

 Universidade de São Paulo

2013

Mapping virtual networks onto substrate

networks

Journal of Internet Services and Applications, Heidelberg, v.4, p.1-15, 2013
http://www.producao.usp.br/handle/BDPI/34986

Downloaded from: Biblioteca Digital da Produção Intelectual - BDPI, Universidade de São Paulo

Biblioteca Digital da Produção Intelectual - BDPI

Departamento de Ciência da Computação - IME/MAC Artigos e Materiais de Revistas Científicas - IME/MAC

http://www.producao.usp.br
http://www.producao.usp.br/handle/BDPI/34986

Alkmim et al. Journal of Internet Services and Applications 2013, 4:3
http://www.jisajournal.com/content/4/1/3

RESEARCH Open Access

Mapping virtual networks onto substrate
networks
Gustavo P Alkmim1*, Daniel M Batista2 and Nelson LS da Fonseca1

Abstract

Network virtualization is a promising technique for building the Internet of the future since it enables the low cost
introduction of new features into network elements. An open issue in such virtualization is how to effect an efficient
mapping of virtual network elements onto those of the existing physical network, also called the substrate network.
Mapping is an NP-hard problem and existing solutions ignore various real network characteristics in order to solve the
problem in a reasonable time frame. This paper introduces new algorithms to solve this problem based on 0–1
integer linear programming, algorithms based on a whole new set of network parameters not taken into account by
previous proposals. Approximative algorithms proposed here allow the mapping of virtual networks on large network
substrates. Simulation experiments give evidence of the efficiency of the proposed algorithms.

Keywords: Virtual networks, Mapping, Future internet

1 Introduction
The minimalism approach of the architecture of the Inter-
net specific network has enabled its global spread. One
consequence of this simplicity, known as the ossification
of the Internet, has been the impossibility to provide miss-
ing features in the original design. These limitations has
prevented the development of many possible applications
and services, although various attempts have been made
to provide some of the features missing in its design [1].

These attempts to overcome the original limitations
include various new mechanisms proposed to promote
the evolution of the Internet [2,3]. Those based on net-
work virtualization allow the definition of virtual net-
works composed of virtual routers and links; these are
then hosted by routers and links of the real network
called “substrate network”. Network virtualization permits
the coexistence of various protocol stacks and architec-
tures on a single substrate, without the need to mod-
ify the actual physical network. Moreover, this approach
imposes no restrictions on the protocols and architectures
involved.

One of the main issues in network virtualization is the
efficient mapping of virtual networks onto the substrate
network [4,5]. This mapping determines the allocation of

*Correspondence: alkmim@lrc.ic.unicamp.br
1State University of Campinas, Campinas, Brazil
Full list of author information is available at the end of the article

routers and links of the virtual network onto the routers
and links of the substrate network. However, the search
for the optimal mapping of virtual networks is an NP-hard
problem [6].

Various solutions have been proposed for this problem
[1,4,5,7]. However, most of them assume certain restric-
tions to make the problem tractable, such as the consid-
eration that requests for virtual network establishment be
previously known [1,7] or that the substrate capacity be
infinite [1,8] and on network topology restricted [7].

This paper proposes a novel solution to the map-
ping problem to helps to overcome such limitations
which imposes fewer restrictions than previous propos-
als. Our proposal does not consider previous knowl-
edge of virtual network requests; but rather considers
that the substrate has a finite capacity, although no spe-
cific network topology is assumed. It considers more
realistic scenarios and, hence, can handle a large num-
ber of parameters that impact on the complexity of a
solution.

The proposed algorithms require the presence of repos-
itories of software images containing the software and
protocols required by virtual networks. These images are
used to instantiate the virtual routers on real routers, as
illustrated in Figure 1. Since all images must be trans-
ferred from the repository to the real router prior to the

© 2013 Alkmim et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

Alkmim et al. Journal of Internet Services and Applications 2013, 4:3 Page 2 of 15
http://www.jisajournal.com/content/4/1/3

Physical router

Repository of virtual router images

Physical link

Mapping

Label:

Virtual router

Virtual link

Figure 1 Network architecture: virtual network and real network with repositories of images.

operation of the virtual network, an adequate mapping
algorithm must select the image and the path the image
transfer should take.

The algorithms proposed here are based on integer
linear programming (ILP) formulations designed to min-
imize the total amount of bandwidth allocated to each
virtual network. One of the algorithms is slow but pro-
vides optimal solutions, while the others are designed
to decrease the run time. Relaxation Techniques for
ILP formulations are employed by these approximative
algorithms.

The proposed algorithms are efficient since they can
provide solutions in a reasonable time frame. The results
show that their execution time is acceptable for var-
ious scenarios with different virtual networks require-
ments. The approximative algorithms also produce a
reasonable probability of blocking requests in the estab-
lishment of virtual network. The algorithms introduced
here differ from those in our preliminary investigation
[9] in that a two step formulation has been adopted
which reduces memory demands thus allowing solu-
tions involving large network substrates with as much as
400 routers.

The paper is organized as follows: Section “Motivation”
illustrates the need for a more detailed modelling of
the problem. Section “Related work” summarizes related
work. Section “Proposed algorithms” introduces the six
proposed algorithms. Section “Performance evaluation”
presents the performance evaluation of the algorithms
and Section “Conclusions and future work” presents the
conclusions and suggestions for future work.

2 Motivation
The formulation proposed here models various character-
istics of existing operational networks. One of the most
important is link delays, which impact on the time needed
to instantiate a virtual network, that is, a requirement of
service providers. Another important issue is the charac-
teristics of the physical routers.

In general, the algorithms presented in the literature [4]
attempt to minimize the amount of resources allocated to
requests from virtual networks, but fail to consider the
need for transferring image files prior to the instantia-
tion of virtual routers. The following example illustrates
the importance of considering link delays and the time
for transferring images from the image repository to the
physical routers. Figure 2 shows a substrate network with
routers, identified as R1 to R6; each router has a differ-
ent number of processing elements (cores). The available
bandwidths of links E1 to E5 are labelled in the figure.
A repository of images is connected to the router R4 by
the link E6. This repository stores the image file I1 which
size is 12.5MB. Each virtual router in the virtual network
shown in Figure 3 has two cores and uses the same image
I1. Moreover, the virtual network must be instantiated in
at most 100 seconds.

The router R1 has no resources available for the allo-
cation of a virtual router since it has a single core and
a virtual router requires two cores. Thus, if the transfer
of images is ignored, the virtual network using routers
(R2,R5) and link E4 or routers (R2,R6) and link E5 would
be instantiated. As a result of such mapping the required
image would be transferred to the physical routers via the

Alkmim et al. Journal of Internet Services and Applications 2013, 4:3 Page 3 of 15
http://www.jisajournal.com/content/4/1/3

Figure 2 Example of a substrate network.

link E1, which has an available bandwidth of only 0.5Mb/s.
Thus requiring 404.5 seconds for the transfer, four times
as long as the time limit to instantiate the virtual network.
Even the use of multicast routing would only reduce this
to 202.5 seconds, i.e. twice the limit.

