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Abstract

Insulin resistance condition is associated to the development of several syndromes, such as obesity, type 2 diabetes
mellitus and metabolic syndrome. Although the factors linking insulin resistance to these syndromes are not
precisely defined yet, evidence suggests that the elevated plasma free fatty acid (FFA) level plays an important role
in the development of skeletal muscle insulin resistance. Accordantly, in vivo and in vitro exposure of skeletal
muscle and myocytes to physiological concentrations of saturated fatty acids is associated with insulin resistance
condition. Several mechanisms have been postulated to account for fatty acids-induced muscle insulin resistance,
including Randle cycle, oxidative stress, inflammation and mitochondrial dysfunction. Here we reviewed
experimental evidence supporting the involvement of each of these propositions in the development of skeletal
muscle insulin resistance induced by saturated fatty acids and propose an integrative model placing mitochondrial
dysfunction as an important and common factor to the other mechanisms.
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Introduction
Insulin resistance is broadly defined as the reduction in
insulin ability to stimulate glucose uptake from body
peripheral tissues. At physiological conditions, insulin
activates glucose uptake by stimulating the canonical
IRS-PI3K-Akt pathway and by phosphorylating and
inactivating Akt substrate 160 (AS160), a protein that,
when activated, prevents glucose transporter (GLUT) 4
translocation to the membrane. Thus, by inhibiting
AS160, insulin promotes the GLUT4 translocation from
inner vesicules, promoting fusion to the plasma mem-
brane and consequently glucose uptake [1].
Although insulin resistance is a key component of sev-

eral chronic syndromes associated with obesity such as
type 2 diabetes mellitus and metabolic syndrome, the
involved factors and their underlying mechanisms link-
ing excessive adiposity to insulin resistance were not

completely elucidated yet [2-5]. Evidence suggests that
fatty acids, whose circulating levels are markedly
increased in obesity and associated-diseases, might play
a role in the development of skeletal muscle insulin
resistance [6,7]. In this sense, prolonged exposure of
skeletal muscle and myocytes to high levels of fatty
acids leads to severe insulin resistance [8,9]. Among the
different types of fatty acids, saturated long-chain fatty
acids such as palmitic and stearic acids were demon-
strated to be potent inducers of insulin resistance [5,10].
Several mechanisms have been suggested by us
[2,5,11,12] and others [6,8,13-16] to explain how satu-
rated fatty acids impair insulin actions such as the Ran-
dle cycle, accumulation of intracellular lipid derivatives
(diacylglycerol and ceramides), oxidative stress, modula-
tion of gene transcription, inflammation and mitochon-
drial dysfunction. In the present review, we discuss
evidence supporting the involvement of these mechan-
isms in the regulation of insulin sensitivity by saturated
fatty acids and propose the mitochondrial dysfunction
found in conditions of elevated fatty acid levels has a
central role in the pathogenesis of insulin resistance.
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Mechanisms underlying the insulin resistance induced by
saturated fatty acids
Competition between fatty acids and glucose: the randle
cycle
The first mechanistic explanation for the inverse rela-
tionship between fatty acids availability and glucose uti-
lization was proposed by Randle et al. [13]. In this
study, it was shown that an elevation in fatty acids sup-
ply to diaphragm and isolated heart is associated with
an increase in fatty acid oxidation and an impairment in
glycolytic flux and glucose utilization, such effect being
mediated by alosteric inhibition of glycolytic enzymes.
More specifically, the proposed hypothesis was that
increased fatty acid oxidation raises the production of
acetyl-CoA resulting in inhibition of pyruvate dehydro-
genase activity and elevation of citrate levels at the tri-
carboxylic acid cycle. Citrate together with an increased
ATP/ADP ratio reduce the activity of phosphofructoki-
nase and consequently glucose flux through the glycoly-
tic pathway, resulting in glucose 6-phosphate
accumulation, hexokinase II inhibition, increase in intra-
cellular glucose content and, consequently, reduction in
glucose uptake [17,18].
In accordance with Randle’s hypothesis, elevation in

