j = 1, ..., n, from which it follows
immediately that every trajectory of (13) is also a trajectory
of (14). For that, the set of the vertices of ΩPLDI is defined
by

VS =


A0 +

n∑
i=1

n∑
j=1

Qijθij

 : θij ∈{hij , hij}

 .

(16)
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The next step of the procedure consists in searching for a set
ΩNLDI that overbounds ΩPLDI . This is discussed in the
next section.

3.3 Overbounding the PLDI by the pro-
posed NLDI model

Our goal now is to find matrices F and G for (5) such that
ΩNLDI ⊇ ΩPLDI , with the size of the set ΩNLDI as small
as possible. This will give an efficient outer approximation
(or overbounding) of the PLDI (14) by the NLDI (5), from
which it follows immediately that every trajectory of (14) is
also a trajectory of (5) (Boyd et al., 1994). Reference (Boyd
et al., 1994) formulates this problem in the form of LMIs.
The result proposed in (Boyd et al., 1994) considers only the
case with matrix F square and nonsingular. Here, we relax
this condition by a weaker one in which F must only be full
column rank.

Proposition 2 Let ΩNLDI and ΩPLDI be the sets defined
for systems (5) and (14), respectively. We have ΩNLDI ⊇
ΩPLDI if there are a full column rank matrix F and a matrix
G with proper dimension, such that[

G′G ∗
F+(Si −A0) I

]
≽ 0, i = 1, ..., v, (17)

where A0 is a known matrix in ΩNLDI and Si, i = 1, ..., v,
are the vertices of ΩPLDI .

Proof We have ΩNLDI⊇ΩPLDI if, for every x(t) and αi(t),
i=1, ..., v, such that 0 ≤ αi(t) ≤ 1,

∑v
i=1 αi(t) = 1, there

exists E(t) satisfying

(A0 + FE(t)G)x(t) =
v∑

i=1

αi(t)Six(t), (18)

x(t)′G′E(t)′E(t)Gx(t) ≤ x(t)′G′Gx(t), (19)

where Si ∈ VPLDI is the ith vertex of ΩPLDI . Notice that
(19) is equivalent to the norm condition ∥E∥ ≤ 1. We com-
plete the proof by showing that (17) provides an equivalent
expression of (18)-(19).

For that, it follows from (17) that

v∑
i=1

αi(t)

[
G′G ∗

F+(Si −A0) I

]
≽ 0 ⇒[ ∑v

i=1 αi(t)G
′G ∗∑v

i=1 αi(t)F
+(Si −A0)

∑v
i=1 αi(t)I

]
≽ 0 ⇒[

G′G ∗
F+ (

∑v
i=1 αi(t)Si −A0) I

]
≽ 0,(20)

for all αi(t), i = 1, ..., v, satisfying 0 ≤ αi(t) ≤ 1 and∑v
i=1 αi(t) = 1. Therefore, using Schur complements, the

matrix inequality (20) is equivalent to(
v∑

i=1

αi(t)Si −A0

)′

F+′
F+

(
v∑

i=1

αi(t)Si −A0

)
≼G′G

⇒

x(t)′

(
v∑

i=1

αi(t)Si−A0

)′

F+′
F+

(
v∑

i=1

αi(t)Si−A0

)
x(t)≤

x(t)G′Gx(t)

(21)

for all x(t) and αi(t), i=1, ..., v, satisfying 0 ≤ αi(t) ≤ 1
and

∑v
i=1 αi(t) = 1. It can be concluded from this devel-

opment that, if (17) is feasible for all i = 1, ..., v, then the
inequality (21) holds for all x(t) and for all admissibles val-
ues of αi(t), i=1, ..., v.

Hence, to complete the proof we only need to show that
(21) is equivalent to (18)-(19). This equivalence is easily
verified by assuming that F is a full column rank matrix.
This assumption allows us to rewrite the equation (18) as
E(t)Gx(t) = F+ (

∑v
i=1 αi(t)Si −A0)x(t). Now, the sub-

stitution of this expression into the inequality (19) leads ex-
actly to (21), which completes the desired equivalence and
the proof.

To solve the set of matrix inequalities (17) in the form of
LMIs it is necessary to introduce the new variables

V = G′G, W = F+, (22)

where V ∈ Rn×n must be a symmetric and positive semidef-
inite matrix and W ∈ Rnp×n. The condition of positive
semidefinitess of matrix V can be guaranteed by the addi-
tional constraint V ≽ 0. The condition on matrix W can be
dealt using LMI solvers specialized in rank constraints (Orsi
et al., 2006), but this alternative is also not investigated in
this paper. In this paper, the condition rank(W ) = np is
reinforced by imposing a particular, desired structure for W
and checked after the solution of the matrix inequalities (17)
is obtained.

With the change of variables suggested by (22), our problem
is to find matrices V and W such that[

V ∗
W (Si −A0) I

]
≽ 0, i = 1, ..., v, (23)

where matrices A0 and Si, i = 1, ..., v,, were already previ-
ously introduced.

Once we have calculated matrices V and W by solving the
LMIs (23), matrix F can be easily recovered as F = W+.
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On the other hand, applying the Cholesky-like covariance
decomposition to the matrix V (and this is possible, once
that V is a positive semidefinite matrix), we find a matrix G
with nq = rank(V ). In order to obtain ΩNLDI ⊇ ΩPLDI ,
with the set ΩNLDI as small as possible, reference (Boyd
et al., 1994) proposes to solve the LMIs (23) as an optimiza-
tion problem by minimizing the trace of matrix V . This al-
ternative was adopted in this paper.

