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REVIEW Open Access

The immunomodulatory role of carbon monoxide
during transplantation
Mariane Tami Amano and Niels Olsen Saraiva Camara*

Abstract

The number of organ and tissue transplants has increased worldwide in recent decades. However, graft rejection,
infections due to the use of immunosuppressive drugs and a shortage of graft donors remain major concerns.
Carbon monoxide (CO) had long been regarded solely as a poisonous gas. Ultimately, physiological studies
unveiled the endogenous production of CO, particularly by the heme oxygenase (HO)-1 enzyme, recognizing CO as
a beneficial gas when used at therapeutic doses. The protective properties of CO led researchers to develop uses
for it, resulting in devices and molecules that can deliver CO in vitro and in vivo. The resulting interest in clinical
investigations was immediate. Studies regarding the CO/HO-1 modulation of immune responses and their effects
on various immune disorders gave rise to transplantation research, where CO was shown to be essential in the
protection against organ rejection in animal models. This review provides a perspective of how CO modulates the
immune system to improve transplantation and suggests its use as a therapy in the field.
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Review
Transplantation
End-stage organ failure often requires transplantation, and
the number of solid organ transplants reached 106,900
worldwide in 2010 according to the Global Observatory
on Donation and Transplantation (www.transplant-obser-
vatory.org). One of the most common solid organ trans-
plants is the kidney. Even for renal diseases that can be
treated with various therapies, transplants increase the
quality of life in most cases and are a financially attractive
solution. More than 73,000 kidney transplants were per-
formed in 2010; in comparison, approximately 21,000 liver
transplants were performed (www.transplant-observatory.
org). Although there are a high number of solid organ
transplants, graft loss following chronic allograft dysfunc-
tion is still a major concern during transplantation [1,2].
For cases in which chronic rejection does not occur, side-
effects due to the use of immunosuppressants are the
main cause of mortality [3]. A third concern is the short-
age of organs that has forced the donor pool to include
extended criteria and non-heart beating donors, which are
more susceptible to delayed graft function (DGF) [4]. All

of these complications reinforce the search for new trans-
plantation therapies.

Immune system in ischemia and reperfusion
The immune system is divided into the innate and adap-
tive immune responses. The innate immune response is
known as the first line of defense, and it depends mostly
on inflammatory components. It is faster and less spe-
cific than the adaptive response. In contrast, the adaptive
response involves the participation of lymphocytes, and
it generates memory. It takes longer to build an adaptive
response, but such responses are more specific than in-
nate responses. While adaptive immune responses are
an excellent system for fighting pathogens, they are also
very effective against allograft acceptance. In solid organ
transplantation, the graft is subjected to ischemia prior
to being transplanted. Ischemia and reperfusion (IR) is
the first step in which the immune system acts to avoid
the survival of the graft. Ischemia is defined as the cessa-
tion of arterial blood flow, which leads to oxygen
deprivation of the cells. Cold ischemia is most often
used in transplantation, whereby the organ is harvested
and kept in a cold solution. There is also warm ischemia,
which involves the blockade of blood flow by trauma,
such as during a stroke [5]. IR causes cell damage [6,7],
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and it is associated with DGF and primary graft non-
function [8,9].
Microvascular damage initiates inflammation by upre-

gulating complement [10], Toll-like receptors (TLRs) [5],
TLR ligands [9], and leukocyte adhesion molecules [11].
The complement system is a cascade of proteins that

participates in the inflammatory response and produces
the membrane attack complex (MAC). C5a, one of the
products of complement activation, is involved in IR in-
jury by attracting and stimulating the degranulation of
neutrophils, as well as upregulating CXC-motif chemo-
kines [12]. Blockade of the C5a receptor during cold is-
chemia impairs IR damage by diminishing tubular cell
apoptosis [13]. MAC formation can lead to cell lysis, but
it can also activate tubular epithelial cells [14-16] to upre-
gulate proinflammatory and fibrotic factors, such as IL-6,
TNF, ICAM-1 and collagen [14-17]. The complement in-
hibitor decay-accelerating factor (DAF) was shown to be
absent in mice that are more susceptible to MAC-induced
microvascular injury following IR [18]. The deposition of
MBL, C3, C6 and C9 in the kidney following IR [19] and
the deficiency of Crry (a C3 inhibitor) increased the sus-
ceptibility of mice to kidney IR injury [20], corroborating
the notion that complement activation during IR contri-
butes to the inflammatory response.
TLRs are a component of the innate immune response

