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Abstract
Background: To understand the molecular mechanisms underlying important biological processes, a
detailed description of the gene products networks involved is required. In order to define and understand
such molecular networks, some statistical methods are proposed in the literature to estimate gene
regulatory networks from time-series microarray data. However, several problems still need to be
overcome. Firstly, information flow need to be inferred, in addition to the correlation between genes.
Secondly, we usually try to identify large networks from a large number of genes (parameters) originating
from a smaller number of microarray experiments (samples). Due to this situation, which is rather
frequent in Bioinformatics, it is difficult to perform statistical tests using methods that model large gene-
gene networks. In addition, most of the models are based on dimension reduction using clustering
techniques, therefore, the resulting network is not a gene-gene network but a module-module network.
Here, we present the Sparse Vector Autoregressive model as a solution to these problems.

Results: We have applied the Sparse Vector Autoregressive model to estimate gene regulatory networks
based on gene expression profiles obtained from time-series microarray experiments. Through extensive
simulations, by applying the SVAR method to artificial regulatory networks, we show that SVAR can infer
true positive edges even under conditions in which the number of samples is smaller than the number of
genes. Moreover, it is possible to control for false positives, a significant advantage when compared to
other methods described in the literature, which are based on ranks or score functions. By applying SVAR
to actual HeLa cell cycle gene expression data, we were able to identify well known transcription factor
targets.

Conclusion: The proposed SVAR method is able to model gene regulatory networks in frequent
situations in which the number of samples is lower than the number of genes, making it possible to
naturally infer partial Granger causalities without any a priori information. In addition, we present a
statistical test to control the false discovery rate, which was not previously possible using other gene
regulatory network models.
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Background
In order to understand cell functioning as a whole, it is
necessary to describe, at the molecular level, how gene
products interact with each other. This could help to iden-
tify new target genes and to design new drugs for treat-
ment of several diseases [1-3]. Due to the high number of
genes involved in these networks, activating or suppress-
ing feedback loops, the dynamics of their interactions is
very complex and difficult to infer.

With the development of high-throughput technologies,
such as DNA microarrays, it is possible to simultaneously
analyze the expression of up to thousands of genes and to
construct gene networks based on inferences over gene
expression data.

Several methods to model genetic networks were pro-
posed in the last few years, such as the Bayesian networks
[4-8], Structural Equation Models [9], Probabilistic
Boolean Networks [10-12], Graphical Gaussian Models
[13], Fuzzy controls [14], and Differential Equations [15].

Although these methods allow modeling several regula-
tory networks for which biological information is availa-
ble, it is difficult to determine the flow of information
when there is no a priori knowledge.

In addition, all of these methods face the same problem,
i.e., the number of samples (microarrays) is very small,
when compared to the high number of variables (genes)
(ill posed problems, related to the "curse of dimensional-
ity") [16]. Therefore, it is difficult to infer large scale net-
works using traditional statistical methods, limiting this
inference to only a few genes. As a consequence, modeling
and simulating large networks becomes a field of inten-
sive and challenging research. At this point, it is important
to define what is considered a "large" network. We con-
sider as "large" a network in which the number of genes is
larger than the number of microarrays experiments,
implying in a large number of parameters to be estimated.

Some methods have been developed to overcome this
problem. For example, Barrera et al. use mutual informa-
tion for dimension reduction [17], with mutual informa-
tion between genes being computed and then, the highest
mutual informations selected. However, this approach is
not founded on a statistical test, rendering it very difficult
to interpret and identify the actual edges of the network.
Therefore, the choice of the threshold parameter to deter-
mine whether there is or not a connection, becomes quite
subjective. An alternative to model the large number of
genes is to construct modules (clusters), where each mod-
ule is composed by several genes, and then, to construct
the module-module networks [18-20]. A limitation of
these methods is that they still are not a gene-gene net-

work, therefore, interpretation of the meaning of each
module is difficult, varying with each cluster.