However, the use of the algorithms proposed in this
paper would lead to the use of routers (R3, R4) and links
(E2, E3), since the approach introduced here considers the
transfer delay of images and the image transfer would take
only four seconds, i.e. much less than the time permitted.

3 Related work
This section summarizes major existing proposals for
network virtualization.

The “Cabo” solution [3] is composed of two layers man-
aged by separate providers with infrastructure providers
responsible for controlling the elements in the physical
layer, and service providers for the provision of network
services in the application layer. The approach presented
here, however, considers the existence of an additional
layer managed by the connectivity providers.

This three-layer architecture is based on the Caber-
net architecture [10], which was designed to eliminate
some of the limitations in the deployment of virtual ser-
vices in Wide Area Networks (WAN). This elimination
results from by making the infrastructure transparent to
the services provider.

The initial design of the Underlay Fused with Overlays
(UFO) architecture is first presented in [11]. This solution
is also limited to two layers, with the underlay notify-
ing the overlay about changes in network resources. The
overlay receives notifications and, in order to increase effi-
ciency and scalability of the virtual networks, can propose
routing changes in the underlay. The mapping algorithms
in the presented paper can be used in conjunction with
the UFO architecture.

In [12], the algorithm Assign was introduced for solv-
ing the network testbed mapping problem. This algorithm
assumes that a substrate node can only be used by a single
request which can lead to under-utilization of the cores of
the substrate nodes. Such assumption is not used by the
formulations introduced in the present paper, allowing an
optimized use of resources. Moreover, the present paper

Figure 3 Example of a virtual network.

considers the transfer of software images which is nei-
ther considered in [12] nor by the Application Component
Placement problem [13].

In most of the existing proposals [4-7], the resources
considered are limited to bandwidth and routers process-
ing capacity. Some papers [14] do suggest the inclusion of
other characteristics as a topic for future work; nonethe-
less, no solution has yet been published. Our proposal
has been able to make several realistic assumptions about
resource availability, memory available, the number of
processing elements of routers, and the time required to
instantiate a virtual router. Our work differ by that in [15]
by the modelling of repositories of images in the substrate.

A multi-commodity flow approach was adopted in [16]
to maximize the number of virtual networks that could
be accommodated on a single substrate network. The
substrate has access nodes, which serve as sources and
destinations for all traffic, and the core nodes are respon-
sible for the routing of packets. A request for virtual
network establishment consists of a list of access nodes
of the substrate, as well as of a traffic matrix that repre-
sents the amount of traffic transferred between the access
nodes listed. Although network capacity is considered, the
processing capacity of the nodes is ignored. Furthermore,
this approach assumes that the demands of a request are
small compared to the available capacity of the network.
Unlike [16], algorithms proposed here take into consid-
eration various other characteristics, and no restrictions
are imposed on the demands of virtual networks. Another
difference is that the algorithm in [16] considers only the
edge nodes of the virtual network. The algorithm in [7] is
similar to that in [16], except that it is uses a mixed inte-
ger quadratic problems branch and bound approach [17]
to map the requests.

The network in [5] supports path splitting and path
migration, thus allowing the solution to be found in poly-
nomial time. In path splitting, a single virtual link can be
mapped onto more than one physical path in the sub-
strate whereas Path migration allows a virtual link to be
remapped offline to adapt a solution in the face of changes
in resource availability. Although the algorithm in [5] runs
in a very short time, it does not consider many of the real-
istic parameters involved e.g, software images, link delay
and the size of images.

Alkmim et al. Journal of Internet Services and Applications 2013, 4:3 Page 4 of 15
http://www.jisajournal.com/content/4/1/3

In several studies [5,6], the mapping of virtual links is
separated from the mapping of virtual routers. Two algo-
rithms were proposed in [4] to integrate the steps, called
Deterministic Embedding VN (D-Vine) and Randomized
Embedding VN (R-Vine). In the algorithms presented in
this paper, however, routers and links can be mapped
simultaneously.

In [6], a distributed algorithm to map virtual networks
was introduced to balance the load among all routers
in the substrate. The experiments presented in [6] show
that such as distributed algorithm can generate a large
number of control messages which can cause long delays
and high overhead for network operation. The algorithms
presented here do not overload the network with such
messages.

There are various aspects that make the solution of the
problem of mapping virtual networks very challenging [5].
The first is the large number of router characteristics. The
second is that given resources limitations, there is a need
for admission control. The third is the fact that requests
for virtual network establishment cannot be foreseen and
usually have a time limit for instantiation. The final reason
is the diversity of topologies in the Internet. The algo-
rithms presented in this paper address all of these issues
except the proposed admission control.

Table 1 compares the characteristics of the algorithms
proposed in this paper with those of the existing algo-
rithms summarized in this section. The columns of the

table list some of the characteristics that should be con-
sidered by an ideal mapping algorithm, while the rows
represent the characteristics of the algorithms presented
in the literature.

Table 1 shows that the number of router processing
cores and the bandwidth of the links is being consid-
ered by the most of the algorithms. However, our work
is unique since it considers: sets of images with differ-
ent sizes, the time required to instantiate virtual routers,
the locations of the repository in which images are stored
and the available memory of the physical routers. Restric-
tions on the usage of physical routers by virtual routers
(locality restriction) is rarely accounted for, although it is
quite important. Other characteristics such as link delay
and the time threshold for instantiations of virtual net-
works are neglected by all previous papers. Therefore, our
algorithms significantly improve the state of the art for
mapping virtual networks onto substrate networks, since
they provide a more realistic assessment of operational
networks.

Our work does not impose any alignment constraints
between virtual topologies and physical topologies. It is
possible that the topology of physical routers and links
allocated to a virtual network will be the same of that of
the requested virtual network, but this happens only if
the topology is the one which minimizes the bandwidth
allocated. Moreover, such an alignment is not necessary
to guarantee the QoS requirements of the application,

Table 1 Comparison of the algorithms

Reference Number of Bandwidth Locality Images for

processing restrictions the virtual

cores routers

[16] no yes no no

[5] yes yes no no

[4] yes yes yes no

[6] yes yes no no

[7] no yes no no

[15] yes yes no no

Our proposal yes yes yes yes

Reference Link Available Locality of Instantiation

delay memory / size repository time

of images of images

[16] no no no no

[5] no no no no

[4] yes no no no

[6] no no no no

[7] no no no no

[15] no no no no

Our proposal yes yes yes yes

Alkmim et al. Journal of Internet Services and Applications 2013, 4:3 Page 5 of 15
http://www.jisajournal.com/content/4/1/3

which are indeed assured by the constraints of the map-
ping problem.

4 Proposed algorithms
The algorithms in this paper model requests dynamically
arriving for virtual network establishment on network
substrates. Each request specifies the topology of the vir-
tual network, the resources demanded by the virtual net-
work elements, and the QoS requirements, which include
a time limit to instantiate it.

The proposed algorithms are based on 0-1 ILP formula-
tions. One algorithm, called the Optimal algorithm, uses
the exact solution of the formulations to define the map-
pings. The other algorithms, called approximated algo-
rithms, employ relaxation techniques to reduce the time
needed to find a solution for the formulations. Before
presenting the algorithms, we will present the ILP formu-
lations. This formulation differs from that in our previous
work [9] since a two step approach has been introduced
which reduce memory demands.

