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ABSTRACT

In this work we study C∞-hypoellipticity in spaces of ultradistributions

for analytic linear partial differential operators. Our main tool is a new

a-priori inequality, which is stated in terms of the behaviour of holomor-

phic functions on appropriate wedges. In particular, for sum of squares

operators satisfying Hörmander’s condition, we thus obtain a new method

for studying analytic hypoellipticity for such a class. We also show how

this method can be explicitly applied by studying a model operator, which

is constructed as a perturbation of the so-called Baouendi–Goulaouic op-

erator.

1. Introduction

Given a sum of squares operator P (x,D), defined in an open set of RN and

satisfying Hörmander’s condition, it is well known that P (x,D) is hypoelliptic

∗ This research project was supported by the NSF Grant INT 0227100. The first

author was also partially supported by CNPq and Fapesp.

Received December 15, 2010 and in revised form January 28, 2011

771



772 P. D. CORDARO AND N. HANGES Isr. J. Math.

for distribution solutions: this is a classical result due to Hörmander [H, 1967].

However, when P (x,D) is real-analytic, hypoellipticity for more general solu-

tions may fail. For instance, in [CH, 2009], the authors have exhibited explicit

hyperfunction solutions for the so-called Baouendi–Goulaouic operator which

are not distributions.

In order to make our presentation more apparent it is convenient at this

very beginning to recall the basic definitions of the standard ultradistribu-

tion spaces in RN . A function f ∈ C∞(Ω) (Ω ⊂ RN open set) belongs to

Gs(Ω) (s ∈ R, s > 1) if for each K ⊂ Ω compact there is CK > 0 such

that supK |Dαf | ≤ C
|α|+1
K α!s for all multi-indices α; f belongs to G(s)(Ω) if

for each compact set K ⊂ Ω and each ε > 0 there is CK,ε > 0 such that

supK |Dαf | ≤ CK,εε
|α|α!s for all α. Let Gs

c(Ω), respectively G
(s)
c (Ω), denote

the subspace of Gs(Ω), respectively G(s)(Ω), formed by all functions with com-

pact support. All these function spaces are provided with their natural locally

convex space topologies (see [K, 1973]) and

G(s)(Ω) ⊂ Gs(Ω), G(s)
c (Ω) ⊂ Gs

c(Ω) ⊂ C∞
c (Ω), Gσ

c (Ω) ⊂ G(s)
c (Ω) if 1 < σ < s,

with continuous imbeddings and dense images. The spaceD{s}′
(Ω), respectively

D(s)′ (Ω), which is the dual space of Gs
c(Ω), respectively of G

(s)
c (Ω), are the

spaces of ultradistributions of order s in Ω. Notice that D′(Ω) ⊂ D{s}′
(Ω) ⊂

D(s)′ (Ω) ⊂ D{σ}′
(Ω) if σ < s.

Even if we work in the framework of ultradistribution solutions, hypoelliptic-

ity may still fail (cf. [Ma, 1987]). Since, however, every such P (x,D) is Gevrey

hypoelliptic of order s ∈ [s0,∞[, where s0 depends on its type (see [ABC, 2009],

[DZ, 1973]), and since also Gevrey hypoellipticity of order s for P (x,D) implies

C∞-hypoellipticity for tP (x,D) in the D{s}′-sense (cf. Lemma 2.1 below), it

seems reasonable to try to determine the optimal Gevrey regularity of P (x,D)

by examining for which values of s there is u ∈ D{s}′ \D′ such that tP (x,D)u

is a smooth function.

In this work we address this question by introducing a new necessary con-

dition for C∞-hypoellipticity in the ultradistribution sense. This is based on

an a-priori inequality involving the complexification of the operator acting on

holomorphic functions defined in appropriate wedges (cf. Proposition 3.1 be-

low). Such a condition is presented in Section 3 and its derivation requires, as

usual, some standard functional analytic methods. Furthermore, by recalling

the results obtained in [CH, 2009], we also show that such an a-priori inequality
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is necessary for the analytic hypoellipticity (in the distribution framework) for

operators belonging to a quite general class which includes the sum of squares

operators alluded to above.

In the remaining part of the article we show how such a method can be

applied by studying a model operator, constructed as a perturbation of the

Baouendi–Goulaouic operator in three dimensions.

Let us consider the operator in R3 given by

P = tP = ∂2x1
+ ∂2x2

+ x21g(x2)
2∂2x3

.

Here g is a real-analytic function which extends as a holomorphic function to

the complex disc |z2| < r0. We assume g real on the real axis and g(0) = 1.

Thus P, which is defined in Ω = R2×]− r0, r0[, satisfies Hörmander’s condition.