The weaker condition imposed on matrix F (in which it must
only be a full column rank matrix) allow us to adopt a par-
ticular structure to the matrix F in such a way that the term
∆A(t) in (5) can better represent the nonlinear characteris-
tics of (1). For example, if the ith equation of (1) is linear,
it follows as a suggestion to set the elements of the ith row
of F to be equal to zero (which means that the ith row of
∆A(t) will always be equal to zero, independently of the
values of E(t)). To better clarify this point and the whole
modeling procedure, consider the numerical example of the
section 3.5. Before that, however, in section 3.4 the estima-
tion of stability regions for the nonlinear system (1) using
NLDIs is discussed.

3.4 Estimation of regions of attractions
for nonlinear systems using NLDIs

In the sequence, we present a basic result from the Lyapunov
theory that provides an estimate D ⊂ X of the region of at-
traction of system (1) (Kiyama and Iwasaki, 2000; Coutinho
and da Silva Jr., 2010).

Lemma 3 Consider the nonlinear system (1). Suppose there
exist positive scalars ϵ1, ϵ2 and ϵ3 and a continuously dif-
ferentiable function V : X 7→ R that satisfies the following
conditions:

ϵ1x
′x ≤ V (x) ≤ ϵ2x

′x, ∀x ∈ X, (24)
V̇ (x) ≤ −ϵ3x

′x, ∀x ∈ X, (25)
D := {x : V (x) ≤ 1} ⊂ X. (26)

Then, V (x) is a Lyapunov Function in X . Moreover, for all
x(0) ∈ D, the trajectory x(t) belongs to D and approaches
the origin as t → ∞.

Next Lemma provides sufficient conditions to ensure that the
region of attraction D as defined by D := {x : x′Px ≤
1, P = P ′ ≻ 0} is bounded by the state-space region X
(Rohr et al., 2009).

Lemma 4 Consider the state-space region X defined as (2).
The condition x ∈ X can be written as

2− x′a′k − akx ≥ 0, k = 1, . . . , ne. (27)

Let the domain D be defined as D := {x : x′Px ≤ 1, P =
P ′ ≻ 0}. Thus, if x ∈ D, then

x′Px− 1 ≤ 0. (28)

Thus, the condition x ∈ D ⊂ X is guaranteed if the follow-
ing inequality holds

1− x′a′k − akx+ x′Px ≥ 0, k = 1, . . . , ne. (29)

Now, from Lemmas 3 and 4 and the ideas presented in (Rohr
et al., 2009), it is possible to derive some sufficient conditions
to ensure that D with V (x) = x′Px, P = P ′ ≻ 0, is an
estimate of the region of attraction of the nonlinear system
(1) within the set X . It is important to emphasize that the
calculation of this region D is done for the representation of
(1) in the form of the NLDI (5). This is allowed to do, once
that the NLDI model obtained from the proposed modeling
procedure represents the behavior of the nonlinear system (1)
within the subset X .

Lemma 5 Consider the nonlinear system (1) and its repre-
sentation in the form of the NLDI (5). Suppose there exist
a matrix P = P ′ ≻ 0 and a scalar λ > 0 satisfying the
following LMIs:[

A′
0P + PA0 + λG′G PF

∗ −λI

]
≺ 0, (30)[

1 ak
∗ P

]
≽ 0, k = 1, . . . , ne. (31)

Then, V (x) = x′Px is a Lyapunov Function in X . More-
over, for all x(0) ∈ D the trajectory x(t) approaches the
origin when t → ∞, where D := {x : V (x) ≤ 1} ⊂ X .

Proof Let ϵ1 and ϵ2 be, respectively, the smallest and largest
eigenvalues of P . Then, the following inequalities hold for
all x ∈ X

ϵ1x
′x ≤ x′Px ≤ ϵ2x

′x, (32)

which leads to the condition (24) of Lemma 3. Now, from
(Boyd et al., 1994), it follows that if the LMI (30) is satisfied
for a matrix P = P ′ ≻ 0 and a scalar λ > 0, then we have
V̇ (x) < 0 for all x ∈ X , where V (x) = x′Px. As x is
bounded, there exists a sufficiently small positive scalar ϵ3
such that

V̇ (x) ≤ −ϵ3x
′x, (33)

which leads to the condition (25) of Lemma 3. Now, we only
have to prove that estimate D := {x : V (x) ≤ 1} is bounded
by X . To do so, pre- and post-multiply LMI (31) by [1 −x]′

and its transpose. It provides[
1
−x

]′ [
1 ak
∗ P

] [
1
−x

]
≽ 0, k = 1, . . . , ne. (34)

Notice that (34) is the matrix form of (29). This completes
the proof.
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Lemma 5 provides an estimate D ⊂ X of the region of at-
traction of the nonlinear system (1), using the representation
of this system in the form of the NLDI (5). In order to find
the largest estimate D inside X , we may solve the LMIs
in Lemma 5 as an optimization problem by minimizing the
trace of matrix P , as suggested in (Rohr et al., 2009).

The application of the modeling procedure proposed in this
section and the estimate of the system region of attraction are
illustrated in the numerical example given in the next section.

3.5 Numerical example 1

Consider the following nonlinear system, where the state
vector x(t) is given by x(t) = [u(t) v(t) z(t)]′ (Topcu
and Packard, 2009):

u̇(t) = f1(x(t)) = −3u(t)− 1.35v(t)− 0.56z(t) +

0.08u(t)v(t) + 0.44v2(t) + 0.01v(t)z(t) +

0.22v3(t), (35)
v̇(t) = f2(x(t)) = 0.91u(t)− 0.64v(t)− 0.02z(t)−

0.05v2(t) + 0.11v(t)z(t)− 0.05z2(t), (36)
ż(t) = f3(x(t)) = u(t). (37)

Notice that f1(x(t)) and f2(x(t)) are nonlinear functions of
the state variables u(t), v(t) and z(t) and f3(x(t)) is a linear
function of the state u(t). Let us consider the equilibrium
point at the origin xe = [0 0 0]′. The Jacobian matrix A0

was calculated via Taylor series expansion of system (35)-
(37) around the equilibrium point xe. The result of this pro-
cess is given by

A0 =

 ∂f1
∂u (0) ∂f1

∂v (0) ∂f1
∂z (0)

∂f2
∂u (0) ∂f2

∂v (0) ∂f2
∂z (0)

∂f3
∂u (0) ∂f3

∂v (0) ∂f3
∂z (0)


=

 −3 −1.35 −0.56
0.91 −0.64 −0.02
1 0 0

 .