Here we present the Sparse Vector Autoregressive model
to approach these problems. This method was first
applied, with success, in neurosciences, to estimate func-
tional connectivity between several brain areas [21]. Here,
we present the Sparse Vector Autoregressive model based
on LASSO penalized regression for variable selection to
reduce the dimensionality on large gene networks.

In cases of multiple time series, a first approach to infer
connectivity would be to apply techniques such as multi-
variate autoregressive modeling (VAR), which allows
identification of connectivity by combining graphical
modeling methods with the concept of Granger causality
[22]. This is an attractive approach since it does not
require a priori network information. Unfortunately, the
current time series methods can only be applied only for
cases in which the length of the time-series T is much
larger than n, the number of genes, which is exactly the
reverse of the situation commonly found in microarray
experiments, for which relatively short time-series are
measured over tens of thousands of genes. The Sparse Vec-
tor AutoRegressive model (SVAR), on the other hand, esti-
mates the network in a two-stage process involving (i)
penalized regression with LASSO regression [23] and (ii)
pruning of unlikely connections by means of the False
Discovery Rate (FDR) developed by [24]. Extensive simu-
lations were performed with artificial gene networks hav-
ing scale-free like topologies [25] and stable dynamics.
These simulations show that the detection efficiency of
connections of the proposed procedure is quite high. An
application of the method to actual HeLa cell line data
was illustrated by the identification of well known tran-
scription factor targets and circuitries involving important
genes in cancer development.

Results and discussion
In order to measure the performance of SVAR, intensive
simulations were carried out. For this purpose, we simu-
lated hundreds of networks with scale-free like topology
since the metabolic network was described as scale-free
graphs by [25]. In our case, the graph nodes represent the
genes whereas the edges represent the Granger-causal rela-
tionships. For details of these artificial regulatory net-
works, see the Methods section.

The number of genes was kept at n = 100 and we varied
the sample size, i.e., the time-series length (time-series
length T = 25, 50, 75, 100, 125, 150, 175 and 200 for
SVAR and T = 110, 125, 150, 175 and 200 for VAR).
Notice that, for VAR of order one, m = T - 1 must be larger
than n. For each time-series length, we performed 100
simulations, i.e., 100 different scale-free like graphs were
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generated. The starting conditions of the scale-free like
graphs were two fully connected genes (z0 = 2, zedges = 2,
where z0 is the initial number of genes and zedges is the ini-
tial number of edges), in other words, two nodes with two
edges, one pointing to the other. The number of edges
added at each iteration is z = 1, therefore, each network is
composed by 100 genes and 100 edges out of 10,000 pos-
sible edges (the maximum number of possible edges is
n2). Notice that since the goal is to construct a network
with n = 100 genes, we set the number of iterations Tstep =
n - z0 = 98. In Figure 1, an example of the artificially gen-
erated gene expression regulatory network is illustrated.

It is important to highlight that SVAR was able to identify
true positive edges even when the time-series length was
lower than the number of genes. Figures 2, 3 and 4 show,
respectively, the number of true positives inferred by
SVAR and VAR for controlled false positives rate, i.e., q-
value (error type I rate within rejected hypotheses) thresh-
olds lower than 0.01, 0.05 and 0.10. Since the estimated
β's standard error is proportional to the time series' length
(the greater the time series, the lower is the β's standard
error) we varied only the time series' length.

Analyzing figures 2, 3 and 4, we obtained the following
results: 1. The capacity of SVAR to identify true positives even

when the number of samples is lower than the number of
genes is satisfactory. This was found when comparing the
performance between SVAR, with the time-series length
equal to 50, and VAR, with time-series length equal to
110. Also, in this case, SVAR has identified more true pos-

Comparison between SVAR and VARFigure 3
Comparison between SVAR and VAR. The simulations 
were performed in a scale-free like network composed of 
100 nodes and 100 edges. VAR was performed only for 
experiments with the length of the time-series of up to 110. 
TP: True positives. The number of false positives is control-
led using q-value < 0.05. The error bar is representing one 
standard error.
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Artificial gene regulatory networkFigure 1
Artificial gene regulatory network. Example of a simu-
lated sparse gene regulatory network with n = 100 genes and 
100 connections. The arrows indicate the Granger-causal 
relationships.