Hence P is hypoelliptic on Ω for distribution solutions. Neverthless, we show

that when we allow ultradistribution solutions the situation changes drastically:

Theorem 1.1: The following properties hold:

(a) for any U ⊂⊂ Ω open containing the origin, and each 1 < s < 2, there

is u ∈ D(s)′(U) \ D′(U) such that Pu ∈ C∞(U);

(b) P is not analytic hypoelliptic (for distributions).

Since D(s)′(U) ⊂ D{σ}′
(U) if σ < s we obtain immediately from Theorem

1.1.(a) the following result:

Corollary 1.1: For any U⊂⊂Ω open containing the origin, and each 1<s <2,

there is u ∈ D{s}′(U) \ D′(U) such that Pu ∈ C∞(U).

Since it is known that P isGs-hypoelliptic for distributions if s ≥ 2 ([DZ, 1973,

Theorem 2.7]; see also [ABC, 2009]), the result stated in Corollary 1.1 is sharp,

according to Lemma 2.1.

Finally, we briefly describe the proof of Theorem 1.1. We shall proceed by

contradiction: we will violate the a-priori inequality for P mentioned before,

by constructing a family of asymptotic, holomorphic solutions to the equation

Pu = 0. Such solutions will be obtained after applying a version of the Ovcyan-

nikov theorem presented in Section 4, and for this we will build, in Section 5,

appropriate scales of Banach spaces of entire functions based on the harmonic

oscillator operator (see also [M, 1981] for the use of similar scales). Finally,

in Section 6, we will show that the solutions so obtained satisfy the required

growth conditions.
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2. An abstract result

In this section we consider an arbitrary linear partial differential operator with

real-analytic coefficients P = P (x,Dx) defined on an open set Ω of RN . The

following result can be regarded as an ultradistribution version of the main

abstract result in [CH, 2009].

Lemma 2.1: Assume that P (x,D) is L2-solvable on any relatively compact

open subset of Ω and also that, for some s > 1, P (x,D) is Gevrey hypoelliptic

of order s in Ω. Then given u ∈ D{s}′(Ω), if tP (x,D)u ∈ L2
loc(Ω) it follows

that u ∈ L2
loc(Ω). In particular, if in addition tP (x,D) is C∞-hypoelliptic, then

tP (x,D) is C∞-hypoelliptic in D{s}′(Ω).

Proof. Replacing Ω by one of its relatively compact open subsets allows us to

assume that P (x,D) is L2-solvable in Ω. Thus there is K : L2(Ω) → L2(Ω)

bounded such that P (x,D)K = identity in L2(Ω). Observe that, since P (x,D)

is Gevrey hypoelliptic of order s, the inclusion K(Gs
c(Ω)) ⊂ Gs(Ω) ∩ L2(Ω)

holds.

Let then u∈D{s}′(Ω) be as in the statement and let U ⊂⊂Ω open. By the

Riesz Representation Theorem we must show that λ :Gs
c(U)→C, λ(φ) = 〈u, φ〉,

is continuous when we consider in Gs
c(U) the topology induced by L2(U).

We take χ ∈ Gs
c(Ω), χ ≡ 1 in an open neighborhood of the closure of U . It

follows that supp dχ ⊂W , where W is open and Ū ∩W = ∅. Then
λ(φ) = 〈χu, φ〉 = 〈χu, P (x,D)Kφ〉 = 〈 tP (x,D)(χu),K(φ)〉.

Consequently, we can write λ(φ) = λ1(φ) + λ2(φ), where

λ1(φ) = 〈χ tP (x,D)u,K(φ)〉, λ2(φ) = 〈v,K(φ)〉.
Here v ∈ E{s}′(W ).

Now, since tP (x,D)u ∈ L2
loc(Ω), the Cauchy-Schwarz inequality and the

L2(Ω)-continuity of K shows that φ → λ1(φ) is continuous with respect to

the L2(U)-norm. On the other hand, by using again that P (x,D) is Gevrey

hypoelliptic of order s, we have K(g)|W ∈ Gs(W ) if g ∈ L2
c(Ū). We then

obtain a linear map μ : L2
c(Ū ) → Gs(W ), μ(g) = K(g)|W , whose graph is

easily seen to be sequentially closed. Applying the version of the closed graph

theorem presented in [Kö, 1979, p. 56],1 we conclude that μ is continuous. Since

1 Gs(W ) is a webbed space, a property that follows from [Kö, 1979, p. 55(4) and p. 63(7,8)].
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λ2(φ) = 〈v, μ(φ)〉, it then follows that φ → λ2(φ) is also continuous with respect

to the L2(U)-norm.