The first step of the modeling procedure is to rewrite the non-
linear system (35)-(37) in the form of an LPV system. For
that, Proposition 1 of section 3.1 guarantees the existence of
two vectors xs1(t) = [us1(t) vs1(t) zs1(t)]

′ ∈ Co(x(t), 0)
and xs2(t) = [us2(t) vs2(t) zs2(t)]

′ ∈ Co(x(t), 0), xsi ̸=
x(t), xsi ̸= 0, i = 1, 2, such that f1(x(t))

f2(x(t))
f3(x(t))

 =

=

 ∂f1
∂u (xs1(t))

∂f1
∂v (xs1(t))

∂f1
∂z (xs1(t))

∂f2
∂u (xs2(t))

∂f2
∂v (xs2(t))

∂f2
∂z (xs2(t))

1 0 0

u(t)
v(t)
z(t)



for all t > 0. Notice that, once the function f3(x(t)) is linear,
it is not altered by the application of the mean value theorem.
As discussed in section 3.1, we can write this last equation
as being f1(x(t))
f2(x(t))
f3(x(t))

 =

A0 +

 h11(t) h12(t) h13(t)
h21(t) h22(t) h23(t)

0 0 0

 u(t)
v(t)
z(t)

 ,

where,

h11(t) =
∂f1
∂u

(xs1(t))−
∂f1
∂u

(0), (38)

h12(t) =
∂f1
∂v

(xs1(t))−
∂f1
∂v

(0), (39)

h13(t) =
∂f1
∂z

(xs1(t))−
∂f1
∂z

(0), (40)

h21(t) =
∂f2
∂u

(xs2(t))−
∂f2
∂u

(0), (41)

h22(t) =
∂f2
∂v

(xs2(t))−
∂f2
∂v

(0), (42)

h23(t) =
∂f2
∂z

(xs2(t))−
∂f2
∂z

(0), (43)

Calculating the functions hij(t) (for i = 1, 2 and j = 1, 2, 3)
from (38)-(43), we have

h11(t) = 0.08vs1(t), (44)
h12(t) = 0.08us1(t) + 0.88vs1(t) + 0.01zs1(t) +

+0.66v2s1(t), (45)
h13(t) = 0.01vs1(t), (46)
h21(t) = 0, (47)
h22(t) = −0.1vs2(t) + 0.11zs2(t), (48)
h23(t) = 0.11vs2(t)− 0.1zs2(t). (49)

The bounds hij and hij as defined by (12) were calculated
by analysing the mathematical expressions of the functions
(44)-(49) considering the following state-space region

X := {[u v z]T ∈ R3 | − 1 ≤ u ≤ 1 , −π

2
≤ v ≤ π

2
,

−π

2
≤ z ≤ π

2
}. (50)

This state-space region was specified by assuming it as being
an operation region of the system or the region containing
the practical values of the states. Once we have delimited the
state-space region of interest, the points xsi(t), i = 1, 2, are
also bounded, once that xsi(t) ∈ Co(x(t), 0), for all t > 0.
So, by analysing the mathematical expressions of the func-
tions (44)-(49) it was possible to define the following upper
and lower bounds: h11=−0.126, h11=0.126, h12=0.150,
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h12 = 3.106, h13 = −0.015, h13 = 0.015, h22 = −0.329,
h22=0.329, h23=−0.329, h23=0.329.

To better understand the calculation of these bounds, let us
take h11(t) as an example. It is function of the point vs1(t),
whose value must be in the line segment between −π

2 and
π
2 , for all t > 0. Hence, the maximum value that h11(t) can
achieve (i.e, the upper bound h11) is 0.126 and the smallest
value (i.e, the lower bound h11) is −0.126.

With the specified bounds to the functions (44)-(49), we have
a description of the nonlinear system (35)-(37) in the form of
the following LPV system ẋ1(t)

ẋ2(t)
ẋ3(t)

 =

=

A0 +

 θ11(t) θ12(t) θ13(t)
0 θ22(t) θ23(t)
0 0 0

 u(t)
v(t)
z(t)

 ,

(51)

where θij : ℜ+ → [hij , hij ], i = 1, 2, j = 1, 2, 3 (j ̸= 1
when i = 2).

The second step of the modeling procedure consists of spec-
ifying a PLDI in the form of (14) containing all the trajec-
tories of the LPV system (51). For that, we only need to
construct a set ΩPLDI as defined by (16). Once that the LPV
system (51) has 5 non-zero functions θij(t), so the corre-
sponding set ΩPLDI has 32 vertices.

To complete the modeling procedure, we have to overbound
the PLDI by the proposed NLDI model. This is done by
solving the LMI problem introduced in section 3.3. The two
matrices of the model that we must calculate are G and F .
The standard method proposed in (Boyd et al., 1994) requires
that F be a square and nonsingular matrix so, in this case, we
should have to calculate a full rank 3× 3 matrix. As a result,
the third line of the term ∆A(t) of the NLDI model can have
non-zero elements. But, notice that f3(x(t)) of our example
is linear, so the third line of ∆A(t) is expected to be equal to
zero (which means that all the elements of this line are equal
to zero) to avoid conservatism.

