Review of experimental models for inducing hepatic cirrhosis by bile duct ligation and carbon tetrachloride injection

Acta Cir. Bras., v. 27, n. 8, p. 589-594, 2012
http://www.producao.usp.br/handle/BDPI/39058

Downloaded from: Biblioteca Digital da Produção Intelectual - BDPI, Universidade de São Paulo
Review of experimental models for inducing hepatic cirrhosis by bile duct ligation and carbon tetrachloride injection

Revisão de modelos experimentais de cirrose hepática induzida por ligadura do ducto biliar e por injeção de tetacloreto de carbono

Thamirys Guimarães Marques¹, Eleazar Chaib², Juliana Hamati da Fonseca¹, Ana Cecília Rodrigues Lourenço¹, Felipe Duarte Silva¹, Marcelo Augusto Fontenelle Ribeiro Jr.³, Flavio Henrique Ferreira Galvão⁴, Luiz Augusto Carneiro D’Albuquerque⁵

¹Graduate student, School of Medicine, USP, Sao Paulo, Brazil. Acquisition of data, manuscript preparation.
²Associate Professor of Surgery, Department of Gastroenterology, School of Medicine, USP, Sao Paulo, Brazil. Director of Experimental Research Laboratory, LIM-37,HC/FMUSP. Design of the study, interpretation of data, manuscript preparation.
³Assistant Professor of Surgery, University of City of Sao Paulo, Brazil. Interpretation of data, manuscript preparation.
⁴Assistant Professor of Surgery, Department of Gastroenterology, School of Medicine, USP, Sao Paulo, Brazil. Interpretation of data, manuscript preparation.
⁵Full Professor of Surgery, Department of Gastroenterology, School of Medicine, USP, Sao Paulo, Brazil. Interpretation of data, manuscript preparation.

ABSTRACT

PURPOSE: To present a review about a comparative study of bile duct ligation versus carbon tetrachloride Injection for inducing experimental liver cirrhosis.

METHODS: This research was made through Medline/PubMed and SciELO web sites looking for papers on the content “induction of liver cirrhosis in rats”. We have found 107 articles but only 30 were selected from 2004 to 2011.

RESULTS: The most common methods used for inducing liver cirrhosis in the rat were administration of carbon tetrachloride (CCI4) and bile duct ligation (BDL). CCI4 has induced cirrhosis from 36 hours to 18 weeks after injection and BDL from seven days to four weeks after surgery.

CONCLUSION: For a safer inducing cirrhosis method BDL is better than CCI4 because of the absence of toxicity for researches and shorter time for achieving it.

RESUMO

OBJETIVO: Apresentar revisão sobre estudo comparativo da indução de cirrose hepática (CH) experimental com a injeção de tetracloreto de carbono (CCI4) comparado à ligadura do ducto biliar (BDL).

MÉTODOS: A pesquisa foi realizada nas bases de dados do Medline/PubMed e SciELO procurando trabalhos com as palavras indução de CH e ratos. Foram encontrados 107 artigos, mas somente 30 foram selecionados no período de 2004 à 2011.

RESULTADOS: Os procedimentos mais comum para indução de CH em ratos foram a injeção de CCI4 e a BDL. O CCI4 induzia CH no período de 36 horas após a injeção e a BDL de sete dias à quatro semanas após a cirurgia.

CONCLUSÃO: A BDL é o método mais seguro para indução de CH quando comparado a injeção de CCI4 pela ausência de toxicidade para os pesquisadores e o menor tempo para se obter a lesão hepática.

Introduction

Liver cirrhosis (LC) is considered a public health concern, according to the World Health Organization, about 800 thousand people die from LC every year. Only in the United States, LC is responsible for around 27 thousand deaths per year, representing a mortality rate of 9.2 per 100,000, placing it as the 12th overall cause of death.

Nowadays, major research centers focus on studying LC, its mechanisms, and its behavior, complications, and possible treatments. For that reason, it has been developed, efficient experimental models of induction of LC in rats. The two most common methods used for experimental LC are the administration of carbon tetrachloride (CCl4) and the bile duct ligation (BDL). Our aim is to present a comparative study of bile duct ligation versus carbon tetrachloride injection for inducing experimental liver cirrhosis.