because they recognize pathogen- and damage-associated
molecular patterns, and they have been implicated in sev-
eral inflammatory diseases. The absence of TLR4 and/or
TLR2 protects mice from IR injury, improving cardiac
function [21,22]. TLR2 expression was increased in the
liver following IR, and it was associated with higher levels
of TNF [23]. However, the lack of TLR2 was not able to
protect animals from liver IR injury, while TLR4-deficient
animals were protected. This protection was associated
with reduced levels of TNF, and it was shown to be
dependent on intrahepatic HO-1 expression [24]. TLR2-
and MyD88 (adapter protein for most TLRs)-deficient
mice displayed decreased tubular epithelial apoptosis, cel-
lular infiltration and dysfunction [25,26]. TLR4−/− animals
were also protected from IR with improved renal function,
diminished chemokine production and fewer cellular infil-
trates [27,28]. The increase in TLR4 following IR was ac-
companied by an upregulation of HMGB-1, hyaluronan
and brevican [27], which suggested that these ligands
could be responsible for the downstream activation of
TLRs, thereby improving the inflammatory response and
contributing to IR injury.
Leukocyte adhesion molecules are often associated with

cell migration during inflammatory responses. There are
three main groups of leukocyte adhesion molecules: integ-
rins (VLA-4, CD11/CD18) [29,30], immunoglobulin super
family members (ICAM-1, VCAM-1, CD4, CD8) [31] and
selectins (E, P, L-selectin) [32]. In animal models, the

administration of monoclonal antibodies against leukocyte
adhesion molecules was able to attenuate IR injury in
many organs, including the heart, liver and skeletal muscle
[33]. The administration of anti-CD11a and anti-CD11b
monoclonal antibodies prior to renal ischemia prevented
renal injury with lower serum creatinine levels, but it did
not abolish neutrophil migration [34]. IR upregulates
ICAM-1 expression in the murine kidney, and the absence
of this molecule protects animals from IR injury [35]. Al-
though the first two adhesion molecule groups seem to be
involved at least partially in IR damage, the selectin group
is minimally involved. L-selectin deficient mice presented
similar levels of neutrophil infiltration and renal function
when compared to wild type controls [36]. These studies
confirmed the role of inflammation during IR injury and
led us to question the participation of immune cells in this
stage of the transplant process.
As mentioned previously, immune cells infiltrate organs

during reperfusion. Neutrophils usually accumulate in the
organ following IR in mouse models [35,37], and the de-
pletion of this cell type prevents acute kidney injury (AKI)
[35]. It remains unclear how neutrophils migrate and be-
come activated in the ischemic organ, but they seem to be
fundamental for IFN-γ and IL-17 production [37,38]. In-
variant natural killer T (iNKT) cells were also shown to be
important for the control of IFN-γ-producing neutrophils
in a renal IR model [37]. iNKT cells are also involved in
hepatic IR injury via CD1d activation [39]. In lung IR,
these cells are the primary IL-17 producers [40].
Another important innate immune cell is the macro-

phage. Macrophages are phagocytic, like neutrophils, but
they are known as antigen presenting cells (APC) be-
cause they present antigens to T cells. These cells were
shown to infiltrate organs via CCR2-CX3CR1 upon is-
chemia, with a slight delay when compared to neutro-
phils [41]. The depletion of macrophages by liposomal
clodronate prior to IR prevented AKI, and the adoptive
transfer of these cells reconstituted the injury [42,43].
Neutrophil- and iNKT cell-derived IFN-γ is a potent ac-
tivator of macrophages, leading to increased production
of the proinflammatory cytokines IL-1α, IL-6, TNF and
IL-12 [37].
Dendritic cells (DCs) are also APCs and are considered

a bridge between innate and adaptive immunity. Blocking
the CD80/CD86 costimulatory molecules to prevent T cell
activation reduced AKI [44]. Dong et al. [45] demon-
strated that renal DCs were able to activate T cells from
the draining lymph node after IR. In another study [46],
they showed that renal DCs displayed elevated expression
of activation molecules (CD80, CD86, MHC class II and
CD40) following IR, as well as increased expression of IL-
6, MCP-1 and RANTES. Furthermore, they established
that DCs were the main source of TNF in the kidney after
IR. DCs and macrophages are the primary cell types that
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express TLRs, which suggests that these cells are partially
responsible for the involvement of TLRs during IR injury.
B cells have several similarities with DCs and macro-

phages in that they also are able to process and present
antigen to T cells via MHC class II. B cells contribute to
IR injury in several models: intestine, heart, kidney and
skeletal muscle [47-52]. Furthermore, B cell-deficient mice
are protected from renal IR injury [50,52]. Complement
receptor (CR) 2 deficient-mice, which are defective in B-1
cells and are therefore immunoglobulin (Ig) M-deficient,
are protected from IR muscle injury [51].
The adaptive immune response depends on a series of