Comparison between SVAR and VARFigure 2
Comparison between SVAR and VAR. The simulations 
were performed in a scale-free like network composed of 
100 nodes and 100 edges. VAR was performed only for 
experiments with the length of the time-series of up to 110. 
TP: True positives. The number of false positives is control-
led using q-value < 0.01. The error bar is representing one 
standard error.
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itive edges than VAR (the proportion of the quantity of
true positives inferred by SVAR is about 75% higher than
the number of true positives inferred by VAR).

2. By comparing SVAR and VAR when the number of
genes is lower than the number of samples, in general,
SVAR is slightly more powerful than VAR, since the
number of connectivities is larger than the number of
samples.

3. When m Ŭ n, where m = T - 1 and n is the number of
genes, there is no statistical difference between SVAR and
VAR. This could be explained, in this context, because the
best λ which minimizes the GCV (Generalized Cross-Val-
idation) is near to zero. When λ = 0, the SVAR model
becomes the traditional VAR model.

We have also analyzed the expression profile of a set of 94
cell cycle-regulating genes represented by 48 microarrays,
i.e., the number of genes n is approximately 2 times larger
than the time-series length T. Figure 5 shows the genes
that display any connectivity under a false-positive rate
(FDR) of 5% (q-value < 0.05). Genes with no connectivity
were excluded.

The SVAR method reveals at least three gene regulatory
networks related to cell transformation and tumor pro-
gression, namely: NFκB, p53, and STAT3 transcriptional
modules [26-28], which is in agreement with already well
known cell cycle-regulated pathways in several cellular
models and in Hela cells themselves.

It is important to highlight that the out-degree (number of
edges with the gene as their initial vertex) of genes encod-
ing proteins that act as well-known transcriptional factors
(p53, NFκB and STAT3) or important genes for cell prolif-
eration control (p21, bai1, tsp1, a20) is higher than that of
other genes. In a similar analysis, the in-degree (number
of edges with the gene as their terminal vertex) of the FGFs
(fgf18, fgf20, fgfr4) and of genes involved in cell cycle reg-
ulation and apoptosis (cyclin d1, c-myc, bcl-2, noxa, fas) is
also higher, demonstrating the association between their
key role in cell homeostasis and their in-degree and/or
out-degree values [29].

NFκB is an inducible transcription factor complex formed
by heterodimeric association between relA and c-rel gene
products, whose transcriptional activity is regulated by
interaction with the inhibitory IκBα protein. It has already
been demonstrated that activation of NFκB controls cell-
cycle progression in HeLa cells by several mechanisms
[30]. The SVAR method was not able to identify the rela-
tionship between NFκB and its natural targets, such as
A20, iap, bclx and iκBα genes. However, SVAR is showing
that NFκB directly regulates several fibroblast growth fac-
tors (FGFs) and the c-Myc protein, which are key regula-
tors of cell proliferation. Indeed, it is noticed that the
majority of NFκB transcriptional activity is mediated by
interaction with FGFs-related proteins, at the upstream
and/or downstream levels. These results support the

HeLa gene expression regulatory networkFigure 5
HeLa gene expression regulatory network. Gene regu-
latory network inferred from HeLa cell cycle gene expres-
sion data. The arrows represent the Granger-causal 
associations with q-value < 0.05. Genes with no Granger-
causal links identified by SVAR were not plotted.
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hypothesis that some of the multiple aspects of tumori-
genesis in Hela cells may be related to NFκB -mediated
transcription of FGFs-related proteins.