circulating fatty acids levels by either intralipid/heparin
or lipid infusion in rats, humans and type 2 diabetes
mellitus patients is associated with impairments in glu-
cose uptake, utilization and oxidation in insulin-sensitive
tissues (heart, skeletal muscle and adipose tissue)
[19-21]. Acutely, fatty acids lead to Randle cycle effect,
increasing intracellular content of citrate and glucose-6-
phosphate and decreasing glycolytic pathway flux [2,11].
It has been also demonstrated that palmitate accutely
increases glucose uptake in L6 myotubes by activating
insulin signaling pathways (Akt and ERK1/2) [22].
However, in contrast to Randle’s hypothesis, in which

intracellular glucose accumulation must precede the
inhibition of glucose uptake, further studies demon-
strated that the insulin resistance induced by fatty acids
is primarily associated with impaired glucose uptake
rather than changes in hexose metabolism [8,18]. In stu-
dies involving lipid infusion associated with other tech-
niques including glucose and insulin clamp and nuclear
magnetic resonance a rapid reduction in glycolysis (pre-
vious to 2 hours) followed by impaired glucose disposal
and glycogen synthesis (between 4-6 hours) was
observed [7,14]. Roden et al. [14] demonstrated that the
reduction in muscle glycogen synthesis is preceded by a
decrease in intramuscular glucose 6-phosphate, suggest-
ing that the increase in plasma fatty acid concentration
initially induces insulin resistance by inhibiting glucose
transport or its phosphorylation. Other studies also
demonstrated that lipid infusion decreases intracellular
glucose and glucose 6-phosphate content, due to

inhibition of glucose uptake by skeletal muscle [8,23].
These studies demonstrated that Randle cycle does not
completely explain the effects of FFA on glucose meta-
bolism indicating that other mechanisms are also
involved in the FFA-induced insulin resistance.

Inhibition of skeletal muscle insulin signaling
by saturated fatty acids
In addition to its important effects on glucose metabo-
lism directly, saturated fatty acids were demonstrated to
affect insulin intracellular signaling pathways in skeletal
muscle and myocytes [5,14,24,25]. Studies have demon-
strated a marked reduction in IRS-1 tyrosine phosphory-
lation [9], IRS-1 and -2-associated PI3-kinase activity
[9,26], and Akt phosphorylation and activity [26] in ske-
letal muscle after lipid infusion in euglycemic-hyperinsu-
linemic clamp. Along with a direct effect of saturated
fatty acids on skeletal muscle insulin signaling, palmitic
acid was shown to decrease insulin receptor expression
and activity [27] and phosphorylation of IRS-1 and -2 at
tyrosine residues [2,28], Akt [5,28-31] and GSK-3, as
reviewed by Schmitz-Peiffer et al. [32] in isolated soleus
muscle, primary culture of rat myocytes, pmi28 myo-
tubes, C2C12 and L6 myocytes. Similarly to skeletal
muscle, palmitic acid inhibits Akt phosphorylation and
activity in rat perfused heart and in HL-1 cells, an
immortalized cardiomyocyte like cell lineage [33].
Several mechanisms have been postulated to account

for the inhibition of insulin signaling by saturated fatty
acids, including the activation of various kinases such as
PKCs, IKK b, JNK, and p38 MAP kinase. These kinases
have been postulated to catalyze the phosphorylation of
serine residues in IRS-1 inhibiting its activity and direct-
ing it for degradation by the proteasome [34,35]. Such
effects culminate with a reduction in the phosphoryla-
tion of tyrosine residues of IRS-1 by insulin, blocking its
downstream signal transduction [36-38]. Other serine/
threonine kinase activated in high-fat diet-induced or
palmitate-induced insulin resistance is mammalian tar-
get of rapamycin (mTOR) [39,40], but the mechanisms
involved are unknown yet.