events, making it a lengthy process. Therefore, T cells, the
leading actors of this process, had not been frequently
associated with IR injury because it is an immediate re-
sponse. More recently, a collection of studies has changed
this idea and suggested an important role of T cells in IR
injury. In a rat model of IR, the use of FTY720 (2-amino-
2-[4-octylphenyl]-1,3-propaneldiol hydrochloride), a syn-
thetic analog of sphingosine that blocks T cell circulation
from the lymph node to the peripheral blood, improved
microcirculation, decreased liver damage and decreased
IL-6 and TLR4 expression [53]. In lung IR, CD4+ T cells
were shown to have a major role in stimulating chemokine
production and neutrophil chemotaxis, which in turn con-
tributed to IR injury [54]. Shigematsu et al. [55] demon-
strated that B cells, CD4+ and CD8+ T cells are involved in
the proinflammatory and prothrombogenic phenotype of
intestinal IR. In the kidney, the elimination of CD4+ T cells
with MHC class II knockout mice or anti-CD4 antibodies
led to improved renal function following IR [56]. The de-
pletion of CD4+ T cells, but not CD8+ T cells, diminished
injury after hepatic and renal IR [57,58]. CD4+ T cells
were shown to be autoreactive following IR [59], and the
transfer of DO11.10 (TCR OVA-specific) CD4+ T cells to
nude mice, which are normally protected from renal IR in-
jury, conferred renal damage [60]. These studies strongly
suggest the participation of CD4+ T cells in IR injury, and
this injury seems to be dependent on T cell activation.
However, the specificity of this activation remains unclear.
Altogether, IR is a complex process that involves acti-

vation of both the innate and adaptive immune systems,
leading to complications in graft acceptance (Figure 1).

Immune system in transplantation
The general concept of allograft rejection surmises that T
cells react to alloantigens presented by donor and/or re-
cipient APCs to trigger cytotoxicity and inflammation.
With new advances in transplant research, the involve-
ment of the immune system in this process has changed.
Much like IR injury, the transplantation process is now
thought to involve both immune responses [61] (Figure 1).
During heart or renal rejection, the complement is acti-
vated, and it can be detected in the blood or urine [62,63]

and in the graft itself [64]. In human kidney allografts,
tubular epithelial cells generate complement components
and become the primary target of their activation [65]. In
a mouse model of kidney transplantation, kidneys from
C3−/− donors survived for a long period in a fully mis-
matched recipient without any immunosuppression, pro-
viding evidence of the role of donor-produced C3 in
kidney rejection [66]. Human donors with a natural defect
in mannose binding lectin (MBL), a protein associated with
complement activation, improved the chance of cardiac
allograft acceptance [67], whereas heart donor DAF−/−

mice accelerated graft rejection [68]. These data suggest
two mechanisms for the involvement of complement in
allograft rejection: the direct activation of complement in
epithelial cells or an indirect role of complement by favor-
ing immune cell activation.
Recipients TLR2−/− and MyD88−/− mice had chronic

allograft damage attenuated. These deficiencies also
reduced the infiltration of DCs, macrophages and T cells
into the graft, leading to decreased expression of IL-6,
IL-10, monocyte chemotactic protein-1 (MCP-1) and IL-
12. Fibrotic factors were also diminished in these models
via decreased collagen types I and III compared to wild
type controls [69]. The downregulation of TLR2 and
TLR4 by cyclosporine A and Serp-1 co-treatment impaired
T cell and macrophage intragraft infiltration and allowed
for indefinite graft survival [70]. It was additionally shown
that TLR4 is constitutively expressed in donor organs, and
TLR4 and HMGB-1 expression are increased in non-heart
beating donor kidneys [71,72]. In liver transplantation,
TLR2, TLR4, HSP60 and HSP70 were increased during
reperfusion, with a peak at 3 h [73]. Patients with acute liver
transplant rejection have shown increased CD14+TLR2+
monocytes [74]. TLRs are involved in organ transplantation,
and their activation may modulate immune cells that con-
tribute to allograft rejection.
Innate NK cells, which are usually associated with pro-

tection against tumors and viral infections, were shown
to infiltrate grafts during allogeneic heart transplant-
ation. Associated with this infiltration was the upregula-
tion of their receptor NKG2D as well was their ligands
retinoic acid early inducible (RAE-1) and minor histo-
compatibility antigen H60 [75]. In mouse models, NK
cells were shown to be important for the tolerance of
islet and skin allografts [76,77]. Together with other
studies [61], NK cells appear to participate in the graft
progress. However, they appear to promote both toler-
ance and rejection. Therefore, further investigation is
required to understand the relevance of these cells in
transplantation models.
Adaptive immunity during transplantation has been ex-

tensively studied, and its role in allograft tolerance and re-
jection is well established. CD4+ T cells have long been
known to promote allograft rejection [78]. Although CD8+
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T cells cannot initiate rejection independently, they exert
cytotoxic functions via Fas/Fas-L, contributing to the loss
of the graft [79]. Valujskikh et al. [80] summarized the
mechanisms of T cell involvement during transplantation.
The classical activation of CD80/CD86 on APCs through