The following notation is used for the formulations of
the problem:

• N ⊂ Z is the set of physical routers;
• F ⊂ Z is the set of physical links, with the physical

link (n1, n2) connecting two physical routers n1 and
n2 ∈ N ;

• M ⊂ Z is the set of virtual routers;
• V ⊂ Z is the set of virtual links with the virtual link

(m1, m2) connecting two virtual routers m1 and
m2 ∈ M;

• I ⊂ Z is the set of images stored in the repository.
Each image corresponds to a file with an operating
system and a specific set of software ready to be
instantiated in a physical router;

• A ⊂ N is the set of the number of available cores in
the physical routers; A(n), n ∈ N , gives the number
of cores of router n;

• P ⊂ N is the set of the number of cores requested by
the virtual routers; P(m), m ∈ M, gives the number of
cores required by the virtual router m to be
instantiated;

• C ⊂ R is the set of values of the available bandwidth
in the physical links; C(f), f ∈ F , gives the available
bandwidth in the link f ;

• Q ⊂ R is the set of bandwidth values requested by
the virtual links; Q(v), v ∈ V , gives the bandwidth
required by the virtual link v;

• D ⊂ R is the set of values of delays in the physical
links; D(f), f ∈ F , gives the delay in link f ;

• K ⊂ R is the set of values of maximum delay allowed
on a virtual link; K(v), v ∈ V , represents the
maximum delay allowed on the virtual link v;

• Ln,m ∈ {0, 1} are the binary values that establish
restrictions on locations. If the virtual router m can
be mapped onto the physical router n, the value of
the variable is 1. Otherwise, it is 0. This variable is
useful for imposing policy restrictions related to the
geographical location of routers.

• Rn,i ∈ {0, 1} are the binary values that provide details
about the location where images are stored. If the
image i is located in a repository with a direct link
dedicated to the physical router n, the value of the
variable is 1. Otherwise, it is 0;

• Em,i ∈ {0, 1} are the binary values related to software
restrictions. If the image i contains all the software
requirements required by the virtual router m
(operating system, protocol stacks, kernel modules
and others), the value of the variable is 1. Otherwise,
it is 0;

• B ⊂ R is the set of values that represents the memory
available in the physical routers; B(n), n ∈ N ,
represents the memory available in the router n;

• G ⊂ R is the set of image sizes; G(i), i ∈ I, represents
the size of the image i ;

• S ∈ R is the time limit for instantiation of the VN;
• Tn,i ∈ R represents the time the physical router n

takes to boot the image i ;

The substrate network is represented by a graph (N , F)

in which the physical routers are modelled as the vertices
of the graph and the physical links as the edges. Similarly,
the virtual network is represented by the graph (M, V).

Requests must specify the maximum delay allowed in
the virtual network links (D and K), since this information
affects the performance of network applications. The spe-
cific image to each virtual router must be defined because
various configurations can exist (I and Em,i). The con-
tent of each repository must be known (Rn,i) because this
affects the path chosen to transfer the images. The size
of the images should be considered because the routers
have limited storage capacity (B and G). Moreover, it is
important to consider that clients can have specific poli-
cies that prevent the utilization of certain physical routers
(Ln,m). Furthermore, the maximum time acceptable for
the instantiation of the VN must be considered (S, D, K
and Tn,i). To our knowledge, parameters related to trans-
fer and the instantiation of software images (I, Em,i, Rn,i,
B, G and Tn,i) have never been taken into consideration in
previous mapping algorithms proposed in the literature.

The solution to the problem is given by the binary
variables:

• Xn,m,i : if the virtual router m is mapped onto the
physical router n using the image i then this value is
1; otherwise, its value is 0;

Alkmim et al. Journal of Internet Services and Applications 2013, 4:3 Page 6 of 15
http://www.jisajournal.com/content/4/1/3

• Yn,u,w : if the physical path used by the virtual link w
includes the physical link (n, u) , this value is 1;
otherwise, it is 0;

• Zn,u,m : if the physical link (n, u) is used to transfer
the image requested by the virtual router m, this
value is 1; otherwise, it is 0.

4.1 ILP formulations
All the algorithms proposed in this paper are based on two
ILP formulations that must be sequentially executed. The
first (ILP-Mapping) searches for the solution of the prob-
lem of mapping routers and links of VNs onto routers and
links of the substrate. The second (ILP-Image) searches
for routes in the substrate for transferring images from the
repositories to the nodes in the substrate which will host
the virtual nodes. The employment of two ILPs reduces
the time needed to find solutions when compared to
the execution time needed for our previous formulation,
which try to find routes and allocate physical routers and
links in a single ILP [9]. The reduction in execution time
is mainly due to the reduction of the search space.

The ILP-Mapping algorithm is formulated as follows:
Minimize

∑
n∈N

∑
u∈N

∑
w∈V

Yn,u,w × Q(w) subject to the fol-

lowing 11 constraints:
∑

n∈N

∑

i∈I
Xn,m,i = 1 (C1)

∀m ∈ M

∑

m∈M

∑

i∈I
Xn,m,i ≤ 1 (C2)

∀n ∈ N

∑

m∈M

∑

i∈I
P(m) × Xn,m,i ≤ A(n) (C3)

∀n ∈ N

Xn,m,i = 0 (C4)
∀n ∈ N , ∀m ∈ M, ∀i ∈ I|Ln,m = 0 orEm,i = 0

∑

w∈V
Yn,u,w × Q(w) ≤ C(w′) (C5)

∀w′ = (n, u) ∈ F

∑

n∈N

∑

u∈N
Yn,u,w × D(n, u) ≤ K(w) (C6)

∀w ∈ V , (n, u) ∈ F

∑

m∈M

∑

i∈I
Xn,m,i × G(i) ≤ B(n) (C7)

∀n ∈ N

Yn,u,w = 0 (C8)
∀n, u ∈ N , ∀w ∈ V |(n, u) /∈ F

∑

u∈N
Yn,u,w −

∑

u∈N
Yu,n,w = (C9)

∑

i∈I
Xn,m,i −

∑

i∈I
Xn,a,i

∀w = (m, a) ∈ V , ∀n ∈ N

Xn,m,i ∈ {0, 1} (C10)
∀n ∈ N , ∀m ∈ M, ∀i ∈ I

Yn,u,w ∈ {0, 1} (C11)
∀n, u ∈ N , ∀w ∈ V

The objective function of the ILP-Mapping algorithm
minimizes the bandwidth allocated to requests for the
establishment of a virtual network. By doing so, the for-
mulation maximizes the bandwidth available for future
requests.

The constraint (C1) establishes that each virtual router
is allocated to a single physical router and that a sin-
gle image is used to instantiate it. Constraint (C2) limits
the number of virtual routers that can be allocated on
a physical router per request, with only a single virtual
router can be allocated to a given physical router per
request. The constraint (C9) ensures that the set of phys-
ical links on which a virtual link is mapped constitutes a
valid path. This constraint compares the in-degree and the
out-degree of each physical router n. The constraints (C3)

and (C7) express the limitations of the physical routers
related to the number of cores and the amount of memory,
respectively.