Lipotoxic intramyocellular lipid accumulation induced by
fatty acids
When the amount of circulating lipids chronically
exceeds white adipose tissue ability for uptake and sto-
rage, like obesity, fatty acids accumulate in other tissues
with limited capacity for lipid storage such as liver and
skeletal muscles. Such abnormal ectopic lipid accumula-
tion (lipotoxicity) is strongly associated with insulin
resistance [41,42].
Fatty acids accumulate intracellularly in myocytes

mainly as long-chain fatty acyl-CoA, monoacylglcyerol,
diacylglycerol, phosphatidic acid, triacylglycerol and
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ceramides [32,43-46]. Among these fatty acid derivatives,
high intramyocellular levels of diacylglycerol, triacylgly-
cerol, and ceramides are directly associated with insulin
resistance. Corroborating with this hypothesis, high fat
feeding is associated with an increase in intramyocellular
content of diacylglycerol and triacylglycerol and insulin
resistance, such effects being abolished by inhibition of
muscle lipid accumulation due to genetic deletion of
lipoprotein lipase, fatty acid transporters (CD36 and
FATP1), and diacylglycerol acyl transferase-1 (DGAT-1)
[47-49]. Diacylglycerol accumulation is associated with
the activation of subgroup of novel kinases, members of
the large protein kinase C (PKC) family. Among the
novel kinases, diacylglycerol directly activates PKCθ that
catalyzes the phosphorylation of serine-307 residue at
IRS-1, reducing its tyrosine phosphorylation and activa-
tion by insulin.
Consistent with this, Schmitz-Peiffer et al. [50]

reported increased concentration of DAG in rodent’s
muscle and activation of PKCs induced by high-fat diet.
Similarly, infusion of lipid and heparin caused insulin
resistance in muscles that was associated with accumu-
lation of intracellular DAG and specific activation of
PKCθ [8]. Insulin resistance in this model was due to
lipid-induced defects in the insulin signaling pathway
that was caused by a reduction in tyrosine phosphoryla-
tion of IRS1, increasing its phosphorylation in serine-
307 residue [9]. However, there are still no evidence to
explain how the activation of novel PKCs might relate
to serine phosphorylation of IRS1, and which kinases
might have a role in the pathway, as reviewed by Samuel
et al. [51].
In addition to diacylglycerol accumulation, high-fat

diet or palmitate treatment increases production of cera-
mide and sphingosines in skeletal muscle cells, which is
associated with glucose intolerance and insulin resis-
tance [52,53]. Evidence suggests that ceramide and
phosphatidic acid mediate the deleterious effects of pal-
mitic acid on insulin signaling in cultured myotubes and
insulin mediated Akt and GSK phosphorylation in
C2C12 myotubes [52,54]. Ceramides also affects insulin
signaling by two distinct mechanisms involving the acti-
vation of Akt dephosphorylation at threonine 308 and
inhibition of its translocation to the plasma membrane
[55], such effects being dependent on ceramides activa-
tion of protein phosphatase 2A (PP2A) and PKCζ,
respectively [56,57]. In addition, glycosylceramide, a gly-
cosyl derivative of ceramides was shown to inhibit insu-
lin receptor activity inducing insulin resistance [56,57].
Recently, it has been demonstrated that increased lyso-
phosphatidylcholine content, a phosphatidic acid, in L6
myotubes treated with palmitate also leads to JNK acti-
vation and IRS-1 Ser307 phosphorylation, contributing
to the development of muscle insulin resistance [58].

Activation of inflammatory signaling pathways by
saturated fatty acids
Saturated fatty acids activate inflammatory signaling
pathways directly through interaction with members of
Toll-like receptor (TLR) family and indirectly through
the secretion of cytokines including TNF-a, IL-1b and
IL-6 [59-61]. TLRs are an evolutionarily ancient pat-
tern-recognition class of receptors that facilitate the
detection of microbes. Saturated fatty acids activate
TLR-4 in skeletal muscle promoting c-Jun NH(2)-
terminal kinase (JNK) and I�b kinase (IKK) complex
activation, which results in degradation of the inhibitor
of �B (I�Ba) and nuclear factor-�B (NF�B) activation.
Activation of JNK and IKKb by saturated fatty acids is
associated with a marked inhibition of insulin action
due to the phosphorylation of serine residues on the
insulin IRS-1 and inhibition of its stimulatory phos-
phorylation of tyrosine residues by the insulin receptor
[62,63]. Corroborating with an important contribution
of TLR-4 to muscle insulin resistance, mice containing
a loss of function by mutation of this receptor are par-
tially protected from fat-induced inflammation and
insulin resistance [64]. In addition, diabetic and obese
mice have increased skeletal muscle IKK and JNK
activities, whose pharmacological and genetic inhibi-
tion leads to an improvement in insulin sensitivity and
glucose tolerance [65-67].
Coletta and Mandarino [68] demonstrated that