T cell CD28 ligation induces cytokine production (IL-2,
TNF, IFN-γ) [81], and this is known to lead to allograft re-
jection. Similarly, CD40/CD154L amplifies T cell activa-
tion, which yields the same outcome as costimulation.
Other costimulatory molecules seem to function similarly,
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such as the interaction between ICOS/B7RP-1 and
CD134/CD134L. Animal studies have shown that blocking
the ICOS/B7RP-1 interaction can prolong allograft survival
in heart, liver and islet transplantation models [82-86].
Although the disruption of the CD134/CD134L interaction
was not able to provide long-term graft survival on its
own, it could when combined with other therapies [87].
Inhibiting the interaction of PD-1/PD-L1 with an anti-
PD-L1 antibody had the opposite effect and accelerated
skin graft rejection [88]. However, diminishing PD-1 signal-
ing in combination with anti-CD154 delayed islet rejection
[89]. Apart from naïve T cell interactions, memory T cells
also play a role in allograft rejection. Zhang et al. showed
that sequestering alloreactive memory CD4+ T cells
improved graft survival in a heart transplantation model
[90], and CD4+ T cell subsets were involved. The Th1 sub-
set was thought to be the most important T helper cell in
transplantation by promoting the generation of cytotoxic
cells, the activation of APCs and antibody production
[91,92], while the Th2 subset was seen as a regulatory cell
in this model [93]. With the discovery of new T helper cell
subsets, including Th17 (produces IL-17 and is associated
with inflammatory disorders [94]) and Tregs, this paradigm
has been revised: Th17 cells are now recognized as pro-
moting graft rejection along with Th1 cells [93,94]. In
humans, IL-23, a cytokine that induces Th17 differenti-
ation, and IL-17 are elevated in the serum from patients
who have had hepatic rejection [95]. IL-17 was also
increased in the bronchoalveolar lavage of lung transplant
patients with acute rejection [96] as well as in the urine of
patients with subclinical kidney rejection [97]. Several
mouse models have confirmed that IL-17 favors allograft
rejection [98,99]. With the discovery of Tregs, the Th2
subset has lost its role as a protector cell in several mod-
els, allowing this new regulatory subset to take its place
[100,101].
These works summarize the importance of APC-T cell

interactions against the foreign graft and how important
it is to control their cross-talk following transplantation.

The classical and new concepts of carbon monoxide
The well-known odorless, colorless and tasteless gas car-
bon monoxide (CO) was originally described to bind
hemoglobin with 140 times greater affinity than oxygen
(O2) by Haldane in 1895 [102], when it was classified as
a cumulative poison. It is currently known that this af-
finity is approximately 210–250 times greater than O2.
In 1906, Nasmith and Graham [103] confirmed the poi-
sonous character of CO, showing that this gas prevented
O2 from reaching tissues. However, they also showed an
increase in erythrocytes in the presence of elevated CO
levels, similar to those found at high altitudes. This indi-
cated that the body could stand higher levels of CO in
certain situations and not succumb to it. The authors
did not emphasize this discovery, and CO continued to
be popularly associated as a villain for many years.
In 1952, Sjöstrand proved that CO was present in our

body and that hemoglobin decomposition could produce
CO [104]. Furthermore, increased heme levels were found
to increase endogenous CO production [105]. It was only
in 1968 that Tenhunen et al. showed a connection
between heme oxygenase (HO) and CO [106]. They pro-
vided evidence that CO and bilirubin were by-products of
the HO-mediated cleavage of heme [106,107]. CO was
also shown to be produced by other mechanisms, includ-
ing phenol oxidation [108,109], the hormone progesterone
[110] and the peroxidation of microsomal lipids and phos-
pholipids [111-113]. Nevertheless, the majority of CO pro-
duction in the body is dependent on HO activation [114].
HO is an enzyme that can open the heme ring in the

presence of O2, nicotinamide adenine dinucleotide phos-
phate NADPH and (NADPH)-cytochrome P450 reduc-
tase, thus cleaving heme into biliverdin, iron and CO
[115,116]. The first isoform of HO-1 was described as in-
ducible in 1974 [117,118], while the other two isoforms
(HO-2 and HO-3) were found to be constitutive
[119,120]. HO-1 (32 kDa) is localized to microsomes and
is induced in mammalian tissues, while HO-2 (36 kDa) is
present in mitochondria and is expressed in the brain,

(See figure on previous page.)
Figure 1 Immune response activation during reperfusion and transplantation. Reperfusion can lead endothelial cells to death initiating the
immune response. Endogenous ligands are released and recognized by Toll-like receptors (TLRs) on antigen presenting cells (APCs) or
endothelial cells. This activation generates inflammatory cytokines enhancing the inflammatory response and activating other cells from the
immune system. During reperfusion, complement proteins can also be activated by the decreased expression of complement inhibitors by
endothelial cells. This activation can generate the membrane attack complex leading to endothelial cell lysis. Complement activation can also
produce chemokines and anaphylatoxins, and together with an increase in adhesion molecules expression, neutrophils migrate to the graft and
produce more inflammatory cytokines and reactive oxygen species (ROS), which can contribute to cell death. Natural killer T (NKT) cells
contribute to neutrophils activation and to cytokines production. During reperfusion, T cells in the lymph node are somehow activated,
amplifying cytokines production and leading to B cells maturation, providing immunoglobulins (Igs) release. Igs can activate complement and act
as opsonins, contributing to the whole process of immune response. This activation persists after transplantation, and donor antigens enhance
the immune response when they are processed by APCs (donor or recipient) in the graft that migrate to the lymph node and present them to T
cells. T cells can proliferate and amplify the response with an increase in cytokines. The activation of all these components contributes to graft
rejection by establishing the local inflammation, leading to endothelial cell death, cell proliferation and cell migration. Donor antigen presentation
reinforces the whole process and the persistence of the immune response activation in the graft can change the cytokine profile and favors the
fibrosis development.
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testes, endothelium, kidney, liver and gastrointestinal tract
[121]. HO-3 was found to be a pseudogene derived from
the HO-2 gene [122].
HO-1, also known as heat shock protein 32, has been