As discussed above, the positive NFκB regulation of sev-
eral well-known natural targets was not detected by SVAR.
However, these regulatory processes appear to be present,
even in the absence of an evident direct link with NFκB,
since all of these transcriptionally regulated genes form a
highly related network (Figure 5). A20, a zinc finger pro-
tein, which is transcriptionally regulated by NFκB in sev-
eral cell types [31], appears to orchestrate the genes
relationship in this network, activating the transcription
of well-known anti-apoptotic genes, such as iap, bclx and
junB – NFκB target genes themselves [32-34] – towards
transduction of the proliferative transcriptional activity of
NFκB. The A20 protein is also involved in NFκB regula-
tion, blocking its activity, in a negative feedback mecha-
nism [35]. Although this control is operated at the post-
transcriptional level, results obtained using the SVAR
method suggest that this process could also be controlled
by A20-mediated positive regulation of iκBα (Figure 5).
These results confirm the reliability of SVAR for predicting
gene relationship, since iκBα, the natural NFκB inhibitor
has a key role in controlling the NFκB -regulated cell cycle
events in Hela cells, as referred to in literature [30]. More-
over, SVAR showed that this role of iκBα in Hela cell cycle
progression also appears to be regulated through p53-
mediated activation of iκBα (Figure 5), in agreement with
data reported in the literature [36]. In summary, these
data support the hypothesis that iκBα may be involved in
attenuation of tumor progression and be responsible for
the mildly invasive phenotype displayed by Hela cells.

The p53 protein is a transcription factor that binds to the
enhancer/promoter elements of downstream target genes
and regulating their transcription and initiating cellular
programs that account for most of its tumor-suppressor
functions, namely: cell cycle arrest, inhibition of angio-
genesis and metastasis, apoptosis induction and DNA
repair [37]. The SVAR method was capable of identifying
the interactions of several members of the p53 network.
IGF-BP3 (IGF-binding protein 3), an inhibitor of insulin-
like growth factor, and NOXA, a BCL-2 homology domain
3-only (BH3-only) protein, are transcriptionally activated
by p53 in activation of apoptosis in several cell types
[38,39]. Our in silico results showed that this regulation is
also present in Hela cells. Although the fas gene is not a
known target of p53, its activation could be mediated by
other p53 targets, leading to increased apoptosis rate and
cell proliferation control. On the other hand, SVAR
showed that bai-1 and tsp-1 genes are induced by the p53
gene product in Hela cells. It is known that the bai-1 gene
codes for a member of the secretin receptor family, which
contains at least one functional p53-binding site within

an intron, and its product is postulated to be an inhibitor
of angiogenesis and a tumor growth suppressor [40]. Sim-
ilarly, the tsp-1 gene codes for an adhesive glycoprotein
that mediates cell-to-cell and cell-to-matrix interactions
and has been shown to play a role in platelet aggregation,
angiogenesis, and tumorigenesis [41]. Taken together, the
p53-mediated upregulation of bai-1 and tsp-1 genes may
be a mechanism to evade cell migration and angiogenesis,
features which are commonly absent in Hela cells. We
noticed that the classical p53 targets, such as gadd45 and
p21, do not appear to be directly regulated by p53 in the
SVAR analysis (Figure 5). This may be explained by the
fact that the time-series length is not large enough. It is
important to note that our previous study applying DVAR
(Dynamic Vector AutoRegressive) [42], it was possible to
identify these connectivities.

The observed p53-independent transcriptional regulation
of the p21 gene (Figure 5), appears to be unrelated to cell
cycle arrest, as discussed below.

The STAT3 protein is a member of the STAT protein fam-
ily. In response to cytokines and growth factors, it forms
both homo- or heterodimers with other STAT proteins
and the complex translocates to the nucleus, where they
act as transcriptional activators. STATs mediate the cell
response to different stimuli, playing a key role in several
cellular processes, such as cell growth and apoptosis [43].
As shown, using the SVAR method (Figure 5), STAT3 reg-
ulates the expression of the cycle positive regulator Cyclin
D1 and of the anti-apoptotic protein Bcl-2. It has already
been reported that constitutive activation of STAT 3 corre-
lates with cyclin d1 and bcl-2 gene overexpression, thus
providing a novel prognostic marker for head and neck
squamous cell carcinoma [44]. Moreover, repression of
p53 gene expression by STAT3 is likely to have an impor-
tant role in development of tumors [45]. These evidence
point to an involvement of STAT3 in cell cycle progression
and transformation of Hela cells.