3. A new necessary condition for hypoellipticity

In this section we continue to consider an arbitrary linear partial differential

operator with real-analytic coefficients P = P (x,Dx) defined on an open set Ω

of RN . We fix a complex neighborhood Ω• of Ω in Cn to which the coefficients

of P extend as holomorphic functions. We write P (z,Dz) for the extended

operator.

If U ⊂⊂ Ω is open, Γ is an open convex cone in R
N \ {0} and δ > 0 we set

Wδ(U ; Γ) = {z = x+ iy : x ∈ U, y ∈ Γ, |y| < δ},
Wδ(U ; Γ) = Wδ(U ; Γ) ∪ (U + i{0}).

We take δ > 0 appropriately small in order that Wδ(U ; Γ) ⊂⊂ Ω•.
Let η > 0. We shall consider the Fréchet space Oη(Wδ(U ; Γ)) of all holomor-

phic functions F on Wδ(U ; Γ) such that, for any compact K of Wδ(U ; Γ),

|f |η,K .
= sup

Wδ(U ;Γ)∩K

|F (x+ iy)| e−1/|y|η <∞ .

By [K, 1973, Theorem 11.5] it follows that

bΓ (Oη(Wδ(U ; Γ))) ⊂ D(1+1/η)′(U),

where bΓ is the hyperfunction boundary value map.

Lemma 3.1: The space

E = {F ∈ Oη(Wδ(U ; Γ)) : bΓ(
tP (z,Dz)F ) ∈ C∞(U)},

with the locally convex topology defined by the seminorms

F → |F |η,K+‖bΓ(tP (z,Dz)F )‖CM(K′), K ⊂⊂ Wδ(U ; Γ), K ′ ⊂⊂ U, M ∈ Z+,

is a Fréchet space.

Proof. Let {Fj} be a Cauchy sequence in E. Then {Fj} is a Cauchy sequence

in Oη(Wδ(U ; Γ)) and {bΓ(tP (z,Dz)Fj} is a Cauchy sequence in C∞(U). Since

these spaces are Fréchet, we conclude the existence of F ∈ Oη(Wδ(U ; Γ)) and

v ∈ C∞(U) such that Fj → F in Oη(Wδ(U ; Γ)) and bΓ(
tP (z,Dz)Fj) → v

in C∞(U). Now, [K, 1973, Theorem 11.5] implies that the map
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bΓ : Oη(Wδ(U ; Γ)) → D(1+1/η)′(U) is continuous.2 Hence we have

bΓ(Fj) → bΓ(F ) in D(1+1/η)′(U) and hence

bΓ(
tP (z,Dz)Fj) =

tP (z,Dz) (bΓ(Fj)) → tP (z,Dz)(bΓ(F )) = bΓ(
tP (z,Dz)F )

in D(1+1/η)′(U). Since convergence in C∞(U) implies convergence in

D(1+1/η)′(U) it follows that v=bΓ(
tP (z,Dz)F ), which concludes the proof.

Proposition 3.1: Suppose that, for some η > 0, the following property holds

for every open set U ⊂⊂ Ω:

(∗) Given u ∈ D(1+1/η)′(U), then tPu ∈ C∞(U) implies u ∈ C∞(U).

Let U , Γ, δ > 0 be as before. Then given K0 ⊂⊂ U there are compact sets

K ⊂ Wδ(U ; Γ), K ′ ⊂ U , M ∈ Z+ and C > 0 such that

(1)

sup
K0

|F | ≤ C
(

sup
Wδ(U ;Γ)∩K

|F (x+iy)|e−1/|y|η+‖ tP (x,Dx)F‖CM(K′)

)
, F ∈O(Ω•).

Proof. We consider the Fréchet space O(Wδ(U ; Γ)) of all functions G which are

holomorphic on Wδ(U ; Γ) and smooth up to U + i{0}, where now the topology

is defined by the seminorms

G → sup
K

|Dα
zG|, K ⊂⊂ Wδ(U ; Γ), α ∈ Z

N
+ .

Property (∗) implies that E ⊂ O(Wδ(U ; Γ)) and the closed graph theorem

implies that this inclusion is continuous, from which (1) follows.

Corollary 3.1: Suppose that P (x,Dx) is L
2-solvable on every open set U⊂⊂Ω

and that tP (x,D) is hypoelliptic in Ω (such properties hold, for instance, if

P (x,D) is a sum of squares operator satisfying Hörmander’s condition). Assume

that P is analytic hypoelliptic (for distributions) in Ω and let U , Γ, δ > 0 be as

before. Then given η > 0 and K0 ⊂⊂ U there are compact sets K ⊂ Wδ(U ; Γ),

K ′ ⊂ U , M ∈ Z+ and C > 0 such that (1) holds.