The constraint (C4) guarantees that the virtual routers
will be instantiated using images that satisfy all software
requirements as well as any geographic location defined
by the client requesting the VN.

The constraints (C5) and (C6) express the limitations
of the physical links. The constraint (C6) establishes that
the total delay in the physical path allocated to a virtual
link does not exceed the delay threshold requested for that
virtual link. Constraint (C8) guarantees that only existing
physical links can be used in the mapping of virtual links.

Constraints (C10) and (C11) define the domains of the
variables as {0,1}, i.e., the variables are binary. If the value
of these variables is 1, a router (or link) is allocated to a
virtual router (or link). Otherwise, it is zero.

After the solution of the ILP-Mapping is found, the val-
ues of Xn,m,i are used as input for the second formulation,
entitled the ILP-Image formulation.

The ILP-Image is formulated as follows:

Alkmim et al. Journal of Internet Services and Applications 2013, 4:3 Page 7 of 15
http://www.jisajournal.com/content/4/1/3

Minimize
∑

m∈M

∑
n∈N

∑
u∈N |(n,u)∈F

Zn,u,m × D(n, u) +
Zn,u,m×G(i|Xv,m,i=1)

C(n,u)
subject to the following 3 constraints:

∑

m∈M
Zn,u,m = 0 (C12)

∀n, u ∈ N |(u, u) /∈ F

∑

v∈N
Zu,v,m −

∑

v∈N
Zv,u,m = (C13)

Xn,m,i × Ru,i − Xn,m,i × (1 − �|u − n|
α

�)
∀m ∈ M, ∀i ∈ I, ∀n, u ∈ N , α = |N |

Zn,u,m ∈ {0, 1} (C14)
∀n, u ∈ N , ∀m ∈ M

The objective function of the ILP-Image minimizes the
time required to instantiate a VN. The time needed to
instantiate each virtual router is the sum of the times
required to transfer the image and to boot the operating
system of the image. We assume here that two or more
images can be transferred simultaneously on the same
physical link.

Constraint (C12) guarantees that (u, v) will be used in
the mapping only if it is a physical link in the substrate.
The constraint (C13) establishes that the set of physical
links allocated for the transfer of an image consists of
a valid path in the substrate network. Constraint (C14)

defines the domain of the variables.
The following subsections present the proposed algo-

rithms. Subsection “Optimal algorithm” presents the algo-
rithm that execute the implementation of the ILPs exactly
as shown in this subsection. This algorithm is called
the Optimal algorithm. Subsection “Root approximative
algorithm” presents the Root Approximative algorithm
which limits the search for a solution at an earlier
stage than does the Optimal algorithm. Subsection
“Algorithms based on relaxed versions of ILPs” presents
four approximative algorithms based on relaxation tech-
nique. Relaxed versions of ILPs tend to find solutions
faster than the original formulation of the problem. The
approximative algorithms are called the Random Approx-
imative algorithm, the Deterministic Approximative algo-
rithm, Iterative Random Approximative algorithm and
Iterative Deterministic Approximative algorithm. They
differ from the algorithm employed to round off the real
variable values to binary ones.

4.2 Optimal algorithm
The Optimal algorithm implements the two ILP formula-
tions exactly as shown in Subsection “ILP formulations”.
To find the solution to the problem, it uses the Branch and

Cut technique [18] which builds a tree with the root cor-
responding to the solution of a relaxed formulation of the
original ILP and each node to a solution of the relaxed ILP
formulation.

The search for the solution starts at the root of the tree
and as long as an integer variable is associated with a
fractional value in relaxed version, new constraints (cuts)
to the formulation are added reducing the search space
(adjusted polyhedron). The addition of new constraints
branches on a fractional variable creating two new nodes
(sub-problems) in the search tree.

The Optimal algorithm traverses all the nodes of the
search tree. It is possible either to establish deadlines for
execution time of the traversal or to establish stopping
criteria based on the position of the node in the tree.

In our formulation, the ILP-Mapping formulation tra-
verses all the nodes of the tree and returns a solution that
minimizes the allocated bandwidth. The ILP-Image for-
mulation solution also traverses all nodes and minimizes
the VN instantiation time. The Optimal algorithm for
solving the ILP formulations is presented in Algorithm 1.

Algorithm 1. Optimal algorithm
Data: Substrate network γ with characteristics α,
virtual network δ with characteristics β .
Result: Mapping of δ on γ and on the physical paths
θ used to transfer the images.

1: Define γ , α, δ and β as input of the ILP-Mapping;
2: Traverse the entire search tree of the ILP-Mapping

and obtain the values of Xn,m,i and Yn,u,w variables
related to the best solution found;

3: if ILP-Image does not find any solution then
4: Block the request;
5: end if
6: else
7: Define γ , α, δ, β and Xn,m,i variables as input to

the ILP-Image;
8: Traverse the entire search tree of the ILP-Mapping

and obtain the values of Xn,m,i and Yn,u,w
variables related to the best solution found;

9: if ILP-Image does not find any solution then
10: Block the request;
11: end if
12: else
13: Return the mapping of δ on γ using the values of

the variables Xn,m,i and Yn,u,w;
14: Return the paths θ using the values of the

variables Zn,u,m.
15: end if
16: end if

The Optimal algorithm solves ILP formulations (lines 2
and 8) by passing the characteristics of both the virtual
network and the substrate network (lines 1 and 7), and
returns the mapping of virtual routers and links (lines 13
and 14) onto the substrate network. If no feasible solution
is found, the request for VN establishment is rejected
(lines 3, 4, 9 and 10).

Alkmim et al. Journal of Internet Services and Applications 2013, 4:3 Page 8 of 15
http://www.jisajournal.com/content/4/1/3

Table 2 Characteristics of the algorithms based on the use of relaxed versions of the ILPs

Algorithm # of times ILP-Mapping is executed # of times ILP-Image is executed Definition of variables

RAA 2 1 Draw considering probabilities

DAA 2 1 Higher value

IRAA |M| + |V| |M| Draw considering probabilities

IDAA |M| + |V| |M| Higher value

In the remainder of this paper, the Optimal algorithm
will be referred as Opt.

4.3 Root approximative algorithm
Preliminary experiments with the Opt algorithm showed
that it takes too long to find solutions involving sub-
strates with more than 100 routers. This motivated us to
implement an approximative algorithm, called the Root
Approximative algorithm. This algorithm stops the traver-
sal at the root of the tree. By doing that, a reduction
on execution time is expected in comparison with the
time required by the Opt algorithm. Such a criterion was
derived from the observation that several solutions for the
optimal problem are obtained at the root of the tree.

The Root Approximative algorithm differs from the Opt
algorithm in solution to lines 2 and 8, which are respec-
tively replaced by:

• Line 2: Stop the search for solutions to the
ILP-Mapping at the root of the search tree and obtain
the values of variables Xn,m,i and Yn,u,w;

• Line 8: Stop the search for solutions to the
ILP-Image at the root of the search tree and obtain
the values of variables Zn,u,m.

In the remainder of this paper, the Root Approximative
algorithm will be referred as Root.