Our in silico analysis also highlighted an unexpected
behavior for the p21 gene, independently of p53 regula-
tion. This alternative regulation has already been
described for other cell types [46], but still remains
unclear in the case of Hela cells. Although p21 is not a
transcription factor, it is conceivable that indirect effects
of p21 on cellular gene expression of well-known cell
cycle progression promoters, such as Cyclin D1 and apop-
tosis inhibitors, such as Bcl-2 may mediate some unex-
pected functions in Hela cells. These functions appear to
be unrelated to growth inhibition and cell cycle arrest,
supporting the hypothesis that p53-independent regula-
tion of p21 could be one of the signaling pathways acti-
vated during tumorogenesis and/or tumor progression in
Hela cells as well as in other cancer types [47,48]. Future
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efforts directed to evaluate this hypothesis include gene
transfection of p21 mutants lacking the p53 and STAT3-
binding sites and subsequent, analysis of the newly iden-
tified p21 targets gene expression and changes in Hela
cells phenotype and tumorigenicity.

It is interesting that, even using a small dataset, the SVAR
method allowed identification of actual regulations, as
detailed above, illustrating the power of this technique. In
general, the methods reported in the literature are not
based on a statistical test due to difficulties generated by
the fact that the number of samples is lower than the
number of parameters to be estimated, consequently, they
do not provide an objective control for false-positives.

The main advantage of the sparse vector autoregressive
model (SVAR), compared with other connectivity models,
is that it models a Granger-causal network with a number
of genes that is larger than the number of samples, in
other words, it is useful to model "large" networks with a
statistical test for each one of the edges. To the best of our
knowledge, the approach taken here is the only one that
combines these two advantages since other methods
which model "large" networks usually do not present sta-
tistical tests for the edges. Moreover, "large" gene-gene
networks are commonly dealt with in pairwise compari-
sons. Using SVAR, it is possible to infer partial Granger-
causalities resulting in a lower number of spurious edges
than pairwise comparisons.

Since SVAR deals with the multivariate case, the definition
of Granger causality becomes complex, because of the
existence of multi-steps connectivities. In the present
report, identification of Granger causality using the SVAR
model is related to the definition of partial Granger-cau-
sality given by [49]. By definition of Granger's causality
[49] the SVAR model allows analysis of cycles containing
networks. Therefore, there is no a priori assumption that
the network must be a DAG (Directed Acyclic Graph), as
assumed by other methods [5,9]. As a consequence, the
SVAR method can be used to model networks with cycles.
This is of extreme importance, since it is well-known that
genetic regulatory networks maintain their control and
balance by a number of positive/negative feedback cycles.

There is a class of Bayesian network with MCMC algo-
rithm which may integrate expression data with multiple
sources of information [8]. The advantages of integrating
multiple sources of information, i.e., adding a priori
knowledge, is speculative. Integration of a priori knowl-
edge maybe interesting to recover more realistic connec-
tions and to increase the power of the test. However, it
also lead to a bias depending on the kind of information
assumed in the model. In this actual stage of development
of SVAR, integration of different information is not possi-

ble since only gene expression levels are used to estimate
Granger causality. Further studies may be focused on inte-
grating biological information to improve the power of
SVAR.

The experimental comparison between SVAR and other
methods is difficult since SVAR is the only one which has
a statistical test for gene-gene networks comprising a
notion of Granger-causality. The Graphical Gaussian
Models reported by Schäfer and Strimmer, which apply
partial correlations in the context of (n > m) is the closest
one to SVAR, presenting a statistical test, however, the
edges obtained by this approach represent instantaneous
associations (correlations), failing to provide a notion of
Granger-causality, i.e., the edges have no direction.

Differently from score functions, which pose difficult
interpretations or subjective choices of the threshold to
determine where there is (or not) an edge, a statistical test
is an objective way to determine whether there is an edge
and what is the rate of type I error.

In this work, we considered only lags of first order, but it
is relatively straightforward to generalize this method to
analyze SVAR models with orders higher than one. How-
ever, this issue depends on the number of parameters to
be estimated and the time series length.

The complexity of the proposed inference is linear to the
number of genes, since only one regression is performed
for each gene.