Indeed, according to the main result in [CH, 2009], every such operator sat-

isfies property (∗) for every η > 0.

2 Here we must recall that Oη(Wδ(U ; Γ)) is bornological since it is metrizable ([Kö, 1979,

p. 380]) and hence bΓ : Oη(Wδ(U ; Γ)) → D(1+1/η)′(U), being locally bounded, is contin-

uous ([Kö, 1979, p. 381]). See also [Tr, 1967, Proposition 14.8, p. 141].
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4. Proof of Theorem 1.1

We now return to the operator P defined in the Introduction. We let

Fλ(z) = eiλz3fλ(λ
1/2z1, z2), λ ≥ 1,

with fλ = fλ(ζ, z2) ∈ O(C2). Then

PFλ(z) = eiλz3(Qλfλ)(λ
1/2z1, z2),

where we have written

(2) Qλ = ∂2z2 − λ
{
ζ2g(z2)

2 − ∂2ζ
}
.

In what follows we shall use the following notation: if r > 0, we denote by

D(r) the open disc centered at the origin in C and with radius r. The main

goal of the present work will be to prove the following result, from which our

main result (Theorem 1.1) follows:

Proposition 4.1: There is 0 < ρ < r0 such that for each 1/2 < κ < 1 there is

fλ ∈ O(C×D(ρ)) satisfying the following properties:

(i) fλ(0, 0) = 1;

(ii) There are a > 0, C > 0 such that

(3) |fλ(ζ, z2)| ≤ C ea(|�ζ|2+λκ), (ζ, z2) ∈ C×D(ρ).

(iii) ∀M ∈ Z+, λ
M

∑
p+q≤M ‖(∂pξ∂qxQλfλ)(ξ, x)‖L∞(R×{x∈R:|x|≤ρ}) −→ 0

when λ→ ∞.

Proof of Theorem 1.1. We assume that (1) holds for P with U ⊂⊂ R2 ×D(ρ)

an open set containing the origin, K0 = {0}, Γ ⊂ {y3 − a|y1| > ε|y|}(ε > 0),

0 < δ ≤ 1 and η > 1. We obtain

c ≤ sup
y∈Γ, |y1|≤δ ,|z2|<ρ

|eiλz3fλ(
√
λz1, z2)|e−1/|y|η +R(λ),

where c > 0 and R(λ) → 0 when λ→ ∞. Hence

(4) c ≤ e−λ(y3−a|y1|)+aλκ−|y|−η

+R(λ).

Choose 1/2 < κ < 1 with 1 + 1/η < 1/κ. If κ/η < α < 1− κ we estimate the

exponent in (4) as follows:

• If y ∈ Γ and |y| ≤ λ−α, then |y|−η ≥ λαη and the exponent is

≤ −λαη + aλκ.
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• If y ∈ Γ and |y| > λ−α, then (y3 − a|y1|) ≥ ελ−α and the exponent is

now ≤ −ελ1−α + aλκ.

Thus, for any η > 1, we have contradicted the validity of estimate (1). Con-

sequently, for each 1 < s < 2 there exists u ∈ D(s)′(U) \ D′(U) such that

Pu ∈ C∞(U). Finally, by Corollary 3.1, it follows that P is not analytic hy-

poelliptic.

A property of the Baouendi–Goualouic operator. When g = 1, then

P equals P0, the well-known Baouendi–Goulaouic operator [BG, 1972]. In this

case we can even derive the existence of a solution to the homogeneous equation

P0u = 0 which belongs to D(2)′ \ D′ (this statement is analogous to a result

of Matsuzawa [Ma, 1987] concerning the heat operator). Indeed, in complex

variables as before we have

P0 = ∂2z1 + ∂2z2 + z22∂
2
z3 = (∂z2 − iz2∂z3)(∂z2 + iz2∂z3) + ∂2z1 − i∂z3 .

If F (ζ, z1) is holomorphic, then g(z) = F (z22/2− iz3, z1) satisfies P0g = 0 if

∂2z1F − ∂ζF = 0.

We obtain a solution of this equation by setting

F (ζ, z1) = ζ−1/2ez
2
1/4ζ .

Hence

u(z) =
1

(z22/2− iz3)1/2
exp

{
z21

2z22 − 4iz3

}
satisfies P0u = 0.

In the truncated cone Γ = {y3 > |y2|, |y2| < 1}, we have the estimate

|2z22 − 4iz3| ≥ �(2z22 − 4iz3) = 2(x22 − y22) + 4y3 ≥ 2y3

and hence, still in Γ,

|u(z)| ≤ 1

(2y3)1/2
exp

{ |z1|2
2y3

}
.