extensively studied for its protective role. It was shown
to have anti-proliferative [123], anti-apoptotic [124],
anti-oxidant [125] and anti-inflammatory [126] effects.
HO-2 [127] and HO-1 [128,129] knockout mice broa-

dened our knowledge of HO and its by-products, and
they confirmed its anti-inflammatory role through their
spontaneous development of an inflammatory pheno-
type. Two years later, the first case of HO-1 deficiency in
humans was described. HO-1-deficient people share
similarities with HO-1 knockout mice, as they display
tissue iron deposition, lymphadenopathy, leukocytosis
and sensitivity to oxidative stress injuries [130].
The discovery of HO-1 as a potential mechanism of

immune therapy, and the connection of this enzyme to
CO production, raised new ideas about this gas and
implicated it as a novel therapy.
After a long absence of CO studies, physiological stud-

ies demonstrated that CO was a neurotransmitter in
1993 [131]. With this new vision and with the discover-
ies of other gases [132], CO began to be investigated as
a potential therapy.
Studies concerning the mechanism of action of CO have

shown that it binds to the heme moiety of soluble guanylyl
cyclase (sGC), leading to cyclic guanosine monophosphate
(cGMP) activation [133,134]. CO-induced cGMP is
involved in vascular relaxation [133,134], the inhibition of
vascular smooth cell proliferation [135,136], the inhibition
of platelet aggregation [137] and anti-apoptotic action
on pancreatic β cells [138]. The anti-apoptotic proper-
ties of CO have been extensively studied because of
their possible indication of CO as a therapeutic agent
for several disorders. CO was shown to prevent mi-
tochondrial permeabilization, inhibiting the intrinsic
apoptotic pathway [139]. In macrophage lineages, CO
inhibited cytochrome c oxidase and the generation of
mitochondrial ROS [140]. In astrocytes, CO was shown to
induce cytochrome c oxidase activity and increased Bcl-2
expression, which rapidly interacted with cytochrome c
oxidase to prevent apoptosis [141]. Endothelial cells re-
quire activation of the p38/mitogen-activated protein kin-
ase (MAPK) pathway by CO to prevent TNF-induced cell
death [142]. In contrast, CO promotes Fas/CD95-induced
cell death by inhibiting activation of the ERK/MAPK path-
way in T cells [143].
Although CO activates cGMP, nitric oxide (NO) acti-

vates it more potently [144]. The relationship between
these two molecules seems to involve a complex nega-
tive feedback loop: NO induces HO-1 expression and
consequently CO production [145], while conversely,
HO-1 and CO inhibit NO synthesis activity [146,147].

Several groups began developing ways to release CO
in order to manipulate the quantity of gas. CO at
250 ppm was shown to induce macrophage phagocyt-
osis, and the same condition was described to be benefi-
cial in many animal disease models [148]. In 2002,
Chauveau et al. [149] used methylene chloride as a pro-
drug to induce CO release by hepatic enzyme catabol-
ism. Because methylene chloride use is dependent on
the condition of the liver, Motterlini et al. searched for
new CO-releasing molecule (CORM) candidates [150].
They identified molecules based on heavy metals sur-
rounded by carbonyl groups, such as iron pentacarbonyl
[Fe(CO)5], dimanganese decacarbonyl [Mn2(CO)10] and
tricarbonyldichlororuthenium (II) dimers [Ru(CO)3Cl2]
2. All of the compounds could convert deoxymyoglobin
to carbonmonoxymyoglobin, which indicates that CO
has been released from the metal complexes. These
molecules were able to attenuate coronary vasoconstric-
tion ex vivo and reduce acute hypertension in vivo. The
same results were observed after hemin treatment,
which stimulates CO release through HO-1 activation.
The use of these complexes was a great advance in CO

research, but there were still problems for in vivo studies.
The requirement of a steric ligand or light to dissociate
CO from the complex and the difficulty of solubilizing
compounds in dimethylsulphoxide (DMSO) demanded a
search for new compounds. Clark et al. developed tri-
carbonylchloro(glycinato)ruthenium(II) ([Ru9CO)3Cl
(glycinate)]), also known as CORM-3, with [Mn2(CO)10]
renamed as CORM-1 and [Ru(CO)3Cl2]2 as CORM-2
[151]. CORM-3 is a water-soluble compound that is able
to release CO into physiological solutions without prior
activation. It was shown to protect the heart from
ischemia-reperfusion injury and from cardiac allograft re-
jection [151]. More recently, a new CORM was identified,
known as sodium boranocarbonate Na2 [H3BCO2] and
termed CORM-A1, which does not contain a transition
metal and is water soluble. It releases CO at a slower rate
when compared to others CORMS [152]. CORM-A1 was
shown to have cerebroprotective effects [153,154], vaso-
dilatory effects in the kidney [155] and antithrombotic
properties [156,157]. However, it is less effective than the
metal CORMs in certain aspects (e.g., bactericidal) [158].
Although several models of CORMs have been developed,
the residual transition metal is potentially toxic, and fur-
ther studies are required before these molecules can be
applied in the clinics.
Interestingly, the use of CO as a gas is in phase I human