On the other hand, by applying the relaxing condition on ma-
trix F , as proposed in Proposition 2 of section 3.3, we can set
a matrix F in the form F = [f11 f21 0]′. In this case, the row
with the element equal to zero (row 3) forces the respective
row of the matrix ∆A(t) to also have all its elements equal to
zero, independently of any value of E(t) and G. Hence, the
obtained NLDI model will mantain the characteristic of the
study system with respect to the fact that f3(x(t)) is linear.
Another possible advantage of Proposition 2 (in comparison
to the standard method proposed in (Boyd et al., 1994)) is the
fact that the structure of the matrix F can be choosen in or-

der to reduce the number of elements to be determined by the
LMI optimization problem. To better clarify this point, no-
tice that matrix F has 9 elements to be calculated by applying
the standard method, while the proposed method allows us to
specify a matrix F with only 2 elements to be calculated.

For the matrix G, we set it as a 3 × 3 matrix, so the matrix
variable V was choosen to be a 3 × 3 symmetric matrix. In
addition, we imposed the following structure to the matrix
variable W in order to obtain a matrix F in the form of F =
[f11 f21 0]′:

W =
[
w11 w12 0

]
. (52)

From the solution of the optimization problem suggested in
section 3.3 using the SeDuMi solver (Sturm, 1999) in con-
junction with YALMIP (Lofberg, 2004) it was obtained the
following matrices F and G

F =

 0.0663
0.0044

0

, G =

 6.0181 0 0
0 17.953 0
0 0 2.9495

 .

(53)

This complete the modeling procedure. Now, let us estimate
the region of attraction of the nonlinear system (35)-(37) with
respect to the origin by using its representation in the form of
the NLDI model previously calculated. This was done using
Lemma 5. In order to obtain a solution for the LMI (31), we
have to describe the set X in the form given by (2). This was
done by following the ideas presented in (Rohr et al., 2009).
At first, notice that (50) is equivalent to a polytope X ⊂ R3

whose vertices are defined by Θ := {c1, c2, . . . , c8}, where

c1 =

 1
−π/2
−π/2

 , c2 =

 1
−π/2
π/2

 , c3 =

 −1
−π/2
π/2

 ,

c4 =

 −1
−π/2
−π/2

 , c5 =

 −1
π/2
−π/2

 , c6 =

 −1
π/2
π/2

 ,

c7 =

 1
π/2
π/2

 , c8 =

 1
π/2
−π/2

 .

A vertex representation of X is defined as the convex hull
of c1, c2, . . . , c8, i.e., X = Co(c1, c2, . . . , c8). Equivalently,
we can define this vertex form of X as (2):

X := {x : akx ≤ 1, k = 1, . . . , 12}. (54)

In order to calculate the vectors ak ∈ R3, notice that each
inequality defines an hyperplane {x : akx ≤ 1} for which
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two vertices belongs to its edge, that is

c1, c2 ∈ {x : a1x = 1}, c2, c3 ∈ {x : a2x = 1},
c3, c4 ∈ {x : a3x = 1}, c1, c4 ∈ {x : a4x = 1},
c4, c5 ∈ {x : a5x = 1}, c5, c6 ∈ {x : a6x = 1},
c6, c7 ∈ {x : a7x = 1}, c7, c8 ∈ {x : a8x = 1},
c5, c8 ∈ {x : a9x = 1}, c1, c8 ∈ {x : a10x = 1},
c2, c7 ∈ {x : a11x = 1}, c3, c6 ∈ {x : a12x = 1}.

Figure 1 shows the set X with its vertices and illustration
of some of its edges ({x : a1x = 1}, {x : a7x = 1} and
{x : a11x = 1}).

Figure 1: Region X with its vertices c1, . . . , c8 and illustration
of some of its edges ({x : a1x = 1}, {x : a7x = 1} and
{x : a11x = 1}).

For a given set Θ, the row vectors ak can be determined by
solving the following set of linear systems:


a1c1 = 1
a1c2 = 1

a1
(c1+c2)

2 = 1

,


a2c2 = 1
a2c3 = 1

a2
(c2+c3)

2 = 1

,


a3c3 = 1
a3c4 = 1

a3
(c3+c4)

2 = 1

,
a4c1 = 1
a4c4 = 1

a4
(c1+c4)

2 = 1

,


a5c4 = 1
a5c5 = 1

a5
(c4+c5)

2 = 1

,


a6c5 = 1
a6c6 = 1

a6
(c5+c6)

2 = 1

,
a7c6 = 1
a7c7 = 1

a7
(c6+c7)

2 = 1

,


a8c7 = 1
a8c8 = 1

a8
(c7+c8)

2 = 1

,


a9c5 = 1
a9c8 = 1

a9
(c5+c8)

2 = 1

,
a10c1 = 1
a10c8 = 1

a10
(c1+c8)

2 = 1

,


a11c2 = 1
a11c7 = 1

a11
(c2+c7)

2 = 1

,


a12c3 = 1
a12c6 = 1

a12
(c3+c6)

2 = 1

,

yielding the following row vectors

a1 =
[
0.29 −0.45 0

]
, a2 =

[
0 −0.32 0.32

]
,

a3 =
[
−0.29 −0.45 0

]
, a4 =

[
0 −0.32 −0.32

]
,

a5 =
[
−0.29 0 −0.45

]
, a6 =

[
−0.29 0.45 0

]
,

a7 =
[
0 0.32 0.32

]
, a8 =

[
0.29 0.45 0

]
,

a9 =
[
0 0.32 −0.32

]
, a10 =

[
0.29 0 −0.45

]
,

a11 =
[
0.29 0 0.45

]
, a12 =

[
−0.29 0 0.45

]
.