Since in any cone Γ′ ⊂⊂ Γ we can dominate y3 ≥ c|y|, we conclude bΓ(u)

belongs to D(2)′ \ D′ and satisfies P0bΓ(u) = 0.
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5. A version of the Ovcyannikov Theorem

We pause to discuss an abstract Cauchy problem which will produce the sought

family fλ. The result is known (see, e.g., [Tr, 1968]) but it is worth recalling its

proof, mainly in order to derive an estimate for the solution.

Let us consider a scale of Banach spaces {Es}, where 0 ≤ a ≤ s ≤ b <∞. As

usual we have Es′ ⊂ Es if s ≤ s′ and this inclusion is continuous, with norm

≤ 1.

We shall assume we are given a holomorphic map A(z), defined for z ∈ C,

|z| < ρ and valued in L(Es′ , Es), the space of bounded linear operators from

Es′ into Es, for every pair s < s′. We also assume that

(5) ‖A(z)‖ ≤ ϑ

(s′ − s)θ
, |z| < ρ,

where ϑ > 0 and 0 < θ < 1. The norm in (5) is of course the one in L(Es′ , Es).

We shall refer to this property by saying that A is an endomorphism of the scale

{Es} of type θ.

Theorem 5.1: Let h ∈ O({|z| < ρ};Eb). Under the preceding hypotheses the

Cauchy problem

(6) u′(z) = A(z)u(z) + h(z), |z| < ρ, u(0) = 0 ∈ Eb,

has a (unique) solution u which belongs to O({|z| < ρ};Es) for every a ≤ s < b.

Proof. We define by induction the following sequence un ∈ O({|z| < r};Ea):

we set u0(z) = 0 and

un+1(z) =

∫ z

0

h(σ)dσ +

∫ z

0

A(σ)un(σ) dσ.

We shall prove by induction the following estimates, for s ∈ [a, b[:

(7) ‖un(z)− un−1(z)‖s ≤M
ϑneθn|z|n

(b − s)θn(n!)1−θ
, |z| < ρ.

Here we have set

M = sup
|z|<ρ

∫ z

0

‖h(σ)‖b |dσ|
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and u−1 = 0, and thus (7) is valid for n = 0. We then assume (7) valid for

n− 1. Take a ≤ s < s+ δ < b. We have

‖un(z)− un−1(z)‖s ≤
∫ t

0

ϑ

δθ
‖un−1(σ) − un−2(σ)‖s+δ |dσ|

≤ Mϑneθ(n−1)|z|n
δθ(b− s− δ)θ(n−1)n(n− 1)!1−θ

.

If as usual we take δ = (b − s)/n, then (7) follows immediately.

It follows, in particular, that un converges, in O({|z| < ρ};Es), to an element

u ∈ O({|z| < ρ};Es) which clearly satisfies

u(z) =

∫ z

0

h(σ) dσ +

∫ z

0

A(σ)u(σ)dσ.

In particular u∈O({|z|<r};Es), for every a≤s<b and u′(z)=A(z)u(z)+h(z).
The proof of the uniqueness is standard.

An estimate for the solution u(z). Observe that, for |z| < ρ, we have

‖u(z)− u0‖s ≤
∞∑
n=1

‖un(z)− un−1(z)‖s ≤M

∞∑
n=1

(γρϑ)n

n!(1−θ)
,

where γ
.
= (e/(b− s))θ. Applying Lemma A.1.2 in Appendix 1 gives

(8) ‖u(z)‖s ≤MKeK(ρϑ)1/(1−θ)/(b−s)θ/(1−θ)

, |z| < ρ,

where K > 0 depends only on θ.

6. A scale of Banach spaces of entire functions

Write ζ = ξ + iη and consider the harmonic oscillator operator in R:

T = ξ2 − ∂2ξ .

As is well known and obvious by formula (25) below, T has an inverse

S ∈ L(L2(R)), the ring of bounded linear oparators in L2(R).

If s > 0 and θ ∈]0, 1[, we shall denote by Gs,θ the vector space of all

h = h(ξ) ∈ S(R) for which

‖h‖s,θ = sup
n≥0

{‖T nh‖0 sθn
n!θ

}
<∞.
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Each Gs,θ is a Banach space. Moreover, Gs′,θ ⊂ Gs,θ if s′ ≥ s and these

inclusions have norm ≤ 1. Notice furthermore that ψ(ξ) = e−ξ2/2 belongs to

Gs,θ for every s and θ, for Tψ = ψ.

In the next result we summarize the key properties of this scale of Banach

spaces.