4.4 Algorithms based on relaxed versions of ILPs
In addition to the Root algorithm, four other approxi-
mative algorithms are proposed. These algorithms relax

integer constraints of the two ILP formulations in an
attempt to reduce execution time. This relaxation replaces
the constraints (C11), (C12) and (C14), by the constraints
(C11′), (C12′) and (C14′), given below:

Xn,m,i ∈ R[0,1] (C11′)
∀n ∈ N , ∀m ∈ M, ∀i ∈ I

Yn,u,w ∈ R[0,1] (C12′)
∀n, u ∈ N , ∀w ∈ V

Zn,u,m ∈ R[0,1] (C14′)
∀n, u ∈ N , ∀m ∈ M

These new constraints modify the domain of decision
variables from {0, 1} to R[0,1], so after finding the solution
to the relaxed version of the ILP, it is necessary to round off
fractional values to binary ones. The four algorithms differ
in relation to the method implemented for this rounding
off.

Each of the four algorithms consists of three steps: node
mapping, link mapping and definition of paths for trans-
fer of the required images. For each step two procedures
defines: how to round the real values off to binary ones
and when such rounding off should take place. In node
mapping, the first procedure defines which variable will be
rounded off to 1 since only one Xn,m,i can be set to 1 for
each virtual node m. The second procedure determines
whether or not all the other variables values should be
rounded off to 1. There are two options for each of these

Optimal version

Opt

Relaxed version
(no iterative)

Stop at root
Root

Round based on
the highest

Round based on
probabilities

DAA

RAA

Relaxed version
(iterative)

IRAA

IDAA

Repeat to fix
all the variables

Repeat to fix
all the variables

Figure 4 Summary of approximative algorithms.

Alkmim et al. Journal of Internet Services and Applications 2013, 4:3 Page 9 of 15
http://www.jisajournal.com/content/4/1/3

Table 3 Types of virtual networks

Type # of virtual routers # of cores Bandwidth

(uniformly

distributed)

1 5 2 100Mbps–200Mbps

2 8 3 200Mbps–300Mbps

3 10 6 300Mbps–400Mbps

two procedures with their combinations defining the four
different algorithms proposed.

4.4.1 How to round off variables
The rounding off of real numbers can be either determin-
istic or random. In deterministic, the highest real value for
a virtual node is rounded off to 1. In random algorithms,
a random number is drawn and if this is lower than the
value of the real variable, then the real value is rounded off
to 1.

Such procedure is also employed for the Y and Z vari-
ables.

4.4.2 When to round off variables
After the execution of the relaxed ILP, another decision
must be made. It is possible either to round all the X vari-
ables associated with all the virtual nodes at once or to
round off only the X variables related to a specific virtual
node, and then run the relaxed ILP as for each X variables.
The same procedure applies to the Y and Z variables.

The option that round off all the variables at once
implies two executions of the relaxed version of the ILP-
Mapping. For the first, the value of the X variables are
set and later used as input for setting the values of the
Y variables. After the values of X and Y variables are
set, the relaxed version of the ILP-Image is executed once
to find the values of the Z variables. This is the proce-
dure adopted by the non-iterative algorithms, i. e., the

 0

 20

 40

 60

 80

 100

 120

 140

 10 20 30 40 50

R
un

 ti
m

e
(s

ec
on

ds
)

Number of Substrate Nodes

Opt
Root

Figure 5 Run time for Type 1 requests in static scenarios.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 10 20 30 40 50

R
un

 ti
m

e
(s

ec
on

ds
)

Number of Substrate Nodes

Opt
Root

Figure 6 Run time for Type 2 requests in static scenarios.

Deterministic Approximative Algorithm (DDA) and the
Random Approximative Algorithm (RAA).

The other way is to set the value of a single variable after
each execution of the relaxed ILP. In this case, the ILP-
Mapping must be executed |M| times to round off all X
variables and another |V | times to round off all the Y vari-
ables. The relaxed version of the ILP-Image must then be
executed |M| times to round all Z variables. This option
is employed in the Iterative Deterministic Approximative
Algorithm (IDAA) and in the Iterative Random Approx-
imative Algorithm (IRAA). Table 2 summarizes the main
characteristics of the four approximative algorithms pro-
posed and Figure 4 illustrates the differences between all
the algorithms presented in this section.

5 Performance evaluation
This section assesses the efficiency of the proposed map-
ping algorithms. Numerical examples presented in this
section compare the performance of the algorithms in
both static and dynamic scenarios. The static scenario

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 10 20 30 40 50

R
un

 ti
m

e
(s

ec
on

ds
)

Number of Substrate Nodes

Opt
Root

Figure 7 Run time for Type 3 requests in static scenarios.

Alkmim et al. Journal of Internet Services and Applications 2013, 4:3 Page 10 of 15
http://www.jisajournal.com/content/4/1/3

 0

 2000

 4000

 6000

 8000

 10000

 12000

 10 20 30 40 50

A
llo

ca
te

d
ba

nd
w

id
th

 (
M

b/
s)

Number of Substrate Nodes

Type 1 Opt
Type 2 Opt
Type 3 Opt

Type 1 Root
Type 2 Root
Type 3 Root

Figure 8 Bandwidth allocation for static scenarios.

involves only the mapping of a single request. The
dynamic scenarios involves requests arrive during a cer-
tain time interval, with the availability of resources in
the substrate network varying over time. The algorithms
were evaluated in terms of run time, the amount of band-
width allocated to the virtual networks requests, and the
blocking probability. A description of the experimental
setup is followed by a comparison of the Opt and Root
algorithms and another of the performance of the approx-
imative algorithms. Comparisons with existing algorithms
[4,19] were not performed, since these do not con-
sider all of the parameters considered by the algorithms
presented here.

5.1 Experimental setup
All the algorithms and the simulator were implemented in
C++ with the linear program formulations implemented
using the CPLEX optimization library version 12.0. All
programs were executed on a computer running the oper-
ating system Debian GNU/Linux Squeeze. The computer

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
ve

ra
ge

 r
un

 ti
m

e
(s

ec
on

ds
)

Simulation Time

Opt
Root

Figure 9 Run time for Type 1 requests in dynamic scenarios.

 0

 100

 200

 300

 400

 500

 600

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
ve

ra
ge

 r
un

 ti
m

e
(s

ec
on

ds
)

Simulation Time

Opt
Root

Figure 10 Run time for Type 2 requests in dynamic scenarios.

was equipped with two Intel Xeon 2.27GHz processors
each one with 6 cores capable of running 12 simultaneous
threads and 40GB of RAM.

The configuration for the scenarios considered:

• Number of routers in the substrate network: 10 to 50.
Using this variation, it is possible to evaluate the
performance of the algorithms as a function of the
number of physical routers. Moreover, for dynamic
scenarios, the number of nodes in the substrate
varied from 10 to 400 for the evaluation of the
scalability of the approximative algorithms.