changes in genes and proteins from inflammatory path-
way contribute to the mitochondrial dysfunction
observed in insulin resistant muscle and it can lead to
decreased fat oxidation, ectopic fat accumulation, insulin
signaling abnormalities and finally insulin resistance.
These authors indicate that this mechanism is compati-
ble with and complementary to other hypotheses
regarding the vicious cycle connecting inflammation,
mitochondrial changes, lipid accumulation and insulin
signaling defects. The novel aspect of this mechanism is
that it connects inflammatory processes with changes in
insulin sensitivity by means of altered mechanosignal
transduction due to fibrotic changes.
Fatty acids were also demonstrated to reduce mito-

chondrial function through induction of pro-inflamma-
tory cytokines. Saturated fatty acids, palmitic and stearic
acids, stimulate the secretion of TNF-a, IL-1b and IL-6
in human leukocytes [60,69]. Wen et al. [61] showed
increased IL-1b production and release by palmitic acid
in macrophages through activation of the NLRP3-ASC
inflammasome. The pro-inflammatory cytokines have
been associated to impaired mitochondrial function,
establishing a link between fatty acids and mitochondrial
dysfunction. Indeed, some studies reported reduced
mitochondrial function in cells exposed to TNF-a, IL-
1b or IL-6 [70,71].
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Alteration in gene expression by saturated fatty acids
Evidence has been obtained that fatty acids modulate
expression of genes involved in glucose and lipid meta-
bolism. Schmid et al. [72] demonstrated that C57BL/6
mice submitted to high-fat diet present reduced expres-
sion of enolase, a glycolytic enzyme, and ATP synthase
in skeletal muscle. In addition, other enzymes of the gly-
colytic pathway have been shown to be modulated by
fatty acids, such as pyruvate dehydrogenase kinase iso-
zyme 1 (PDK-1), whose expression is increased in pan-
creatic islets incubated with saturated fatty acids [73],
and lactate dehydrogenase A (LDHA), which was down-
regulated in white adipose tissue from high-fat-fed ani-
mals [74]. Moreover, increased intramyocellular lipid
content has been associated with down-regulation of
PGC-1a and of other genes encoding protein mitochon-
drial respiratory complexes I, II, III, and IV [75], result-
ing in impaired mitochondrial biogenesis and function
[76]. Some studies identified transcription factors that
recognize conserved motifs at the promoters of mito-
chondrial oxidative phosphorylation genes, such as
nuclear respiratory factor (NRF)-1 and GA-binding pro-
tein (GABP) (also known as NRF-2) [77]. Studies
showed that the peroxisome proliferator activator recep-
tors (PPARs) control mitochondrial gene subsets, modu-
lating fatty acid oxidation (FAO) and uncoupling
[77,78]. Later, studies showed that PGC-1a is a tran-
scriptional coactivator of NRF-1, GABP, and PPARs,
demonstrating the ability of PGC-1a to integrate phy-
siological signals and to increase mitochondrial biogen-
esis and oxidative function [79,80]. Thus, a reduction of
PGC-1a content in conditions of high fatty acid levels
might be associated with impairment of mitochondrial
function [5,76]. In addition, insulin-resistant subjects
have reduced expression of mitochondrial genes, such as
cytochrome c oxidase and complexes I and III subunits
of the electron transport chain [81]. Activities of carni-
tine palmitoyltransferase-1 (CPT-1) and other key mito-
chondrial enzymes, such as citrate synthase and b-
hydroxyacyl-CoA dehydrogenase, have also been found
decreased in skeletal muscle from obese and type 2 dia-
betic individuals [26,82,83]. These changes in gene
expression and enzyme activities induced by fatty acids
contribute to the reduced mitochondrial oxidative capa-
city consequently leading to mitochondrial dysfunction.