Proposition 6.1: (1) The operator T defines endomorphisms of the scale

{Gs,θ} of type θ. More precisely, if 0 < s < s′ we have

(9) ‖Th‖s,θ ≤ (s′/s)θ

(s′ − s)θ
‖h‖s′,θ .

(2) If h ∈ Gs,θ, then h extends as an entire function of ζ = ξ + iη and

(10) |h(ζ)| ≤ A‖h‖s,θeA|η|2 .

Proof. For (1) we observe that

‖Th‖s,θ =sup
n≥0

{‖T n+1h‖0 sθn
n!θ

}
≤max

n≥0
{(n+ 1)sn/(s′)n+1}θ ‖h‖s′,θ,

and hence to conclude the proof of (1) it suffices to notice that for every m ∈ N

we have
m

s

( s
s′
)m

=
m

s
e−m log(s′/s) ≤ s′/s

s′ − s
.

The proof of (2) will be presented in Appendix 2.

Let now M denote the operator multiplication by ξ and let S ∈ L(L2(R)) be

the inverse of T . Let also

Θn
.
= T nM2Sn+1.

In Appendix 2 we shall also present the proof of the following result:

Lemma 6.1: For each n = 0, 1, 2, . . . we have Θn ∈ L(L2(R)) and there is μ > 1

such that ‖Θn‖ ≤ μn+1, n = 0, 1, 2, . . ..

We can then prove:

Lemma 6.2: If s′ > s > 0, and if μ is the constant given by Lemma 6.1, then

M2 maps Gμ1/θs′,θ continuously into Gs,θ and

(11) ‖M2f‖s,θ ≤ (s′/s)θ

(s′ − s)θ
‖f‖μ1/θs′,θ.
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Proof. Since

‖T nM2f‖0 = ‖ΘnT
n+1f‖0 ≤ μn+1‖T n+1f‖0,

we have

‖M2f‖s,θ = sup
n≥0

{‖T nM2f‖0sθn
n!θ

}
≤ μ sup

n≥0

{‖T n+1h‖0 (μ1/θs)θn

n!θ

}
and the argument concludes as in the proof of Proposition 2.

7. Proof of Proposition 4.1.

We shall consider the equation Qλfλ = 0 in the variables (ξ, z2) ∈ R × D(r0)

and write it in the form of a system. If we set

uλ =

⎡
⎢⎢⎢⎢⎢⎣

fλ

λ−1/2f ′
λ

Tfλ

⎤
⎥⎥⎥⎥⎥⎦ ,

then Qλfλ = 0 is equivalent to the first order system

(12) ∂z2uλ = λ1/2D(z2, ξ, ∂ξ)uλ,

where

D(z2, ξ, ∂ξ)
.
=

⎡
⎢⎢⎢⎢⎢⎣

0 I 0

g1(z2)ξ
2 0 I

0 T 0

⎤
⎥⎥⎥⎥⎥⎦ ,

and g1
.
= g2 − 1. Notice that

(13) g1(z2) = z2 g�(z2).

At this point we make a crucial remark: this first order system can be inter-

preted as an ODE valued in the scale Es,θ
.
= Gs,θ ×Gs,θ ×Gs,θ. We shall view

uλ as a holomorphic function of z2 valued in Es,θ which, as we have seen, is a

space of entire functions of ζ. We rewrite (12) as

(14) u′λ(z2) = λ1/2Auλ(z2) + λ1/2g1(z2)Buλ,



Vol. 191, 2012 HYPOELLIPTICITY 783

where now

A
.
=

⎡
⎢⎢⎢⎢⎢⎣

0 I 0

0 0 I

0 T 0

⎤
⎥⎥⎥⎥⎥⎦ , B

.
=

⎡
⎢⎢⎢⎢⎢⎣

0 0 0

M2 0 0

0 0 0

⎤
⎥⎥⎥⎥⎥⎦ .

We have the following estimates, which follow from Proposition 6.1 and

Lemma 6.2:

‖A‖ ≤ ϑ/(s′ − s)θ in L(Es′,θ;Es,θ),

‖B‖ ≤ ϑ/(s′ − s)θ in L(Eμ1/θs′,θ;Es,θ),

where ϑ = C(s′/s)θ.
On D(ρ), with 0 < ρ < r0 to be chosen, we shall construct a formal solution

to (14) in the form

uλ(z2) =
∑
j≥0

λ−j/2 vλ,j(
√
λ z2).

Making use of (13) we have the recursion formulae

(15) v′λ,0(w) −Avλ,0(w) = 0, w ∈ D(
√
λρ),

(16) v′λ,j(w) −Avλ,j(w) = wgλ,�(w)Bvλ,j−1(w), w ∈ D(
√
λρ), j ≥ 1.