The ellipsoid D := {x ∈ R3 | x′Px ≤ 1} was used for the
estimation of the region of attraction of the nonlinear sys-
tem. To calculate the largest estimate in region X , the LMIs
of Lemma 5 were solved as an optimization problem by min-
imizing the trace of matrix P . The calculated matrix P is

P =

 0.307 −0.001 0.013
∗ 0.285 −0.031
∗ ∗ 0.301

 .

Figure 2 shows the estimated region of attraction D and the
state-space region X defined as (50). It is important to em-
phasize that D is an estimate of the region of attraction of
the nonlinear system (35)-(37) with respect to the origin. It
was calculated via Lemma 5 by using the representation of
the nonlinear system in the form of the NLDI previously cal-
culated.

Next section presents the theory towards the design tech-
nique of the dynamic output feedback controller.

Figure 2: Region X (the box bounded by the faces in gray);
region of attraction D of the origin of the nonlinear system (in
red).
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4 DYNAMIC OUTPUT FEEDBACK CON-
TROLLER DESIGN

Let the controlled system formed by the interconnection be-
tween (5) and (6)-(7) (with y(t) = Cx(t)) be described as

˙̃x(t) = (Ã0 +∆Ã(t))x̃(t), (55)

where ∆Ã(t) = F̃E(t)G̃, with E(t) satisfying ∥E(t)∥≤ 1,
for all t > 0. Besides, x̃(t) = [x(t) xc(t)]

′, and

Ã0 =

[
A0 BCc

BcC Ac

]
, F̃ =

[
F
0

]
, G̃ =

[
G′

0

]′
.

In many applications, it is desirable that the system trajec-
tories approach the origin as fast as possible (Folcher and
Ghaoui, 1994; Silva and Junior, 2006). This practical re-
quirement can be fulfilled by guaranteeing that limt→∞ eαt ∥
x(t)∥= 0 for all trajectories of (55), where α is defined as
being the decay rate of (55). This can be done by satisfying
the condition V̇ (x̃(t)) ≤ −2αV (x̃(t)) (Boyd et al., 1994),
where V (x̃(t)) = x̃(t)′P̃ x̃(t) is the Lyapunov function
adopted to the NLDI model. This condition is equivalent
to the existence of a positive definite symmetric matrix P̃ ∈
R(n+nc)×(n+nc) and matrices Ac, Bc and Cc such that[

Ã′
0P̃ + P̃ Ã0 + G̃′G̃+ 2αP̃ P̃ F̃

∗ −I

]
≺ 0. (56)

In addition, it may be desirable that all modes of response
(eigenvalues) of the closed-loop matrix Ã0 have damping ra-
tios larger than a minimum, pre-defined value (see the ap-
plications in (Ramos et al., 2004; de Oliveira et al., 2009)).
To comply with this, we impose an additional restriction on
the problem formulation using the regional pole placement
(RPP) technique (Chiali et al., 1999). This technique consists
in the definition of a region for pole placement in the com-
plex plane where the design objective is fulfilled. This region
is defined by all the complex numbers that have a damping
ratio ξ higher (or equal) than ξmin, and it can be viewed in
Figure 3, where ξmin is the desired minimum damping ratio
for the eigenvalues of matrix Ã0 and δ = cos−1 ξmin. Note
that the damping ratio is a local property, which only makes
sense when the trajectory is close enough to the equilibrium
point of interest.

All the eigenvalues of matrix Ã0 are located within the re-
gion specified in Figure 3 if there exists a positive definite
symmetric matrix P̃ and matrices Ac, Bc and Cc such that
(Chiali et al., 1999)[

(Ã′
0P̃ + P̃ Ã0) sin(δ) (P̃ Ã0−ÃT

0 P̃ ) cos(δ)
∗ (Ã′

0P̃ + P̃ Ã0) sin(δ)

]
≺ 0.

(57)

Figure 3: Region for pole placement.

4.1 Robustness of the controller with re-
spect to the variations in the operat-
ing conditions of the system

To deal with the robustness of the controller with respect
to the different operating points of the system, we obtain
a description of the system (1) in a certain state-space re-
gion around each equilibrium point of interest. The idea
is to design a fixed parameter controller in the form (6)-(7)
that exhibits an effective performance in all of these regions.
This controller, however, must not change the equilibrium
points of the open-loop sytem. In fact, once that a certain
initial condition is within the region of attraction of a par-
ticular equilibrium (say, xe1), then the control objective is
to force the system trajectories to approach the point xe1 as
fast as possible, in accordance to the practical requirements
discussed in the previous section.

The set of resulting controlled systems are described in state
space form by

˙̃x
(i)
(t) = (Ã0i +∆Ãi(t))x̃

(i)(t), i = 1, ..., np, (58)

where ∆Ãi(t) = F̃iEi(t)G̃i, with Ei(t) satisfying ∥
Ei(t)∥≤ 1, for all t > 0. We also have

Ã0i =

[
A0i BiCc

BcCi Ac

]
, F̃i =

[
Fi

0

]
, G̃i =

[
G′

i

0

]′
,

x̃(i)(t) =

[
x(t)− xei

xc(t)

]
,

being xei the ith equilibrium point of interest of (1).

4.2 The complete control problem

Grouping the constraints (56)-(57) with the robusteness re-
quirement shown in previous subsection, it is possible to for-
mulate the complete control problem as a search for positive
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definite symmetric matrices P̃i, i = 1, ..., np, and matrices
Ac, Bc and Cc of proper dimensions such that

[
Ã′

0iP̃i + P̃iÃ0i + G̃T
i G̃i + 2αP̃i P̃iF̃i

∗ −I

]
≺ 0, (59)

[
(Ã′

0iP̃i + P̃iÃ0i) sin(δ) (P̃iÃ0i−ÃT
0iP̃i) cos(δ)

∗ (Ã′
0iP̃i + P̃iÃ0i) sin(δ)

]
≺ 0.