Increase in reactive oxygen species by
saturated fatty acids
Type 2 diabetes mellitus, obesity and the metabolic syn-
drome are strongly correlated with increased skeletal
muscle content of reactive oxygen species (ROS)
[84-86]. All conditions cited above contribute to an oxi-
dative environment, modulating insulin sensitivity either
by increasing insulin signaling or impairing glucose

tolerance. The mechanisms by which this occurs are
often multifactorial and complex, involving several cell
signaling pathways [87].
Production of ROS can occur in response to diverse

stimuli including: (1) intracellular factors, such as nutri-
ent metabolism, endoplasmic reticulum stress, and
detoxification of various xenobiotics; (2) extracellular
factors like signaling through plasma membrane recep-
tors, such as hormones and growth factors and by pro-
inflammatory cytokines; and (3) physical-environmental
factors (e.g. ultraviolet irradiation) [88-91]. When mod-
erately produced, ROS are involved in important physio-
logical processes that lead to desired cellular responses.
However, high ROS production is negatively associated
with different biological signaling pathways [87]. ROS
can react with multiple cellular components, such as
proteins, lipids and nucleic acids, generating reversible
or irreversible oxidative modifications. Pathophysiologi-
cal processes mediated by ROS are more likely to induce
irreversible modifications in cellular components, a rea-
sonable definition of the term oxidative stress [88].
Control of vascular tone, cell adhesion, immune

responses, and growth factors and hormone action are
examples of ROS participation in normal physiology
[92,93]. Conversely, a negative role of ROS has been
implicated in ageing-related diseases, malignant transfor-
mation, atherosclerosis, neurodegenerative diseases, obe-
sity, and diabetes [88,94,95]. Insulin signaling can be
also impaired by oxidative stress, but the mechanisms
involved are not fully understood. Studies have been
demonstrated that ROS lead to impaired insulin
response by inducing IRS serine/threonine phosphoryla-
tion, decreasing GLUT4 gene transcription, and decreas-
ing mitochondrial activity [37,96].
Chronic elevation in plasma lipids levels and excessive

intramyocellular fatty acid disposal are characterized by
increased ROS and reactive nitrogen species (RNS) pro-
duction [15,97,98]. Diet-induced obese mice have an
increased expression of inducible nitric oxide synthase
(iNOS) and RNS generation in skeletal muscle such
effects being associated with impaired insulin sensitivity
[15,99], since mice with iNOS disruption in muscle are
protected from insulin resistance induced by obesity
[100,101]. Diabetic patients present elevated ROS pro-
duction in endothelial cells through NADPH oxidase
activation, a mechanism mediated by PKC [102].
NADPH-oxidase complex is also found in skeletal mus-
cles, raising the possibility that a similar mechanism
occurs under elevated FA availability. Our group
recently demonstrated that palmitate induces superoxide
production in cultured skeletal muscle cells via NADPH
oxidase activation, at least in part [98]. Some evidence
also links xanthine oxidase (XO) as a source of
increased ROS generation in diabetes and obesity. XO
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protein and activity is found increased in muscle arter-
ioles and livers from animal models of type 1 diabetes
and diet-induced obesity [88,103,104].
Animals treated either with high-fat diet or oxidant

drugs such as buthionine sulfoximine (BSO), an inhibi-
tor of gluthatione synthase, have increased skeletal mus-
cle ROS production, oxidative stress and are insulin-
resistant [105,106]. On the other hand, animals food
restricted or treated with antioxidant drugs such as N-
acetyl-cysteine (NAC), lipoic acid, vitamin E, and taur-
ine, have reduced oxidative stress and improved insulin
sensitivity [106-108]. In addition, mice overexpressing
SOD2 have decreased ROS levels, improved hepatic
insulin sensitivity, normalization of blood glucose and
insulin levels, and reduced activation of cellular stress
signalling pathways [109]. These data suggest that mito-
chondrial ROS is important for the development of
insulin resistance.
The involvement of oxidative stress in insulin resis-

tance was also observed in studies performed in myo-
cytes. In L6 muscle cells, H2O2 reduced insulin-
stimulated glucose uptake and glutathione content,
effects that were prevented by preincubation with the
antioxidant lipoic acid [110]. Rat soleus muscle exposed
to nitric oxide (NO) donors have decreased insulin-sti-
mulated glucose uptake and glycogen synthesis, effects
that were associated with reduced insulin-stimulated
phosphorylation of IR, IRS-1, and Akt [15].
Since mitochondria is the main site of ROS produc-