Here we have written gλ,�(w) = g�(w/
√
λ). We take, as a solution of (15), the

function vλ,0(w) = ewv0, where

v0 =

⎡
⎢⎢⎢⎢⎢⎣
ψ

ψ

ψ

⎤
⎥⎥⎥⎥⎥⎦ ,

and solve (16) with initial condition vλ,j(0) = 0, j ≥ 1. We apply Theorem 5.1

and then obtain a sequence

{vλ,j}j≥0 ⊂
⋂
s>0

O(D(
√
λρ), Es,θ)

solving (16) and satisfying vλ,j(0) = 0 when j ≥ 1.



784 P. D. CORDARO AND N. HANGES Isr. J. Math.

For s > 0 fixed we apply (8) taking (Eτ,θ)s≤τ≤2s as the scale of Banach

spaces. Since, for this particular scale, we can bound ϑ ≤ C2θ, estimate (8)

gives

(17) ‖vλ,j(w)‖s,θ ≤

K sup
|w|≤√

λρ

{∫ w

0

|σgλ,�(σ)|‖Bvλ,j−1(σ)‖2s,θ |dσ|
}
exp

{
Kλ1/(2−2θ)

sθ/(1−θ)

}
, |w|<

√
λρ,

where K is a constant that depends only on θ if we restrict ρ ≤ 1.

From now on we shall write

|||vλ,j |||s,θ = sup
|w|≤√

λρ

‖vλ,j(w)‖s,θ .

If we further take β ≥ 3 and notice that

sup
|w|≤√

λρ

∫ w

0

|σgλ,�(σ)| |dσ| ≤ λρ‖g1‖L∞(D(ρ))

we obtain, for |w| < √
λρ,

(18) |||vλ,j |||s,θ ≤ ρK•
λβθ

(β − 2)θsθ
exp

{
Kλ1/(2−2θ)

sθ/(1−θ)

}
|||vλ,j−1|||μ1/θβs,θ ,

where K• is a new constant depending only on θ and μ is given by Lemma 6.1.

We emphazise that this inequality holds for every s > 0 and for every β ≥ 3.

Since β/(β − 2) ≤ 3, if β ≥ 3 we can further write, after redefining K•,

(19) |||vλ,j |||s,θ ≤ ρK•
λ

sθ
exp

{
Kλ1/(2−2θ)

sθ/(1−θ)

}
|||vλ,j−1|||μ1/θβs,θ.

Let now ωθ > 0 be such that

t ≤ ωθ exp
{
Kt1/(2−2θ)

}
, t ≥ 0.

Then
λ

sθ
≤ ωθ exp

{
Kλ1/(2−2θ)

sθ/(2−2θ)

}
.

Since for s ≥ 1 we have sθ/(2−2θ) ≤ sθ/(1−θ) we obtain, with a new constant K

that depends only on θ and with a redefinition of β,

(20) |||vλ,j |||s,θ ≤ ρK exp

{
Kλ1/(2−2θ)

sθ/(2−2θ)

}
|||vλ,j−1|||βs,θ .

Notice that (20) holds for every s ≥ 1, β ≥ 3μ1/θ, λ ≥ 1, j ≥ 1.
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We start by estimating vλ,0. For any s > 0 and θ > 0 we have

|||vλ,0|||s,θ ≤ sup
n≥0

snθ

n!θ
≤ esθ.

If we iterate (18) and assume ρK ≤ 1 we obtain

(21) |||vλ,j |||s,θ ≤ esθ exp

{
ιKλ1/(2−2θ)

sθ/(2−2θ)

}
,

where

ι =

∞∑
j=0

β− jθ
2−2θ .

We remark that this inequality holds for every s ≥ 1, λ ≥ 1.

Finally we shall set

uλ(z2)
.
=

∑
j<λ1/(1−θ)

1

λj/2
vλ,j(

√
λz2).

From estimate (21) we derive

‖uλ(z2)‖s,θ ≤ esθλ1/(1−θ) exp

{
ιKλ1/(2−2θ)

sθ/(2−2θ)

}
, z2 ∈ D(ρ), s ≥ 1,

and thus fλ(z2), the first component of uλ(z2), satisfies (3) with κ = 1/(2− 2θ)

(cf. Proposition 6.1 (2)).