(60)

Notice that (59)-(60) are bilinear matrix inequalities (BMIs),
since there are cross-products among the controller variables
(i.e., Ac, Bc and Cc) and matrices P̃i, i = 1, ..., np. In
this paper, we apply a two-step separation procedure that
allows to transform the BMIs (59)-(60) into a set of LMIs
(de Oliveira et al., 2000). Basically, this separation proce-
dure consists on the parameterization of some matrix vari-
ables and the definition of some new variables.

5 SOLVING THE BMI PROBLEM: THE
TWO-STEP SEPARATION PROCEDURE

The concepts and procedures described in this section are
derived from the ideas presented in (de Oliveira et al., 2000).
Consider the set of BMIs (59)-(60). Let us assume that: (i)
P̃ = P̃i, i = 1, ..., np; (ii) the dimension of the controller
is equal to the dimension of the plant to be controlled, i.e.,
nc = n, and; (iii) the controller output matrix Cc is previ-
ously known. Let us partionate the matrices P̃ and its inverse
P̃−1 and define a matrix T̃ as follows

P̃ =

[
X U
∗ Xc

]
, P̃−1 =

[
Y Y
∗ Yc

]
, T̃ =

[
I I
∗ 0

]
,

where X,U,Xc, Y, Yc ∈ ℜn×n and the dimensions of T̃ and
its submatrices are implicitly determined by P̃ . Moreover,
the following changes of variables are carried out

V = UBc, P = Y −1, S = Ac
TU ′, (61)

where the dimensions of matrices V , P and S are implicity
determined by the transformations.

Now, the set of BMIs (59)-(60) can be transformed into a set
of LMIs. For that, multiply P̃ , (59) and (60) on the right
and the left by T , diag[T, I] and diag[T, T ], respectively;
introduce the new variables V , P and S, and simplify the
expressions by algebraic manipulations, remembering that
P̃ P̃−1 = I . The resulting set of LMIs are given by[

P P
∗ X

]
≻ 0,

 D11 D12 D13
∗ D22 D23
∗ ∗ D33

 ≺ 0, (62)


N11 N12 N13 N14
∗ N22 N23 N24
∗ ∗ N33 N34
∗ ∗ ∗ N44

 ≺ 0, (63)

where, D11 = ĀT
0iP+PĀ0i+GT

i Gi+2αP , D12 = PA0i+
ĀT

0iX + CT
yiV

T + S + GT
i Gi + 2αP , D13 = PFi, D22 =

AT
0iX+XA0i+V Ci+CT

i V
T +GT

i Gi+2αX , D23 = XFi,
D33 = −I , N11 = (ĀT

0iP + PĀ0i) sin(δ), N12 = (ĀT
0iX +

PĀ0i + CT
i V

T + S sin(δ), N13 = (ĀT
0iP − PĀ0i) cos(δ),

N14 = (ĀT
0iX−PA0i+CT

i V
T+S) cos(δ), N22 = (AT

0iX+
XA0i + CT

i V
T + V Ci) sin(δ), N24 = (AT

0iX − XA0i +
CT

i V
T−V Ci) cos(δ), N23 = N ′

14, N33 = N11, N34 = N12,
N44 = N22, Ā0i = A0i +BiCc, i = 1, ..., np.

Solving this set of LMIs in the matrices variables V , P , S
and X , the matrices Ac and Bc of the controller (remember-
ing that matrix Cc must be pre-specified) can be calculated
by

Bc = U−1V, Ac = U−1S′, (64)

where U = P −X . The success in solving this LMI problem
depends, obviously, in a proper choice of matrix Cc. In this
paper, we calculate this matrix by setting up a state feedback
gain K, in which the control law u(t) = Kx(t) stabilizes the
system (5) and fulfills the constraints discussed in section 4.
This matrix K can be found by solving the following LMIs
in the matrix variables L and Y (Ramos et al., 2004):

Y ≻ 0,

[
Q11 Q12
∗ Q22

]
≺ 0,

[
R11 R12
∗ R22

]
≺ 0, (65)

where, Q11 = Y AT
0i + A0iY + LTBT

i + BiL + 2αY ,
Q12 = Y GT

i , Q22 = −I , R11 = (Y AT
0i+A0iY +LTBT

i +
BiL) sin(δ),R12 = (Y AT

0i−A0iY +LTBT
i −BiL) cos(δ),

R22 = R11, i = 1, ..., np.

Once we have solved this set of LMIs (65), it is setled
Cc := K, where K = LY −1.

It is important to emphasize that given the non-convex na-
ture of the undepinning BMI, we cannot guarantee that the
LMI problem that is created by setting the matrix Cc ob-
tained from the solution of the state feedback problem will
always have a solution. Recent papers, however have shown
that this heuristics for calculation of matrix Cc provides sat-
isfactory results for the overall design procedure, as seen, for
example, in (Ramos et al., 2004; Ramos et al., 2005; Kuiava
et al., 2009).