Methods

This research was made through Medline/PubMed and SciELO web sites looking for papers on the content “induction of liver cirrhosis in rats”. We found 107 articles but only 30 from 2004 to 2011 were selected. The inclusion criteria were: only rats; bile duct ligation and injection of carbon tetrachloride. Histopathologic examination for confirming cirrhosis; Time of inducing cirrhosis. The exclusion criteria were: large animals cirrhosis; others rodents animals; drug inducing cirrhosis such as dimethylnitrosamine; thioacetamide; butylhydroperoxide. Others drugs association methods: buprenorphine with reduction of portal inflow over a stent inserted in the right renal artery; Others methods: unrestricted flow using an aortic-portal segment; orthotopic liver transplantation with unrestricted portal arterialisation. Thioacetamide associated with partial hepatectomy.

Results

The main methods of induction of LC in rats are the administration of carbon tetrachloride and bile duct ligation. Below are shown induction of cirrhosis by CCl4, dosage of the drug, time for inducing cirrhosis, main test assessment with the method and their results (Table 1) and for bile duct ligation (Table 2).
Table 1: Induction of cirrhosis in rats by carbon tetrachloride (CCl4)

<table>
<thead>
<tr>
<th>Author/Year</th>
<th>Dosage of CCl4</th>
<th>Number of Rats</th>
<th>Time to Induce Cirrhosis</th>
<th>Test</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maya-Moreno et al., 2004</td>
<td>ND</td>
<td>ND</td>
<td>8 weeks</td>
<td>Explore genes with differential activity or position in the nuclear matrix</td>
<td>Changes in the relative position of specific genes to the nuclear matrix occurring during the chronic administration of CCl4</td>
</tr>
<tr>
<td>Feng et al., 2009</td>
<td>ND</td>
<td>60</td>
<td>ND</td>
<td>Expression of bFGF and HGF</td>
<td>bFGF regulates liver fibrogenesis through regulating metabolism of extracellular matrix</td>
</tr>
<tr>
<td>Florucci et al., 2006</td>
<td>300 μl/100 g</td>
<td>22</td>
<td>4 weeks</td>
<td>Farnesol X receptor</td>
<td>PPAR promotes the development of a quiescent phenotype and increases apoptosis of HSCs</td>
</tr>
<tr>
<td>Lewis et al., 2005</td>
<td>1.5 ml/kg</td>
<td>8</td>
<td>16 hours</td>
<td>CYP2E1</td>
<td>The CYP2E1 can induce endoplasmic reticulum protein damage and stress via its catalytic activation of pro-oxidants</td>
</tr>
<tr>
<td>Ona et al., 2004</td>
<td>20μl/kg/week</td>
<td>41</td>
<td>8 – 14 weeks</td>
<td>Propofol</td>
<td>Reproduce functional abnormalities of the central motor tract</td>
</tr>
<tr>
<td>Kanalou et al., 2006</td>
<td>ND</td>
<td>40</td>
<td>6 weeks</td>
<td>G2/properdin; G12/properdin + lidocaine; G12/properdin + CCl4; G4/properdin + lidocaine + CCl4</td>
<td>Propofol oil dosage should be reduced when lidocaine is co-administered</td>
</tr>
<tr>
<td>Li et al., 2005</td>
<td>2mg/kg</td>
<td>ND</td>
<td>6 weeks</td>
<td>Small interfering RNA</td>
<td>Prevent liver fibrosis</td>
</tr>
<tr>
<td>Tsai et al., 2006</td>
<td>0.2 μg/kg/week</td>
<td>ND</td>
<td>9 weeks</td>
<td>Heme oxygenase</td>
<td>Suppresses the development of cirrhosis</td>
</tr>
<tr>
<td>Chiang et al., 2006</td>
<td>ND</td>
<td>42</td>
<td>8 weeks</td>
<td>Wellia</td>
<td>Reduces liver fibrosis and improves liver function</td>
</tr>
<tr>
<td>Liu et al., 2006</td>
<td>1.5 ml/kg in liquid paraffin. 1x twice a week for 8 weeks</td>
<td>70</td>
<td>8 weeks</td>
<td>Ginigol Bile Extract</td>
<td>Inhibits the HSC</td>
</tr>
<tr>
<td>Xue et al., 2007</td>
<td>5 or 10 ml/kg in 400 ml olive oil twice a week</td>
<td>ND</td>
<td>11 weeks</td>
<td>Hemin</td>
<td>Liver protection</td>
</tr>
<tr>
<td>Shao et al., 2007</td>
<td>0.4 ml/kg in corn oil 1/3 once time</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>Increased of Smad expression</td>
</tr>
<tr>
<td>Alba et al., 2007</td>
<td>3ml/kg twice a week</td>
<td>ND</td>
<td>7 weeks</td>
<td>Delipidin sodium</td>
<td>Enhances hepatic regeneration and minimizes hepatic fibrogenesis</td>
</tr>
<tr>
<td>Yuan et al., 2008</td>
<td>50% in Olive Oil</td>
<td>40</td>
<td>18 weeks</td>
<td>Babaks Aminiparast</td>
<td>Decrease hepatic deasease</td>
</tr>
<tr>
<td>Berkenkotter et al., 2008</td>
<td>2 ml/kg in mineral oil same volume</td>
<td>20</td>
<td>12 weeks</td>
<td>NO</td>
<td>PDGF expression is related to liver regeneration</td>
</tr>
<tr>
<td>Tiberio et al., 2008</td>
<td>0.02 ml/100g once a week</td>
<td>ND</td>
<td>15 weeks</td>
<td>IL-6</td>
<td>Liver regeneration</td>
</tr>
<tr>
<td>Tosi et al., 2008</td>
<td>3.5 ml/kg twice a week in corn oil 1/3</td>
<td>20</td>
<td>8 weeks</td>
<td>Silamin</td>
<td>Regeneration (decrease AST, ALT, FA)</td>
</tr>
<tr>
<td>Kim et al., 2009</td>
<td>ND</td>
<td>ND</td>
<td>2 weeks</td>
<td>Retinoic acid</td>
<td>Decrease cirrhosis</td>
</tr>
</tbody>
</table>