tion in skeletal muscle, mitochondrion DNA, protein
and lipids components are exposed to high levels of
these metabolites suffering structural modification and
damage which at long term can result in impaired func-
tion of this organelle [111,112].
Mitochondrial dysfunction or reduced mitochondrial

biogenesis and density can lead to a decrease in mito-
chondrial fatty acids oxidation, which results in
increased levels of fatty acil-CoA and DAG that can
activate stress-related Ser/Thr kinase activity and inhibit
glucose transport, as reviewed by Lowell and Shulman
[113].
In the case of stress-activated kinases, oxidative stress

also contributes to impair insulin signaling by increased
uncoupling protein-2 (UCP-2) activity. When these pro-
teins are activated, it results in a heat generation that
does not contribute to ATP production [114,115]. UCP-
2 negatively regulates glucose-stimulated insulin secre-
tion by reducing the ATP production, which is key to
provide energy for almost all cellular processes [113]. In
addition, UCP-2-/- mice demonstrate enhanced insulin
secretory capacity after a high-fat diet due to improved
b-cell functions in a type 2 diabetes animal model [116].
Mitochondrial uncoupling is a powerful tool to con-

trol ROS formation and consequently to preserve

mitochondrial function. It can be hypothesized that
fatty-acid induced uncoupling decrease mitochondrial
ROS production and thus it can prevent mitochondrial
lipotoxicity. In fact, UCP-3 is upregulated using high-fat
diets [117,118], fasting [119], etomoxir treatment (which
inhibits the mitochondrial fatty acid oxidation) [120,121]
and lipid infusion [122], all conditions being associated
with excessive lipid accumulation in skeletal muscle. On
the other hand, when fat oxidative capacity is improved,
like with endurance training [123,124], weight loss
[125], or lowering circulatory fatty acids [126,127] there
is a decrease in UCP-3. Interestingly, UCPs are activated
by fatty acids and/or its peroxidation products, reducing
mitochondrial ROS production [128,129]. So, it can be
suggested that UCP-3 is involved in the protection
against mitochondrial lipotoxicity by decreasing ROS
production when activated by FA, as reviewed by
Schrauwen et al. [130].
In summary, oxidative stress seems to play an impor-

tant role in mitochondrial dysfunction, which can
further exacerbate stress signals and reduce ATP pro-
duction. The pathways leading to insulin resistance may
be synergistic and mitochondrial dysfunction can create
a feedback loop, adding to the overall oxidative stress
environment [87].

Impairment of skeletal muscle mitochondrial function
by saturated fatty acids
Several studies have shown that mitochondrial content,
mitochondrial function, and oxidative capacity are
decreased in insulin-resistant obese and type 2 diabetic
individuals [131,132] suggesting that mitochondrial dys-
function might play an important role in the pathophy-
siology of insulin resistance. Corroborating with this
hypothesis, impaired mitochondrial function and
reduced fatty acid oxidative capacity were found in iso-
lated primary myocytes, isolated rectus abdominal mus-
cle strips and muscle homogenates from insulin-
resistant obese and type 2 diabetic patients [26,83,133].
Moreover, mitochondrial density is reduced in insulin-
resistant skeletal muscle from children, offspring of peo-
ple with type 2 diabetes, suggesting that impaired mito-
chondrial oxidative capacity can be an inherited defect
and an early marker for the development of insulin
resistance [96]. Some studies have also reported altera-
tions (mutations, polymorphisms, and epigenetics) in
the mitochondrial DNA in conditions of insulin resis-
tance, such as obesity, type 2 diabetes, and metabolic
syndrome [134-137].
Evidence points for an important role of fatty acids in

the genesis of the mitochondrial dysfunction associated
with obesity and type 2 diabetes mellitus. In this sense,
lipid infusion or administration of high-fat diet to health
human and rodents were associated with impaired
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mitochondrial function characterized by a reduction in
ATP synthesis, oxygen consumption and oxidative phos-
phorylation [16,75,138,139]. These findings were corro-
borated by in vitro studies in which treatment of
cultured skeletal muscle cells with palmitic acid
increased ROS production, impaired fatty acid oxidation
and decreased PGC-1 expression [103,104,140,141]. Stu-
dies from our group demonstrated that saturated fatty
acids directly induces mitochondrial dysfunction in
C2C12 skeletal muscle cells, as evidenced by reduced
ATP synthesis and mitochondrial polarization [5].