6 TESTS AND RESULTS

Consider the following nonlinear system:

ẋ1(t) = −1.35x2(t)− 0.56x3(t) + 0.08x1(t) sin(x2(t))

+0.44 sin2(x2(t)) + 0.01 sin(x2(t)) sin(x3(t)) +
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0.22 sin3(x2(t)) + 1.35u(t) (66)
ẋ2(t) = 2.8x1(t)− 0.45x2(t)− 0.02x3(t)−

0.05 sin2(x2(t)) + 0.11 sin(x2(t)) sin(x3(t))−
0.05 sin3(x3(t)) + 0.7u(t) (67)

ẋ3(t) = x1(t) + sin2(x2(t)) cos(x3(t)) (68)
y(t) = x3(t) (69)

We consider three equilibrium points of interest: xe1 =
[0 0 0]T , xe2 = [0.3074 2.1277 − 4.2718]T and xe3 =
[−0.034 − 0.5368 1.4405]T . The Jacobian matrices A01,
A02 and A03 were calculated via Taylor series expansion of
system (66)-(68) around the equilibrium points xe1, xe2 and
xe3, respectively. They are:

A01 =

 0 −1.35 −0.56
2.8 −0.45 −0.02
1 0 0

 ,

A02 =

 0.07 −2.01 −0.56
2.8 −0.46 −0.01
1 0.38 −0.65

 (70)

A03 =

 −4.09 −1.58 −0.56
2.8 −0.31 −0.05
1 −0.11 −0.26

 .

An eigenvalue analysis shows that these three equilibrium
points are all locally asymptotically stable. Our goal is then
to design a dynamic output feedback controller that improves
the decay rate of the system trajectories, as well as, the damp-
ing ratio of these trajectories as they are approaching the
equilibrium points. For that, we first modelled the nonlin-
ear system (66)-(68) via three NLDIs in the form (5), each
one describing a certain neighborhood of the points xe1, xe2

and xe3
1.

Let us discuss the construction of an NLDI model describing
a certain state-space region of the studied nonlinear system
containing the equilibrium point at the origin. Then, the same
approach was applied to determine the other NLDIs associ-
ated to the points xe2 and xe3. Applying the mean value the-
orem to the nonlinear system (66)-(68) with respect to xe1,
we have a reformulation of it in the form of the following
LPV system

1Section 3.5 provided a numerical example where all the steps of the
modeling procedure were discussed in details. In the example of this section,
our focus is on the control problem. Hence, we omit some details about the
application of modeling procedure to the nonlinear system (66)-(68).

 ẋ1(t)
ẋ2(t)
ẋ3(t)

 =

=

 θ11(t) −1.35+θ12(t) −0.56+θ13(t)
2.8 −0.45 + θ22(t) −0.02+θ23(t)
1 θ32(t) θ33(t)

 x1(t)
x2(t)
x3(t)


+

 1.35
0.7
0

u(t),
(71)

where θij : ℜ+ → [hij , hij ], i, j = 1, ..., 3.

The bounds hij and hij were specified by analysing the
mathematical expressions of the functions hij(t) (which are
calculated by (9)) considering the following state-space re-
gion:

X1 := {[x1 x2 x3]
′ ∈ R3 | − 0.25 ≤ x1 ≤ 0.25 ,

−0.25 ≤ x2 ≤ 0.30 ,−0.3 ≤ x3 ≤ 0.3}. (72)

The region X1 was defined by considering it as being the
operating range with respect to the equilibrium point at the
origin. Thus, we specified the following bounds for the non-
zero functions hij(t): h11 = −0.020, h11 = 0.024, h12 =
−0.236, h12=0.316, h13=−0.0025, h13=0.003, h22=−0.09,
h22 = 0.086, h23 = −0.05, h23 = 0.055, h32 = −0.48,
h32=0.56, h33=−0.025 and h33=0.025.

The LPV system (71) has 7 non-zero functions hij(t), which
means that the corresponding set ΩPLDI has 128 vertices
(as defined by (16)). To complete the procedure, we have to
calculate matrices F1 and G1. Different from the numerical
example of section 3.5, all the equations of the system (66)-
(68) are nonlinear. Hence, none of the elements of F1 was
forced to be equal to zero. The dimension of this matrix F1

was settled to 3 × 1. This dimension was chosen instead of
3×2 or 3×3 in order to reduce the number of elements to be
calculated by the LMI optimization problem. The dimension
of matrix G1 was chosen to be 3× 3.

By especifying these dimensions to matrices F1 and G1, ma-
trices W and V were defined as being a 1 × 3 full row rank
matrix and a 3× 3 symmetric matrix, respectively. From the
solution of the optimization problem suggested in section 3.3
using the SeDuMi solver (Sturm, 1999) in conjunction with
YALMIP (Lofberg, 2004) it was possible to obtain the fol-
lowing matrices

F1=

 72.78
20.65
29.03

, G1=

 1.7·10−3 6.8·10−4 6.8·10−4

0 1.6·10−3 4.4·10−4

0 0 1.5·10−3

 .

(73)
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The NLDIs describing the system dynamics around the equi-
librium points xe2 and xe3 were calculated considering, re-
spectively, the following regions:

X2 := {[x1 x2 x3]
′ ∈ R3 | 0.0075 ≤ x1 ≤ 0.5074 ,

1.93 ≤ x2 ≤ 2.53 ,−6.37 ≤ x3 ≤ −4.12}, (74)
X3 := {[x1 x2 x3]

′ ∈ R3 | − 0.374 ≤ x1 ≤ 0.176 ,

−0.7368 ≤ x2 ≤ −0.1688 ,−0.71 ≤ x3 ≤ 1.595}.
(75)

The resulting set of NLDIs are given in the form

ẋ(i)(t) = (A0i + FiEi(t)Gi)x
(i)(t) +Bu(t), (76)

y(t) = Cx(i)(t), (77)

where i = 1, 2, 3 and x(i)(t) = x(t)− xei. In addition, A01,
A02 and A03 are given by (70), respectively; F1 and G1 by
(73) and the other matrices are

F2=

 5.44
7.22
25.4

, G2=

 4.9·10−3 4.4·10−4 3.8·10−3

0 5.2·10−3 3.2·10−4

0 0 5.1·10−3

 ,

(78)

F3=

 2.58
24.2
36.2

, G3=

 5.1·10−3 4.7·10−4 4.6·10−3

0 5.4·10−3 4.1·10−4

0 0 5.3·10−3

 .