If we denote

L = d/dz2 − λ1/2A− λ1/2g1(z2)B,

then a computation, which makes use of (16), gives

Luλ = − g1(z2)

λ(q−1)/2
Bvλ,q(

√
λz2),

where q is the integer part of λ1/(1−θ)− 1. Since Qλfλ is the second component

of the vector Luλ we derive an estimate of the kind

|Qλfλ(ξ, z2)| ≤ CeCλ1/(2−2θ)−cλ1/(1−θ) log λ, ξ ∈ R, z2 ∈ D(ρ).

Property (iii) in Proposition 4.1 then follows easily and our argument is com-

plete.
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Appendix 1

In this appendix we prove Lemma A.1.2 used earlier. For this we need

Lemma A.1.1: If A,ω > 0, then
∞∑

n=0

(
An

nn

)ω

≤ (3A/e+ Cω)e
ωA/e,

where Cω = [1 − (e/3)ω]−1.

Proof. Consider the function Λ(t) = At/tt = et log(A/t), defined for t > 0. The

maximum of Λ is attained at the point t0 = A/e. Thus

Λ(t) ≤ Λ(t0) = eA/e.

We split the sum as
∞∑
n=0

(
An

nn

)ω

=
∑

n≤3A/e

(
An

nn

)ω

︸ ︷︷ ︸
.
=S1

+
∑

n>3A/e

(
An

nn

)ω

︸ ︷︷ ︸
.
=S2

and see that

S1 ≤ (3A/e)eωA/e,

S2 ≤
∞∑
n=0

(e/3)nω
.
= Cω.

Lemma A.1.2: If R,ω > 0, then
∞∑
n=0

Rn

n!ω
≤ (3R1/ω + Cω)e

ωR1/ω

Proof. We have
∞∑
n=0

Rn

n!ω
≤

∞∑
n=0

Rnenω

nnω
=

∞∑
n=0

(
Rn/ωen

nn

)ω

.

Appendix 2

In this appendix we shall apply some well known facts concerning the sequence

of Hermite functions {ψp}p≥0. Each ψp can be written as

ψp(τ) = cphp(τ)e
−τ2/2, cp = π−1/4(2pp!)−1/2,

where {hp(τ)}p≥0 is the sequence of Hermite polinomials.
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The following properties are well known and will be crucial for us:

(22) Tψp = (2p+ 1)ψp, p ≥ 0;

(23) hp+1(τ) + 2τhp(τ) + 2php−1(τ) = 0, p ≥ 1.

Proof of Proposition 6.1 part (2). Let f ∈ Gs,θ and write

f =
∞∑
p=0

apψp.

Then

T nf =

∞∑
p=0

(2p+ 1)napψp

and hence
∞∑
p=0

(2p+ 1)2n|ap|2 ≤ n!2θ

s2θn
‖f‖2s,θ, n ≥ 0.

In particular, taking p = n in the summation gives

|an| ≤ n!θ

sθn(2n+ 1)n
≤ ‖f‖s,θ
sθnn!1−θ

.

Now, according to [M, 1980, p. 842] there is a constant L > 0 such that

|ψ(j)
p (ξ)| ≤ j!1/2Lp+je−ξ2/4

and thus

|ψp(ξ + iη)| ≤
∞∑
j=0

|ψ(j)
p (ξ)|
j!

|η|j ≤ Lp
∞∑
j=0

Lj

j!1/2
|η|j ≤ L1L

peL1|η|2 .

Hence we can estimate (recall that 0 < θ < 1)

|f(ξ + iη)| ≤
∞∑
p=0

|ap||ψp(ξ + iη)| ≤ L1

{ ∞∑
p=0

|ap|Lp

}
eL1|η|2

≤L1

{ ∞∑
p=0

Lp

sθpp!1−θ

}
‖f‖s,θ eL1|η|2 .

Proof of Lemma 6.1. Notice that a simple computation shows that (23) is equiv-

alent to

(24) τψp = − 1√
2

{√
pψp−1 +

√
p+ 1ψp+1

)
,
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which gives

M2ψp =
1

2

{√
p(p− 1)ψp−2 + (2p+ 1)ψp +

√
(p+ 2)(p+ 1)ψp+2

}
.

The inverse S of T can be defined by

(25) S(ψp) = (ψp/(2p+ 1)).

A simple computation shows that

Θnψp = an,p−2ψp−2 + ψp + an,p+2ψp+2,

where

an,p−2 =
(2p− 3)np1/2(p− 1)1/2

(2p+ 1)n
, an,p+2 =

(2p+ 5)n(p+ 2)1/2(p+ 1)1/2

(2p+ 1)n+1
.

We then obtain the estimates |an,p−2| ≤ 1, |an,p+2| ≤ 4n+1 and hence, by

Schur’s Lemma,3 it then follows that Θn∈L(L2(R)) and that ‖Θn‖≤3×4n+1.
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