ND - Not Described; CCl4 - Carbon Tetrachloride; bFGF - Basic Fibroblast Growth Factor; FXR - Farnesoid X receptor; HSC - Hepatic Stellate Cell; CYP2E1 - Cytochrome P450 2E1; Smad1 - Gene Mother Against Decapentaplegic 1; PDGF - Platelet-Derived Growth Factor; IL-6 - Interleukin 6; AST - Aspartate Transaminase; ALT - Alanine Aminotransferase; TA - Phosphatase Alkaline

Table 2: Induction of cirrhosis in rats by bile duct ligation (BDL)

<table>
<thead>
<tr>
<th>Author/Year</th>
<th>Number of Rats</th>
<th>Time to Induce Cirrhosis</th>
<th>Test</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antoine et al., 2006</td>
<td>ND</td>
<td>2 weeks</td>
<td>Phlebotomy</td>
<td>Phlebotomy will increase the HSC expression</td>
</tr>
<tr>
<td>Hsu et al., 2006</td>
<td>ND</td>
<td>3 weeks</td>
<td>Tet and silymarin</td>
<td>They reduced the fibrosis scores and hepatic collagen content of BDL rats</td>
</tr>
<tr>
<td>Senniaf et al., 2005</td>
<td>60</td>
<td>5 weeks</td>
<td>Bacterial translocation</td>
<td>Bacterial translocation have a role in the pathogenesis of hepatopulmonary syndrome by inducing pulmonary intravascular macrophages through TNF-alpha upregulation</td>
</tr>
<tr>
<td>Peterz et al., 2006</td>
<td>40</td>
<td>2 weeks</td>
<td>Phlebotomy before or after sham operation or BDL</td>
<td>Lowered hepatic iron concentration. After BDL, body weight increase; lower hepatic weight, less portal hypertension, less perportal necrosis, less portal inflammation, lower hepatic activity index score and higher albumin levels</td>
</tr>
<tr>
<td>Anan et al., 2006</td>
<td>ND</td>
<td>7 days</td>
<td>Bortezomib and Mito132</td>
<td>Inducing HSC apoptosis and inhibiting liver fibrogenesis</td>
</tr>
<tr>
<td>Mokami et al., 2007</td>
<td>4 weeks</td>
<td>Er-komplins, zinc surface, and zinc-lomplins</td>
<td>Protected portal hypertensive gastric mucosae with increased HGF2 expression</td>
<td></td>
</tr>
<tr>
<td>Ticiano et al., 2007</td>
<td>26</td>
<td>26 days</td>
<td>Quececin</td>
<td>Quececin-treated cirrhotic rats showed reduced DNA damage in lung and liver tissues as compared to untreated cirrhotic rats</td>
</tr>
<tr>
<td>Lee et al., 2007</td>
<td>27 days</td>
<td>YPF (Yin-Chen-Hao-Tang)</td>
<td>Hepatic hepatic repletion and hepatic collagen levels can be decreased</td>
<td></td>
</tr>
<tr>
<td>Thomas et al., 2008</td>
<td>ND</td>
<td>1 month</td>
<td>LPS + IGF-1 (infection simulation)</td>
<td>Accelerated tissue loss during infection</td>
</tr>
<tr>
<td>Longer et al., 2008</td>
<td>ND</td>
<td>4 weeks</td>
<td>ND</td>
<td>Nitric Oxide induce HSC apoptosis</td>
</tr>
<tr>
<td>Vercellino et al., 2008</td>
<td>24</td>
<td>2 weeks</td>
<td>N-Acetylcycteine</td>
<td>Protective effects in cirrhotic rats with hepatopulmonary syndrome</td>
</tr>
<tr>
<td>Roggens et al., 2009</td>
<td>ND</td>
<td>30 days, 3 weeks</td>
<td>ND</td>
<td>A new HSC type was found</td>
</tr>
</tbody>
</table>