(79)
Finally, matrices B and C are directly determined by looking
the nonlinear equations (66)-(69).

Now, let us estimate the region of attraction D1 of the equi-
librium point xe1 of the nonlinear system (66)-(69) using the
corresponding NLDI model previously calculated. This was
done by using Lemma 5. As already shown in section 3.5 for
the numerical example 1, we have first to describe the set X1

in the form of (2). This description can be obtained using the
same procedure adopted for that example of section 3.5. As
a result, we have a set X1 described in the form given by (2),
where

a1 =
[
2.00 −2.00 0

]
, a2 =

[
0 −1.64 1.97

]
,

a3 =
[
−2.00 −2.00 0

]
, a4 =

[
0 −1.64 −1.97

]
,

a5 =
[
−1.64 0 −1.97

]
, a6 =

[
−1.64 1.97 0

]
,

a7 =
[
0 1.67 1.67

]
, a8 =

[
1.64 1.97 0

]
,

a9 =
[
0 1.67 −1.67

]
, a10 =

[
1.64 0 −1.97

]
,

a11 =
[
1.64 0 1.97

]
, a12 =

[
−1.64 0 1.97

]
.

Figure 4 shows the ellipsoid D1 and the state-space region
X1 defined as (72).

Now, our goal is to design a dynamic output feedback con-
troller to the nonlinear system (66)-(69) using a description
of it in the form of (76)-(77). A decay rate of 0.01 and a
minimum damping ratio equal to 15% were imposed as de-
sign objectives to the controlled system. The SeDuMi solver,

Figure 4: Region X1 (the box bounded by the faces in gray)
and the estimation of the region of attraction D1 (in red) for
the equilibrium point at the origin.

used in conjunction with YALMIP, was used to solve the set
of LMIs related to this control problem. The calculated con-
troller is given by

Ac=

 −26.38 −12.85 −260.21
−105.5 −89.36 −90.68
−4.17 −3.18 −110.22

 ,

Bc=

 260.5
98.76
110.5

 , (80)

Cc =
[
−9.55 −5.25 0.58

]
. (81)

The performance of the controlled system was verified via
nonlinear simulations. Figs. 5, 6 and 7 show the response of
variables x1(t), x2(t) and x3(t), respectively, with respect to
different initial conditions. It is interesting to observe that

Figure 5: Response of x1(t) for the initial condition x0 =
[0.2 0.3 0.1]T applied at t = 0.

the trajectory of the controlled system is less oscillatory and
approaches the equilibrium faster than the trajectory of the
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Figure 6: Response of x2(t) for the initial condition x0 =
[0.1 2.0 − 4.0]T applied at t = 0.

Figure 7: Response of x3(t) for the initial condition x0 =
[0.2 2.2 − 4]T applied at t = 0.

open-loop system. This result shows the effectiveness of the
designed controller.

The region of attraction of the equilibrium point x̃e1 of the
closed-loop nonlinear system, where x̃e1 = [x′

e1 0 0 0]′,
was also estimated using the corresponding NLDI model in
the form of (58). For that, we defined the ellipsoid D̃1 :=
{x̃ ∈ R6 | x̃′P̃1x̃ ≤ 1}.

Figure 8 shows the ellipsoid D̃1, considering the state of the
controller equal to zero. This plot corresponds to the cut of
the actual estimate of ellipsoid D̃1 in the hyperplane defined
by the system states. Hence, from the result shown in Figure
8, the effectiveness of the designed controller for the nonlin-
ear system (66)-(69) is guaranteeded within the region D̃1.

7 CONCLUSION

In the first part of this paper, a method to calculate the param-
eters of an NLDI model was presented. The objective is to
obtain a suitable linear representation of a nonlinear system
for control purposes, in such a way that a linear controller
can be designed to guarantee some desired features for the
nonlinear closed-loop system. In the second part, a robust
control design method, written in terms of LMIs was pre-
sented, in order to design a linear dynamic output feedback

Figure 8: Region X1 (the box bounded by the faces in gray)
and the estimation of the region of attraction D̃1 for the
closed-loop nonlinear system (in red) with respect to the equi-
librium point at the origin.

controller for a nonlinear system using the NLDI model ob-
tained by the approah proposed in the first part.

The numerical examples presented in the previous section
have shown the effectiveness of the modeling and control
approach proposed in this paper. However, it is important
to emphasize that the application of the modeling procedure
may be restricted to small and medium size systems, once
that the number of vertices of the obtained PLDI may become
excessively high as the number of system nonlinearities in-
creases. With respect to the proposed control design, one
of its difficulties is the requirement, due to the nature of the
control problem formulation, that the order of the designed
LDOF controller must be equal to the order of the system
to be controlled. In order to achieve the goal of producing
low order controllers (in the cases where the dimension of
the system is sufficiently high), the control design may be
combined with a final step of model order reduction.

The design objectives targeted in this paper were a minimum
decay rate for all possible system trajectories within the oper-
ating region of interest and a minimum damping ratio to the
oscillation modes of the state matrix of the closed-loop sys-
tem. These design objectives are very important for the prob-
lem of robust damping control in power systems, for exam-
ple, and an application of the approach proposed in this paper
to such a problem is the next predicted step of this research.
It is important to point out, however, that other practical re-
quirements can be included in the control problem formula-
tion, such as the minimization of an output energy function
or restrictions on the controller bandwidth. These are also
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possible extensions of this research foreseen to the sequence
of this research.
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