There are other approaches for variable selection based on
stepwise methods. Unfortunately, these methods are not
consistent when n > m [50], i.e., even increasing the sam-
ple size (T → ∞), there is no guarantee that the set of non-
zero coefficients is the correct one. This result does not
change even if all subsets of variables are explored.

In contrast to LASSO, one may choose to use other penal-
ized regressions, such as the more popular Ridge [51] or
the non-negative Garrote [52]. Ridge does not set the var-
iables to zero, resulting in models with difficult interpre-
tations. Comparing LASSO to non-negative Garrote, the
latter is worse than LASSO when multicolinearity is
present in the data [23]. Therefore, LASSO seems to be the
most appropriate in identifying gene regulatory networks.

Another advantage of SVAR is the fact that it does not
require model pre-specification; therefore, this method is
unbiased and makes it possible to infer new connections,
not just quantifying the dependence level measured by
already known edges. Furthermore, it is not necessary to
discretize gene expression values to Boolean variables, as
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in the Boolean network models [17]; therefore, there is no
loss of information.

In the SVAR approach, to render the application of statis-
tics when (n > m) feasible, we used the fact that the meta-
bolic networks are sparsely connected as part of the
solution. Therefore, the number of variables to be ana-
lyzed decreases significantly, resulting only in variables
whose estimated coefficients are large enough to be tested
and rejected as being different from zero.

Conclusion
In summary, here we introduce the SVAR method to
model gene regulatory networks in the present context,
where the number of samples is often lower than the
number of genes. With this method, it is possible to natu-
rally model networks with feedback loops and to infer
partial Granger causalities without any a priori informa-
tion, which minimizes the number of spurious causalities.
Moreover, we present a statistical test to control for the
false discovery rate, a task which was not previously pos-
sible in several other proposed gene regulatory network
models.

Methods
Firstly, we describe the classical vector autoregressive
model (VAR) and, then, we explore the feasibility of using
LASSO regression as part of a technique for variable selec-
tion, by introducing the sparse vector autoregressive
model (SVAR). The statistical test for the edges is also pre-
sented followed by the control of the false positives. To
simplify the description of these methods, we describe
both the SVAR and the VAR of order one, but they could
easily be generalized to higher orders. After this descrip-
tion, we present the algorithm to construct artificial regu-
latory networks based on scale-free topology, since
metabolic networks were described to have power-law
distributions in the nodes' degrees [25]. We use this artifi-
cial network to evaluate the performance of our proposed
model. Finally, the SVAR model is applied to actual bio-
logical data.

Statistical background
Granger (1969) [53] defined a concept of causality, which
is easy to deal with in the context of VAR models; there-
fore, it has become quite popular in recent years [54]. The
idea is that a cause cannot come after the effect. Thus, in
the case of VAR(1) (VAR of order one) [54], if a gene i at
time (t - 1) affects another gene j at time t, the former
should help to predict the target gene expression.

A first order VAR model is described as shown:

yt = A1yt-1 + εt t = 2,..., T (1)

where T is the time-series' length (number of microarrays)
yt is an n × 1 vector of gene expression (where n is the

number of genes), the normally distributed disturbance εt

is an n × 1 vector with mean zero and covariance matrix

Ω, and A1 is an n × n matrix of parameters (connectivities).

The disturbances εt are serially uncorrelated, but may be

contemporaneously correlated. Thus  = Ω, where

Ω is an n × n matrix. It is important to highlight that, in
this multivariate model, each gene may depend not only
on its own past values, but, also, on the past values of the
other genes. Thus if yit denotes the ith element in yt, the ith

row yields

yit = ai1y1,t-1 + ai2y2,t-1 + ...+ aiNyN,t-1 + εit, i = 1,...,n
(2)

This model can be estimated by Ordinary Least Squares
(OLS), simply by regressing each variable on the lags of
itself and the other variables.

Therefore, we can re-write it as

Z = Xβ + EEi ~ N(0, Ω) i = 1,..., n (3)

where Ei follows a multivariate Gaussian distribution N(0,
Ω), with zero mean 0(n×1) and covariance matrix Ω.