• Number of routers with attached image repositories
set to 3. This value was experimentally found by the
authors to avoid a large number of infeasible
allocations;

• Number of cores available in the physical routers set
to 6, which is the actual number found in real routers
[20];

• Available bandwidth in real links determined by a
uniform distribution between 1Gbps and 10Gbps,

 0

 100

 200

 300

 400

 500

 600

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
ve

ra
ge

 r
un

 ti
m

e
(s

ec
on

ds
)

Simulation Time

Opt
Root

Figure 11 Run time for Type 3 requests in dynamic scenarios.

Alkmim et al. Journal of Internet Services and Applications 2013, 4:3 Page 11 of 15
http://www.jisajournal.com/content/4/1/3

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

 1600

 1700

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
ve

ra
ge

 a
llo

ca
te

d
ba

nd
w

id
th

 (
M

b/
s)

Simulation Time

Opt
Root

Figure 12 Allocated bandwidth for Type 1 requests in dynamic
scenarios.

which is the interval common in substrate networks
[21];

• Available memory in the physical routers set to
512MB; this number was based on the actual amount
of flash memory in existing real routers [22];

• Size of images set to 128MB. This value was based on
the amount of flash memory recommended for use of
the software defined in [23], which is an operating
system for routers;

• Time needed to boot an image in a physical router set
to 10 seconds;

• Time threshold to instantiate each virtual network
set to 100 seconds;

• Type of request: Type 1, Type 2 and Type 3. This
depends on the number of resources required.
Table 3 describes the requirements for each type of
virtual network. They differ in terms of the number
of requested virtual routers, the number of cores to
instantiate each virtual router and in the guaranteed

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 7000

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
ve

ra
ge

 a
llo

ca
te

d
ba

nd
w

id
th

 (
M

b/
s)

Simulation Time

Opt
Root

Figure 13 Allocated bandwidth for Type 2 requests in dynamic
scenarios.

 5700

 5800

 5900

 6000

 6100

 6200

 6300

 6400

 6500

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
ve

ra
ge

 a
llo

ca
te

d
ba

nd
w

id
th

 (
M

b/
s)

Simulation Time

Opt
Root

Figure 14 Allocated bandwidth for Type 3 requests in dynamic
scenarios.

bandwidth per virtual link being requested. Requests
are not known a priory; they are randomly generated
in the ranges defined in the Table 3. The bandwidth
demands for each request is defined in run time.

Both the topology of the substrate networks and that of
the virtual networks were randomly generated by using
the topology generator BRITE [24], with the BA-2 [25]
algorithm, a method that generates network topologies
similar to those found on the Internet. For the substrate
network, the link delays were the values given by BRITE.
Since the requested delay of the links of the virtual net-
works must be greater than those of the links of the
substrate network, these were defined by multiplying the
value returned by BRITE by a random number derived
from a uniform distribution. For Type 1 virtual networks,
the delay was calculated as the value given by BRITE
multiplied by a number up to 15. For Type 2 virtual net-
works, the delay was calculated to be the value returned by

 0

 20

 40

 60

 80

 100

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

B
lo

ck
ed

 r
eq

ue
st

s
ra

tio
 (

%
)

Simulation Time

Opt
Root

Figure 15 Blocked requests ratio for Type 1 requests in dynamic
scenarios.

Alkmim et al. Journal of Internet Services and Applications 2013, 4:3 Page 12 of 15
http://www.jisajournal.com/content/4/1/3

 0

 20

 40

 60

 80

 100

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

B
lo

ck
ed

 r
eq

ue
st

s
ra

tio
 (

%
)

Simulation Time

Opt
Root

Figure 16 Blocked requests ratio for Type 2 requests in dynamic
scenarios.

BRITE multiplied by a number up to 10. For Type 3 vir-
tual networks, the delay was the value returned by BRITE
multiplied by a number up to 5.

5.2 Optimal and root approximative algorithms
5.2.1 Static scenarios
The static scenarios involved only a single request, since
the aim was to evaluate the differences between the pro-
posed algorithms. The mapping of each request deals with
an unallocated substrate. In this way, restrictions due to
previous allocation have no impact on the difference of
performance of the algorithms.

Results are reported as a function of the substrate size
to evaluate the impact of it on the solution derived. The
execution time of the Opt algorithm is limited to 3600 sec-
onds. Each point in the graphs corresponds to the mean
derived from five different requests.

Figures 5 and 6 plot the execution time of the algo-
rithms as a function of the number of physical routers for
requests of Type 1 and 2, respectively. For requests of type
1 (Figure 5) the execution time of the Root algorithm is
less than that of the Opt algorithm with the execution time
of the Opt algorithm increasing much faster than that of
the Root algorithm as a function of the number of physical
routers because of the increase in the search space. While
the execution time of the Opt algorithm is 131 seconds for
substrates with 50 nodes, the execution time of Root algo-
rithm is less than 1 second. For requests of Type 2 which
involve greater demands than do those of Type 1, while
Root algorithm demands are still 6.4 seconds, the Opt
demands 725.8 seconds for substrates with 10 nodes. Opt
reaches the threshold for the execution time for substrates
with only 20 nodes. For requests of Type 3 (Figure 7) the
same trend is found although the execution time of the
Opt algorithm was 2841 seconds for substrates with only
10 nodes.

 0

 20

 40

 60

 80

 100

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

B
lo

ck
ed

 r
eq

ue
st

s
ra

tio
 (

%
)

Simulation Time

Opt
Root

Figure 17 Blocked requests ratio for Type 3 requests in dynamic
scenarios.

Figure 8 plots the bandwidth allocated by the algorithms
as a function of the number of physical routers. The Root
algorithm always allocates more bandwidth than does Opt
algorithm since only a limited number of solutions are
evaluated. However, for requests of Type 1 the difference
is quite small. For more demanding type of requests, these
difference increases. For requests of Type 2, the maxi-
mum difference is 36.18%, while for Type 3 requests it
is 58.91%.

These results show that the Root algorithm is more
attractive than the Opt algorithm. The shorter run
time of the Root algorithm and the similar band-
width allocation justify the choice of the Root algo-
rithm for the mapping on substrate with more than
30 nodes.

5.2.2 Dynamic scenarios
In the dynamic scenarios, several requests are included
in each configuration of the network, so that the algo-
rithms can be evaluated as the availability of the network
changes as a function of time. The different sequence
of resource allocations produced by different algorithms
leads to different resource availability scenarios which
implies different probabilities of success in the acceptance
a request.

Simulation of each scenario took 5000 seconds. The
arrival time and the duration of requests were defined ran-
domly, on the basis of an exponential distribution with
means of 100 and 2000 seconds, respectively.

Figures 9, 10 and 11 present the execution time of the
algorithms for the three types of requests as a function
of time. The execution time decreases along the simula-
tion since resources are allocated and the search space
shrink, as a consequence, the run time. Requests of Type 1
require low execution times since this type of requests can
be easily accommodated. Although initially the difference
is large, the execution time for the Opt algorithm is not

Alkmim et al. Journal of Internet Services and Applications 2013, 4:3 Page 13 of 15
http://www.jisajournal.com/content/4/1/3

Table 4 Summary-dynamic scenarios

Opt

Type Average Average allocated Average

run time (s) bandwidth (Mbps) blocking rate

1 4.48 1282.73 17.43%

2 245.80 4311.06 55.15%

3 71.77 6052.83 88.08%

Root

Type Average Average allocated Average

run time (s) bandwidth (Mbps) blocking rate

1 0.30 1491.63 17.43%

2 6.46 5775.64 55.10%

3 9.84 6387.78 88.08%

that long. For requests of Type 2, differences in execution
time are quite significant, being of the order of 600 sec-
onds. For requests of Type 3 the differences are also large
when the substrate is largely available, although the differ-
ence diminishes as the substrate becomes saturated. The
average reductions in run time when using the Root algo-
rithm were 99.93%, 99.97% and 99.86% for types 1, 2 and
3, respectively.