clinical trials, and a study has been completed whereby
250 ppm of CO was inhaled by healthy volunteers (www.
clinicaltrials.com). Other clinical trials with the use of CO
inhalation are ongoing in the USA, including trials for pul-
monary fibrosis, severe pulmonary hypertension and post-
operative ileus following colon resection. The advances in
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the use of therapeutic CO reinforce the idea of using this
gas in immune-dependent models, such as solid organ
transplantation.

Immunomodulatory effects of CO
In innate immunity, the induction of HO-1 increases
DAF expression, which decreases complement activity
and, consequently, decreases vascular injury [159]. TLR
activation through IFN-β/JAK2/STAT-1/INOS/NO sig-
naling was inhibited by the use of CORM-2, which con-
sequently inhibited macrophage HMGB-1 release [160].
The same treatment induced tolerogenic DCs, which
inhibited TLRs, maturation, pro-inflammatory cytokine
secretion, proliferation of alloreactive T cells and IRF-3
expression, while maintaining IL-10 production [161].
Macrophages exposed to CO also displayed inhibition of
TLR activation via impaired translocation to lipid rafts
and suppressed reactive oxygen species (ROS) gener-
ation [162].
CORM-2 and CO exposure affects endothelial cell ad-

hesion by diminishing ICAM-1 expression concurrently
with reduced proinflammatory cytokine (TNF and IL-
1β) production [142,163]. Other proinflammatory cyto-
kines were affected after exposure to CO, including IL-6
and IL-17, which were downregulated in pulmonary epi-
thelial cells through the ERK1/2 MAPK pathway [164].
This pathway inhibited by CO, also led to diminished
IL-2 expression and inhibited T cell proliferation [165].
Decreases in portal venous resistance through the p38
MAPK pathway was observed when rat livers were sub-
jected to CO [166]. This pathway was also associated
with protection against oxidant-induced lung injury by
CO [167].
The role of CO in NK cells is poorly understood, while

another important cell of the innate immune response,
neutrophils, was shown to have inhibited migration in
the presence of CO [168].
Wegiel et al. summarized the effects of CO in different

immune cells, and as previously mentioned, macro-
phages and DCs develop a tolerogenic phenotype upon
CO treatment [169]. APCs are the major link between
the innate and adaptive immune responses, and CO-
treated DCs were shown to express diminished MHC
class II, leading to decreased APC-induced T cell prolif-
eration and TNF and IFN-γ production [170]. CO also
inhibited the CD8+ T cell autoimmune response and cel-
lular accumulation in the pancreas in diabetes model
[171]. Beyond the indirect action of CO on T cells, this
gas has the ability to act directly on T cells by inhibiting
IL-2 production and blocking T cell proliferation [165].
These works corroborate the idea of using CO as an im-

munosuppressant during transplantation (Figure 2), which
can interfere at different stages of the transplant process.

CO in transplantation
Different organ transplant models indicated a protective
role of CO administration during transplantation (Table 1).

Donor
Several studies have demonstrated the relevance of HO-1/
CO expression in organ donors that favor graft tolerance.
In an islet allograft model, CO blocked TLR4 upregulation,
diminishing the inflammatory response and cytokine-
induced apoptosis, which protected the graft from rejection
[172]. In a fully mismatched model, donor mice received
hemin, a protoporphyrin that induces HO-1 expression,
and their aortas were transplanted into non-treated mice.
The neointimal area, the proliferation of endothelial cells
and the production of IFN-γ by CD8+ Tcells were reduced.
The use of CORM-3 mimicked the effect of hemin, dem-
onstrating the importance of CO in this model [173].
Donors inhaling CO or cold ischemia with CO perfusion
improved graft function, and this was associated with
decreased apoptosis and increased viability of endothelial
cells and cardiomyocites [174]. CO has also been suggested
as a potential therapy for kidney transplantation. The in-
duction of CO in the donor by oral administration of
methylene chloride was able to prevent chronic rejection
of rat renal allografts [175]. Donors treated with CORM-2
presented fewer lymphocytic infiltrates and reduced acute
tubular necrosis in the graft [176]. This protection was
most likely related to CORM-2-induced endothelial
changes via a reduction in NADPH-dependent superoxide
anion production, IkB degradation, and E-selectin and
ICAM-1 expression [176].