We define m = T - 1 and introduce the notation:

Z(m×n) = [y2,...,yt,...,yT]' = [z1,...,zi,...,zn],

X(m×n) = [y1...ym]',

E(m×n) = [ε2,...,εt,...,εT]'

The explicit solution of the OLS estimator is

β = (X'X)-1X'Z (4)

Therefore, one can carry out separate regression analyses
for each gene. In other words, it is possible to separately
estimate each column βi of β:

where zi is the i-th column of Z.

E t t( )ε ε ′

β β β( ) [ ,..., ],n n nA× = ′ =1 1

ˆ ( ) ,...,βi iX X X z i n= ′ ′ =−1 1 (5)
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In order to specify the distribution of the j-th element of

, let us denote the j-th diagonal element of (X'X)-1 by wjj.

Then, we may assert the statistical test as

under the null hypothesis, where t(m - n) denotes a t dis-
tribution of (m - n) degrees of freedom and

It is to point out that these definitions will work only if m
> n. Additionally, it is also well known that OLS does not
ensure sparse connectivity patterns for A.

To overcome these problems, in the next section, we intro-
duce the sparse vector autoregressive model.

Sparse Vector AutoRegressive (SVAR)
Consider Z, β, X and E as described above.

According to [55-58], the LASSO (Least Absolute Shrink-
age and Selection Operator) regression [23] can be carried
out by iterative application of:

where Nit is the number of iterations (we set Nit = 30 to our

analysis), λ is the regularization parameter which deter-

mines the amount of penalization enforced,  is a

diagonal matrix defined by

and

At each iteration, the regression coefficients of each gene
with all others are weighted according to their current size
and several coefficients are successively down-weighted
and set to zero.

The covariance matrix of the estimators may then be
approximated by:

where σ2 is an estimate of the error variance

and c is the number of variables β set to zero by LASSO
regression.

When  replaces σ2, we get the result that the statistical
test is

under the null hypothesis, where t(m - n - c) denotes a t
distribution of (m - n - c) degrees of freedom and wjj is the
j-th diagonal element of

It is important to emphasize that the number of variables
set to zero in this method will depend on the value of the
regularization parameter λ, with higher values implying
on the selection of fewer variables.

In our work, the value of the tuning parameter λ was
selected as the value that minimizes the generalized cross
validation criterion (GCV).

Let q(λ) = tr{X(X'X + λ2D(β))-1X'} and rss(λ) be the resid-
ual sum of squares for the constrained fit with constraint
λ, the generalized cross-validation statistic can be written
as:

The minimum value for GCV was achieved by the L-BFGS-
B algorithm [59], which was implemented in the function
optim of the R statistical environment.

For more details on the statistical properties of LASSO in
autoregressive models see [60].

Controlling the number of false-positives
To control the type I error in cases of multiple tests of hun-
dreds of edges, we applied the FDR method [24].

Firstly, assume that of the n hypotheses tested

, where  is the null hypothesis of the

j-th test and {p(1), p(2),...,p(n)} their corresponding p-

β̂

ˆ

ˆ
( ) ,...,

β

σ

ij

jjw
t m n i n

2
1∼ − = (6)

ˆ ( ˆ) ( ˆ)σ β β2 1=
−

− ′ − =
′
−m n

Z X Z X
E E

m n
(7)

ˆ ( ( ˆ )) ,..., ,...,β λ βi
k

i
k

i itX X D X z i n k N+ −= ′ + ′ = =1 2 1 1 1 and 

(8)

D i
k( )β

D diag p k n( ) ( ( )/ ) ,...,θ θ θλ= ′ = 1 (9)

′ =p signλ θ λ θ( ) ( ) (10)

( ( )) ( ( ))′ + ′ ′ +− −X X D X X X X Dλ β λ β σ2 1 2 1 2 (11)

ˆ ( ˆ) ( ˆ)σ β β2 1=
− −

− ′ − =
′

− −m n c
Z X Z X

E E

m n c
(12)

σ̂ 2

ˆ

ˆ
~ ( ) ,...,

β

σ 2
1

w
t m n c i n

jj

− − = (13)

( ( )) ( ( ))′ + ′ ′ +− −X X D X X X X Dλ β λ β2 1 2 1 (14)

GCV
m

rss

q m
=

−
1

1 2

( )

{ ( )/ }

λ
λ

(15)

{ , ,..., }H H Hn1
0

2
0 0 Hj
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values, n0 are the number of true null hypotheses and the

other (n - n0) hypotheses are false.