Figures 12, 13 and 14 show the bandwidth allocation
per request. For requests of Type 1, the allocated band-
width increases as the availability of resource decreases
but reaches an almost constant value as the substrate
occupancy tends to saturation. The greatest difference in
bandwidth allocation was of 35.45%. The state of satura-
tion is reached much faster as the demands of requests
increases. For requests of Type 2 the maximum difference
was in the order of 48.87%, while for Type 3, requests the
bandwidth allocated per request by the Opt algorithm and
Root algorithm was almost constant, equal to 6088 Mbps
and 6424 Mbps, respectively.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 20 40 60 80 100 200 300 400

A
ve

ra
ge

 r
un

 ti
m

e
(s

ec
on

ds
)

Number of Substrate Nodes

Root
RAA
IRAA
DAA
IDAA

Figure 18 Run Time for dynamic scenarios.

Figures 15, 16 and 17 present results for the block-
ing ratio. As resources are allocated, their availability
decreases leading to an increase in the probability of
blocking. Requests of Type 2 and 3 saturate the substrate
more quickly than do those of Type 1. The blocking rates
for the two algorithms are very similar in despite of the
difference of bandwidth allocated per request. This can
be explained by the reduction of availability of physical
routers leading to similar blocking ratio regardless of the
savings in bandwidth.

Table 4 summarizes the results obtained in the dynamic
scenario. Although the Root algorithm allocates in average
16.29%, 33.97% and 5.53% more bandwidth per request
than does the Opt algorithm, these difference have no
impact on the blocking ratio. In addition to yielding the
same blocking ratio, the Root algorithm reduced the aver-
age run time in 99.93%, 99.97% and 99.86%, for types 1, 2
and 3, respectively. These results reinforce the advantage
of the adoption of the Root algorithm given its reduced
computational demand.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 20 40 60 80 100 200 300 400

A
ve

ra
ge

 a
llo

ca
te

d
ba

nd
w

id
th

 (
M

b/
s)

Number of Substrate Nodes

Root
RAA
IRAA
DAA
IDAA

Figure 19 Allocated bandwidth for dynamic scenarios.

Alkmim et al. Journal of Internet Services and Applications 2013, 4:3 Page 14 of 15
http://www.jisajournal.com/content/4/1/3

 0

 10

 20

 30

 40

 50

 60

 70

 20 40 60 80 100 200 300 400

B
lo

ck
ed

 r
eq

ue
st

s
ra

tio
 (

%
)

Number of Substrate Nodes

Root
RAA
IRAA
DAA
IDAA

Figure 20 Blocked Requests Ratio for dynamic scenarios.

5.3 Approximative algorithms
The results produced by the approximative algorithms
introduced in “Algorithms based on relaxed versions of
ILPs” were compared to those yielded by the Root algo-
rithm. In order to evaluate the growth in computational
demands and the quality of the solution with an increase
on the number of nodes in the substrate, the number
of nodes in the substrate was up to 400 and the results
are shown as a function of the number of nodes in the
substrate.

Figure 18 shows that the average run time of the iter-
ative algorithms (IRAA, IDAA) grows exponentially as a
function of the number of nodes in the substrate and is ten
times greater than that of the other approximative algo-
rithms and twenty times greater than that of the Root
algorithm for substrates with 400 nodes.

The iterative approximative algorithms allocate more
bandwidth than do the other approximative algorithms
and roughly 44.42% more than the Root algorithm
(Figure 19). Moreover, the Root algorithm produces block-
ing ratio 8.93% lower than the other approximative algo-
rithms as can be seen in Figure 20.

Table 5 summarizes the results found for the approx-
imative algorithms. These results makes clear that the
Root algorithm outperforms all other approximative algo-
rithms. For instance, it requires 51.25 seconds less to run,

Table 5 Numerical Comparisons (Average values)

Type 1

Algorithm Run time (s) Bandwidth (Mbps) Blocked requests

Root 3.57 1314.57 10.40%

RAA 7.27 1816.10 15.79%

DAA 6.75 1706.33 15.97%

IRAA 54.82 1898.53 19.33%

IDAA 54.94 1827.07 17.86%

on average, than does the IRAA and produces blocking
ratio almost 8.93% lower.

6 Conclusions and future work
Mapping virtual networks onto networks substrates is a
crucial step for processing of VN services. therefore effi-
cient mapping algorithms are of paramount for network
virtualization.

This paper introduced six novel algorithms based on
0-1 ILP: one optimal and five approximative algorithms.
These algorithms can be easily integrated to admission
control mechanisms. They differ from previous proposals
by the consideration of a large number of characteris-
tics existing in real networks. It was shown via numerical
examples that the Root algorithm demands considerably
less computational time than the Opt algorithm and the
iterative approximative algorithms. Such demand allows
the adoption of Root algorithm for admission control in
real time. It gives similar blocking ratio as does the Opt
algorithm, and lower ratios than those of by the other
approximative algorithms.

For future work, we intend to modify the formulation
to consider the migration of virtual elements (routers and
links), so that the algorithms potential migrations of VNs
can be suggested. Formulations for the mapping prob-
lem considering path splitting are under development. We
intent to verify results derived in a testbed for further
validation.

Acknowledgements
This research was partially financed by Fundação de Amparo à Pesquisa do
Estado de São Paulo (FAPESP), process 2010/03422-5.

Author details
1State University of Campinas, Campinas, Brazil. 2University of São Paulo, São
Paulo, Brazil.

Received: 4 December 2012 Accepted: 4 December 2012
Published: 30 January 2013

References
1. Zhu Y, Ammar M (2006) Algorithms for assigning substrate network

resources to virtual network components. In: IEEE INFOCOM, 1–12.
INFOCOM 2006. 25th IEEE International Conference on Computer
Communications. Proceedings, Barcelona, Spain,

2. Bless R, Hiibsch C, Mies S, Waldhorst O (2008) The Underlay Abstraction in
the Spontaneous Virtual Networks (SpoVNet) Architecture. In: Next
Generation Internet Networks (NGI 2008), 115–122. Next Generation
Internet Networks, 2008. NGI 2008, Krakow, Poland,

3. Feamster N, Gao L, Rexford J (2007) How to lease the internet in your
spare time. SIGCOMM Comput Commun Rev 37(1): 61–64

4. Chowdhury N, Rahman M, Boutaba R (2009) Virtual Network Embedding
with Coordinated Node and Link Mapping. In: IEEE INFOCOM, 783–791.
INFOCOM 2009. 28th IEEE International Conference on Computer
Communications. Proceedings, Rio de Janeiro, Brazil,