Graft
The use of Cobalt protoporphyrin in rapamycin-induced
renal dysfunction following ischemia-reperfusion injury
increased HO-1 levels and eased acute renal injury
[177]. Similar results were observed with the CO inhal-
ation model. This protection was associated with the in-
duction of hypoxia inducible factor-1α (HIF-1α) and less
severe apoptosis [178]. Cold ischemia of the liver, intes-
tine, vein and kidney grafts in the presence of CO
induced graft protection [179-184] with increased recipi-
ent survival, which was associated with increased expres-
sion of vascular endothelial growth factor (VEGF) and
HIF-1α, leading to decreased apoptosis [180,181]. CO
exposure during cold ischemia decreased TNF, IL-6,
COX-2 and ICAM-1 expression, which led to reduced
inflammation and modulated apoptosis by the increased
expression of the anti-apoptotic Bcl-2 and decreased ex-
pression of the pro-apoptotic Bax through the sGC/
cGMP pathway [182,184]. The use of CORMs is a prom-
ising therapy because it is a soluble method of treating
organs and subjects. Kidney perfusion with CORM-3 led
to improved renal function and diminished acute tubular
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Figure 2 Immunomodulatory properties of carbon monoxide (CO). CO can act in different cells to downregulate the immune response.
Endothelial cells have increased expression of decay accelerating factor (DAF), diminishing complement activation and vascular injury. These cells
also have decreased Toll-like receptors (TLRs) and ICAM-1 expression in CO presence, which reduces leukocyte migration and activation, resulting
in less inflammatory cytokines production. CO treatment increases vascular endothelial growth factor (VEGF), hypoxia-inducible factor (HIF)-1a and
Bcl-2 expression, which is associated to apoptosis decrease. Neutrophils are also affected by CO, having impaired migration with diminished
production of local reactive oxygen species (ROS). Antigen presenting cells (APCs) such as macrophages and dendritic cells (DC) have TLRs
expression decreased after CO treatment, impairing their maturation leading to decreased ROS and inflammatory cytokines production, less T cell
activation and proliferation and maintained IL-10 production. Although lymphocytes can be influenced by CO through APCs modulation, CO can
directly act on lymphocytes by diminishing IL-2 production, which consequently suppresses T cell proliferation. CD4+ T cells are more prompt to
develop Treg phenotype, which increases IL-10 production. CD8+ T cells have their alloresponse diminished when treated by CO. The role of CO
on B cells, NK and NKT cells activation remains unclear.

Table 1 Carbon monoxide effects on organ transplantation

ORGAN FINDINGS REFERENCES

Lung ↓apoptosis, ↓inflammation, ↓oxidation, ↑tissue preservation [194,201]

Intestine ↓inflammation, ↑graft survival, ↓apoptosis [182,195]

Heart ↑graft survival, ↑graft function, ↑tissue preservation, ↓ischemia/reperfusion injury, ↓cell proliferation,
↓inflammation, ↓apoptosis, ↓cell infiltration, ↓cell activation, ↑Tregs

[151,173,174,181,187,189,191,198-
200]

Pancreatic
Islet

↑graft survival, ↓TLR4, ↓inflammation, ↓apoptosis [172]

Liver ↑tissue preservation, ↑graft function, ↓neutrophil accumulation, ↓inflammation, ↓apoptosis [184,186,188,196,197]

Kidney ↑graft survival, ↑graft function, ↓fibrosis, ↓ischemia/reperfusion injury, ↓apoptosis, ↓cell proliferation,
↓inflammation, ↓cell infiltration

[175-180,185,192,193,202]

↓Reduced; ↑Increased.
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necrosis and glomerular necrosis [176]. In warm IR,
CORM-3-treated animals were protected against acute
kidney injury [185]. CORM-2 prevented hepatic IR in-
jury by elevating Bcl-2 and inhibiting caspase 3, leading
to decreased apoptosis and inhibiting the proinflamma-
tory molecules NF-kB, TNF, IL-6 and ICAM-1 [186].
Isolated heart treatment with CORM-3 showed cadio-
protection and improved myocardial function [151,187].
Similar results were observed in CORM-3-treated hep-
atic cold preservation [188]. In a rat model, CORM-3
improved aorta graft adventitial remodeling and neo-
intima formation [189]. The combination of CO and
biliverdin treatment for heart and kidney grafts resulted
in protection against ischemia-reperfusion injury [190].

Recipient
Abdominal aortic transplants presented prolonged sur-
vival with CORM-2 treatment in a murine allograft model
[191]. Kidney graft recipients exposed to CO after surgery
displayed improved graft function and diminished
ischemia-reperfusion injury [192]. In a chronic allograft
nephropathy model, inhaled CO improved renal function
with decreased tubular atrophy and decreased fibrosis.
Impaired anti-donor IgG antibodies and decreased expres-
sion of macrophage inflammatory protein 1 (MIP-1a), che-
mokine receptors (CCR1, CXCR3, CXCR5), ICAM-1 and
IL-2, leading to reduced T cell proliferation, were also
observed [193]. In a lung transplant model, recipient ani-
mals were exposed to CO following surgery. As a result, a
marked reduction in apoptosis, inflammation and tissue
damage was observed in CO-subjected mice [194]. CO ad-
ministration during small intestinal transplantation also
reduced inflammation, with decreased levels of IL-6, IL-
1β, iNOS and COX-2 in the graft and prolonged graft sur-
vival [182,195]. Recipients treated with CO gas presented
improved graft function in a liver transplantation model
due to the inhibition of proinflammatory molecules, such
as TNF, ICAM-1 and iNOS, leading to decreased neutro-
phil accumulation and diminished necrosis [196]. Similar
results were obtained when recipient rats were treated by
methylene chloride in a liver transplant model; the recipi-
ents displayed increased survival, impaired CD95/FasL-
mediated apoptosis and preserved hepatic architecture
and function [197].
In murine heart xenotransplantation, the transplanted