Let p(1) ≤ p(2) ≤ ... ≤ p(n) be the ordered observed p-values
of each test. Define

and reject . If no such i exists, reject all null

hypothesis.

FDR is defined as the expected proportion (q) of incor-
rectly rejected null hypotheses (type I error) in a list of all
rejected hypotheses.

Artificial regulatory networks
The description that many networks in nature have a
power-law degree distribution was first addressed by [61].
In their random graph model, called scale-free graph, it is
described how these networks grow and expand, being
based on two generic mechanisms, which are common to
several networks in the real world. Several networks in the
real world start from a small number of nodes and grow
by continuous addition of new nodes, therefore, the
number of nodes increases throughout the lifetime of the
network. When a new node is added to the network, its
attachment is preferential, i.e., the probability of a new
node connects to the existing nodes is not uniform as in a
random graph [62]. There is a higher probability to be
linked to a node that already has a large number of con-
nections, resulting in a power-law degree distribution. In
other words, the probability P(v) that a node in the net-
work is connected to v other nodes decays as a power-law.
Therefore, the degree distribution has a power-law tail
P(v) ~ v-γ, where γ is a scalar which represents the rate of
decayment of the degree distribution. In our case, the
nodes are representing the genes and the connections are
the Granger-causal relationships.

This scale-free graph can be constructed as below:

1. Growth: Starting with a small number z0 of genes, at
each iteration, a new gene with z ≤ (z0) edges are added.
This new gene is connected to the genes already present in
the network with a preferential attachment.

2. Preferential attachment: The gene with which the new
gene will connect is selected in a non-deterministic fash-
ion. Assume that the probability π that a new gene will be
connected to gene i depends on the degree di of that gene
which is already in the network. Therefore:

Since we are interested in causal relationships, we need to
define a direction for each edge. Therefore, there is a third
step in our graph construction. In our simulations, the
probability attributed to add an edge from i to j is the
same from j to i, i.e., 0.5.

After Tstep iterations, the constructed random scale-free like
network is composed of n = Tstep + z0 genes and z * Tstep +
zedges Granger-causal relationships, where zedges is the initial
number of edges.

The graph constructed using the algorithm described
above may be represented by its adjacency matrix A, i.e.,
where there is an edge from gene i to gene j it was set to
A[i, j] = 0.8, and 0 otherwise, in our simulations. This
adjacency matrix A corresponds to the matrix A described
in equation 1. The time-series' lag was set to one in our
simulations, therefore, set m = T - 1.

To construct the corresponding time-series for each gene,
firstly, generate normally distributed random numbers
with zero mean and unit variance for each gene i = 1,...,n
for the time step t = 1, yi1 = εi. Then, use equation 2 to gen-
erate the time-series for each gene i = 1,...,n, time step t =
2,...,T.

Implementation
We implemented our program using R [63], a statistical
computing environment. Computation was conducted
under a Pentium IV CPU 3.06 GHz, 2.5 GB of RAM.

Application to real data
We applied the SVAR approach to HeLa cell cycle gene
expression data collected by Whitfield et al. (2002) [64].
Gene expression was measured using microarrays manu-
factured in the Stanford Microarray Facility. The data used
contain 48 time points distributed at one hour intervals
with one reading at each time point, synchronized by
double thymidine block (described as Experiment 3 in the
web page [65]). The 94 genes were selected from actual
biological microarray data on the basis of there associa-
tion with cell cycle regulation and tumor development.
The HeLa cell cycle lasts 16 hours. These data were down-
loaded from: [65].
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