5. Yu M, Yi Y, Rexford J, Chiang M (2008) Rethinking virtual network
embedding: substrate support for path splitting and migration.
SIGCOMM Comput Commun Rev 38(2): 17–29

6. Houidi I, Louati W, Zeghlache D (2008) A distributed and autonomic
virtual network mapping framework. In: ICAS ’08, 241–247. Autonomic
and Autonomous Systems, 2008. ICAS 2008, Gosier, Guadeloupe,

Alkmim et al. Journal of Internet Services and Applications 2013, 4:3 Page 15 of 15
http://www.jisajournal.com/content/4/1/3

7. Lu J, Turner J (2006) Efficient mapping of virtual networks onto a shared
substrate. Tech. Rep. W0UCSE-2006-35. Washington University ,
Washington, USA. http://www.arl.wustl.edu/∼jst/pubs/wucse2006-35.
pdf. Accessed at 12/20/2010

8. Fan J, Ammar MH (2006) Dynamic topology configuration in service
overlay networks: a study of reconfiguration policies. In: IEE INFOCOM,
1–12. INFOCOM 2006. 25th IEEE International Conference on Computer
Communications. Proceedings, Barcelona, Spain,

9. Alkmim GP, Batista DM, Fonseca NLS (2011) Optimal mapping of virtual
networks 2011. GLOBECOM ’11. IEEE. In: Global Telecommunications
Conference. Global Telecommunications Conference (GLOBECOM 2011),
Houston, USA

10. Zhu Y, Zhang-Shen R, Rangarajan S, Rexford J (2008) Cabernet:
Connectivity Architecture for Better Network Services. In: ACM CoNEXT
’08, 64:1–64:6. CoNEXT ’08 Proceedings of the 2008 ACM CoNEXT, New
York, USA,

11. Zhu Y, Bavier A, Feamster N, Rangarajan S, Rexford J (2008) UFO: a resilient
layered routing architecture. SIGCOMM Comput Commun Rev 38(5):
59–62

12. Ricci R, Alfeld C, Lepreau J (2003) A solver for the network testbed
mapping problem. SIGCOMM Comput Commun Rev 33(2): 65–81

13. Zhu X, Santos C, Beyer D, Ward J, Singhal S (2008) Automated application
component placement in data centers using mathematical programming.
Int J Netw Manag 18: 467–483. [http://dx.doi.org/10.1002/nem.707]

14. Padala P, Shin KG, Zhu X, Uysal M, Wang Z, Singhal S, Merchant A, Salem K
(2007) Adaptive control of virtualized resources in utility computing
environments. In: ACM EuroSys ’07, 289–302

15. Botero J, Hesselbach X, Fischer A, de Meer H (2011) Optimal mapping of
virtual networks with hidden hops. Telecommunication Systems 51:
1–10. doi:10.1007/s11235-011-9437-0

16. Szeto W, Iraqi Y, Boutaba R (2003) A multi-commodity flow based
approach to virtual network resource allocation. In: Global
Telecommunications Conference, 2003, 3004–3008. GLOBECOM ’03. vol
6. IEEE, San Francisco, USA,

17. Fletcher R, Leyffer S (1998) A mixed integer quadratic programming
package . http://www.mcs.anl.gov/∼leyffer/solvers.html. Accessed at
02/22/2011

18. Gomory RE (1958) Outline of an algorithm for integer solutions to linear
programs. Bull Am Soc 64: 275–278

19. Lischka J, Karl H (2009) A virtual network mapping algorithm based on
subgraph isomorphism detection. In: ACM VISA ’09, 81–88. CM SIGCOMM
2009, Barcelona, Spain,

20. Cisco Systems (2010) Cisco Multiprocessor WAN Application Mode [Cisco
Catalyst 6500 Series Switches]. http://www.cisco.com/en/US/prod/
collateral/modules/ps5510/
product data sheet0900aecd800f8965 ps708 Products Data Sheet.html.
Accessed at 12/20/2010

21. RNP (2011) RNP Backbone map. http://www.rnp.br/en/backbone/index.
php. Accessed at 09/19/2011

22. Cisco Systems (2011) Cisco 7200 Series Routers Overview [Cisco 7200
Series Routers]. http://www.cisco.com/en/US/prod/collateral/routers/
ps341/product data sheet09186a008008872b.html. Accessed at
09/19/2011

23. Cisco Systems (2011) Download Software. http://www.cisco.com/cisco/
software/release.html?mdfid=278807391&flowid=956&softwareid=
280805680&release=12.4.2-XB11&rellifecycle=GD&relind=AVAILABLE&
reltype=latest. Accessed at 09/19/2011

24. Medina A, Lakhina A, Matta I, Byers J (2011) Brite. http://www.cs.bu.edu/
brite/. Accessed at 09/19/2011

25. Albert R, Barabási AL (2000) Topology of Evolving Networks: Local Events
and Universality. Phys Rev Lett 85(24): 5234–5237

doi:10.1186/1869-0238-4-3
Cite this article as: Alkmim et al.: Mapping virtual networks onto substrate
networks. Journal of Internet Services and Applications 2013 4:3.

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

http://www.arl.wustl.edu/~jst/pubs/wucse2006-35.pdf
http://www.arl.wustl.edu/~jst/pubs/wucse2006-35.pdf
http://dx.doi.org/10.1002/nem.707
http://dx.doi.org/10.1007/s11235-011-9437-0
http://www.mcs.anl.gov/~leyffer/solvers.html
http://www.cisco.com/en/US/prod/collateral/modules/ps5510/product_data_sheet0900aecd800f8965_ps708_Products_Data_Sheet.html
http://www.cisco.com/en/US/prod/collateral/modules/ps5510/product_data_sheet0900aecd800f8965_ps708_Products_Data_Sheet.html
http://www.cisco.com/en/US/prod/collateral/modules/ps5510/product_data_sheet0900aecd800f8965_ps708_Products_Data_Sheet.html
http://www.rnp.br/en/backbone/index.php
http://www.rnp.br/en/backbone/index.php
http://www.cisco.com/en/US/prod/collateral/routers/ps341/product_data_sheet09186a008008872b.html
http://www.cisco.com/en/US/prod/collateral/routers/ps341/product_data_sheet09186a008008872b.html
http://www.cisco.com/cisco/software/release.html?mdfid=278807391&flowid=956&softwareid=280805680&release=12.4.2-XB11&rellifecycle=GD&relind=AVAILABLE&reltype=latest
http://www.cisco.com/cisco/software/release.html?mdfid=278807391&flowid=956&softwareid=280805680&release=12.4.2-XB11&rellifecycle=GD&relind=AVAILABLE&reltype=latest
http://www.cisco.com/cisco/software/release.html?mdfid=278807391&flowid=956&softwareid=280805680&release=12.4.2-XB11&rellifecycle=GD&relind=AVAILABLE&reltype=latest
http://www.cisco.com/cisco/software/release.html?mdfid=278807391&flowid=956&softwareid=280805680&release=12.4.2-XB11&rellifecycle=GD&relind=AVAILABLE&reltype=latest
http://www.cs.bu.edu/brite/
http://www.cs.bu.edu/brite/