Mitochondrial dysfunction plays a central role in the fatty
acid-induced insulin resistance
As discussed above, several mechanisms have been pro-
posed to explain the insulin resistance induced by satu-
rated fatty acids. All these mechanisms operate in
coordinated, integrated manner linking fatty acids avail-
ability to skeletal muscle insulin resistance. To account
for this multifactorial characteristic of saturated fatty
acid actions, we propose herein an integrative model
centered on mitochondrial dysfunction as an important
factor in the genesis of insulin resistance induced by
fatty acids (Figure 1).
In physiological conditions, fatty acids are normally

and rapidly oxidized with low ROS production, little
intracellular lipid accumulation and preservation of

insulin sensitivity (Figure 1A). In pathological condi-
tions, chronic elevation in circulating fatty acid levels
reduces the expression of genes involved in mitochon-
drial biogenesis oxidative capacity and increase produc-
tion of ROS, impairing mitochondrial biogenesis and
function (Figure 1B). As a consequence, oxidative capa-
city is impaired and mitochondrial mass is reduced,
increasing still further ROS production, leading to accu-
mulation of fatty acid-derived metabolites such as dia-
cylglycerol and ceramides.
ROS and lipid metabolites have been positively asso-

ciated with insulin resistance and activation of several
kinases, such as NF�B, p38 MAP kinase, JNK, and some
novel and atypical PKC isoforms, as PKC-ζ and -ε, in
skeletal muscle [27,36,50,141-144]. These kinases impair
the insulin signaling pathway by inducing serine/threo-
nine phosphorylation in IRS-1. Under this condition,
insulin-stimulated tyrosine phosphorylation of IRS-1 is
inhibited, impairing activation of downstream signaling
pathways and decreasing glucose uptake and metabolism
in response to the hormone [5,6,145,146] (Figure 2).

Concluding remarks
We discussed herein the mechanisms involved in insulin
resistance in skeletal muscle cells induced by high avail-
ability of FFA. Several mechanisms have been proposed,
such as Randle cycle, inhibition of insulin signaling

Figure 1 Role of mitochondria in the insulin resistance induced by free fatty acids (FFA). In the normal condition (A), mitochondrial
function is normal and FFA are rapidly metabolized with low reactive oxygen species (ROS) production and without accumulation of lipid
metabolites; normal insulin response is preserved in this condition. In pathological condition (B), the excess of plasma FFA levels induces high
FFA uptake into the cell, modulating negatively the expression of genes related to mitochondrial biogenesis and oxidative capacity, and into the
mitochondrion, increasing the electron flux through to electron transport chain and, consequently, ROS and RNS production. As a result,
mitochondrial biogenesis and function are impaired, decreasing mitochondrial mass and oxidative capacity, leading to abnormal intracellular
accumulation of lipid metabolites and ROS and RNS, which activate some protein kinases involved in the phosphorylation of IRS-1 on threonine
and serine residues. When phosphorylated in threonine and serine residues, IRS-1 is not phosphorylated on tyrosine residues, preventing
activation of downstream signalling pathways by insulin. In addition, RNS increases IRS-1 nitrosilation, resulting in high degradation of these
protein, which can contribute to impaired insulin response

Martins et al. Lipids in Health and Disease 2012, 11:30
http://www.lipidworld.com/content/11/1/30

Page 6 of 11



pathway, regulation of gene expression and enzymatic
activities, increase in ROS and RNS production, and
impairment in mitochondrial function. Although numer-
ous studies have been performed in order to investigate
each one of these mechanisms, the conclusive proposi-
tion has not been defined yet. Evidence suggests that
these mechanisms are not exclusive and there are sev-
eral data in the literature pointing out that more than
one mechanism is involved in the insulin resistance
induced by FFA. We proposed herein a unifying hypoth-
esis that places the importance of mitochondria in the
establishment of FFA-induced insulin resistance.
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