heart with inhibited HO-1 was rapidly rejected from the
recipient rat in comparison with the wild-type graft, sug-
gesting the importance of HO-1 production by the graft.
Nevertheless, treatment of both the donor and the recipi-
ent with CO prolonged the graft survival independently of
HO-1 inhibition by blocking platelet aggregation and
endothelial cell apoptosis [198]. Allogeneic transplanted
aortic segments develop arteriosclerotic lesions. CO expos-
ure was able to inhibit the hyperplasia associated with

chronic graft rejection with fewer graft infiltrating macro-
phages, CD3+, CD4+ and CD8+ T cells. The macrophages
were also less activated and presented diminished MHC
class II and ICAM-1 expression. These effects were
dependent on guanylate cyclase activation and cGMP gen-
eration via activation of the p38/MAPK pathway and
expression of the cell cycle inhibitor p21clip1 [199]. In a
heart allograft model, the combination of HO-1, CO and
bilirubin treatments led to long-term survival and tolerance
of the graft by inducing Foxp3+ Tregs [200]. In a rodent
model of lung transplantation from deceased donors, the
combination of CO gas and biliverdin treatment induced
cytoprotection by attenuating MPO, IL-8 and TNF in the

Table 2 Carbon monoxide immunomodulation during
transplantation

CO
TARGET

CONSEQUENCES

DONOR ↓Toll-like receptor (TLR)4

↓endothelial cell proliferation

↓lymphocytic infiltration

↓inflammatory cytokines production (IFN-g)

↓apoptosis

↓Reactive oxygen species (ROS)

↓NFκB (IκB degradation)

↓E-selectin/ ICAM-1

GRAFT ↑Hypoxia inducible factor (HIF)-1a

↑Vascular endothelial growth factor (VEGF)

↓apoptosis (↑Bcl-2, ↓Bax, ↓caspase 3)

↓inflammatory cytokines production (TNF, IL-6)

↓prostaglandin (COX2)

↓ICAM-1

↓NFκB

RECIPIENT ↓Ischemia and reperfusion injury

↓fibrosis

↓anti-donor IgG antibodies

↓chemokine receptors (CCR1, CXCR3, CXCR5)

↓chemokines (IL-8, MIP-1a)

↓ICAM-1

↓IL-2 (↓T cell proliferation)

↓leukocyte infiltration (CD3+, CD4+, CD8+ T cells and
macrophages)

↓macrophage activation (↓MHC class II)

↓neutrophil activation (↓MPO)

↓apoptosis (↓CD95/FasL)

↓inflammatory cytokines production (IL-1β, TNF)

↓iNOS

↓prostaglandin (COX2)

↓platelet aggregation

↑cell cycle inhibition (↑p21clip1)

↑Treg (Foxp3+ T cells)
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graft and by oxidation, with low levels of malonaldhyde
and superoxide dismutase [201].
More recently, Hanto et al. introduced the use of a

device that can deliver CO by mg/kg, which is an ad-
vance for future therapeutic CO administration. They
showed reduced DGF in a kidney allograft swine model
[202].
Interventions with CO were efficient at different points

of the transplant (Table 2). Summarizing these studies,
CO appears to play an important role in controlling the
immune response and graft acceptance. However, further
investigation is required concerning the phenotypes of
cells (DC, macrophages, T cells) after CO treatment dur-
ing transplantation and to confirm the described tolero-
genic effect of CO in different models. It would also be
interesting to further analyze the dose of CORM and the
resulting side-effects prior to starting use in humans.
Nevertheless, CO is a good candidate for potential
changes in the clinical setting.

Conclusions
Our current knowledge about CO completely disrupts the
idea that it is only a dangerous gas. Instead, it shows that
we are capable of manipulating it and can strategically use
it for clinical purposes. In this review, we highlighted the
protective properties of CO associated with its capacity to
modulate the immune system. CO was shown to down-
regulate components and cells of the innate immune re-
sponse, thereby impairing inflammation and the activation
of the adaptive immune response. Moreover, CO was able
to directly act on adaptive immune cells, which play a pri-
mary role in allograft rejection. Due to its capacity to
immunomodulate the environment, this intervention was
effective during the three stages of transplantation (donor,
graft and recipient), widening the possibilities of its use. In
conclusion, CO has the capacity to downmodulate the im-
mune response, suggesting its use as an attractive thera-
peutic agent during transplantation.
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