ND - Not Described; BDL - Bile Duct Ligation; HGF2- 72 h Ad Heat Shock Protein; HSC - Hepatic Stellate Cell; LPS - Lipopolysaccharide; HGF-1 - Insulin-like Growth Factor 1.
Discussion

The main methods of induction of LC in rats are the administration of carbon tetrachloride (CCl4) and bile duct ligation (BDL). CCl4 is one of the most used methods nowadays however it is considered an extremely toxic method. Several important basic mechanisms of tissue damages induced by CCl4 have emerged, involving metabolic activation, reactive free radical metabolites, lipid peroxidation, covalent binding and disturbance of calcium homeostasis.

The CCl4 administration results in hepatocyte damage, necrosis, inflammation, and fibrosis, which spreads to link the vascular structures that feed into and drain the hepatic sinusoid (the portal tract and central vein radicle, respectively). It activates the hepatic stellate cell (HSC) inducing hepatocyte apoptosis and zone III necrosis. Continuous administration of CCl4 can provide moderate cell necrosis and fatty infiltration in four weeks.

The CCl4 is excreted from the body within the first 24 hours by conjugation reaction mediated by phase. In the literature, three mechanisms have been proposed as the possible explanations for progression of injury: (1) Contribution of inflammatory cells; (2) Production of free radicals; and (3) Leakage of degradative enzymes from the dying and injured cells. Activated resident Kupffer cells and the neutrophils recruited at the site of parenchymal liver injury are considered as the primary culprits in damaging surrounding healthy cells as the result of nonspecific action. However, evidence suggests that the contribution of the inflammatory cells does not or is not sufficient to mediate progression of injury.

The second theory regarding progression of injury is production of free radicals and oxidative stress, and subsequent lipid peroxidation that propagates injury. Though the antioxidants prevent/delay the tissue damage partially, progression of injury still occurs. The inhibition of lipid peroxidation by antioxidants only decreases the initial injury of CCl4, blocking lipid peroxidation fails to prevent progression of injury and subsequent lethality. By 8 weeks, a micronodular cirrhosis takes place. It has been used mainly by intraperitoneal injection or oral administration, the dosage 0.2 to 5 ml/kg and LC is achieved between 36 hours to 18 weeks.

BDL is a safer method comparing to the CCl4. When the BDL is done, it provides an acute obstructive jaundice in two weeks, and progression to cirrhosis in 4 or 6 weeks. BDL stimulates the proliferation of biliary epithelial cells and oval cells (which are hepatocyte progenitors), resulting in proliferating bile ductules with an accompanying portal inflammation and fibrosis.

Cholangiocyte proliferation started after BDL at the edge of the portal tract. During the first week from BDL the hepatic microcirculation did not show any alterations with respect to the normal liver. Using this method LC is achieved between seven days to four weeks.

Conclusions

Based in our broadly review we concluded that LC can be induced by CCl4 and BDL, however the manipulation of CCl4 can be dangerous for the researcher with risk of inducing liver tumor. BDL is a safer method than CCl4 and cirrhosis could be induced in rats in average mean time of two weeks.

References

12. Fionucci S, Rizzo G, Antonelli E, Renga B, Mencarelli A, Riccardi L, Orlandi S, Pruzanski M, Morelli A, Pellico Ar. A farnesoid x receptor-small heterodimer partner regulatory cascade modulates...

proliferation in biliary fibrosis. World J Gastrointest Pathophysiol. 2010;2:30-7.

Correspondence:
Eleazar Chaib
Faculdade de Medicina – LIM 37
Departamento de Gastroenterologia-USP
Avenida Dr. Arnaldo 455, 3º andar/3208
01296-900 São Paulo – SP Brasil
Tel.: (5511)3061-8322
Fax: (5511)3061-7270
eleazarchaib@yahoo.co.uk

Received: March 23, 2012
Review: May 24, 2012
Accepted: June 21, 2012
Conflict of interest: none
Financial source: none

1Review performed at Department of Gastroenterology, Part of Scientific Initiation Program on Experimental Research Laboratory, LIM-37, School of Medicine, University of Sao Paulo (USP), Brazil.