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Lattice calculations of the QCD trace anomaly at temperatures T < 160 MeV have been shown to match
hadron resonance gas model calculations, which include an exponentially rising hadron mass spectrum. In this
paper we perform a more detailed comparison of the model calculations to lattice data that confirms the need
for an exponentially increasing density of hadronic states. Also, we find that the lattice data is compatible with a
hadron density of states that goes as ρ(m) ∼ m−a exp(m/TH ) at large m with a > 5/2 (where TH ∼ 167 MeV).
With this specific subleading contribution to the density of states, heavy resonances are most likely to undergo
two-body decay (instead of multiparticle decay), which facilitates their inclusion into hadron transport codes.
Moreover, estimates for the shear viscosity and the shear relaxation time coefficient of the hadron resonance
model computed within the excluded volume approximation suggest that these transport coefficients are sensitive
to the parameters that define the hadron mass spectrum.
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I. INTRODUCTION

Particle flow anisotropies at low transverse momentum
produced in ultrarelativistic heavy-ion collisions can be rea-
sonably described [1–3] using relativistic fluid dynamics with
a very small shear viscosity to entropy ratio η/s ∼ 1/(4π ).
This is as small as the uncertainty principle-based estimate
derived by Danielewicz and Gyulassy nearly 30 years ago [4]
and also the more recent calculations [5] performed in strongly
coupled gauge theories dual to higher dimensional theories of
gravity [6]. Beyond-leading log perturbative QCD calculations
that are applicable at temperatures T > mpion give values
for the ratio that are an order of magnitude larger than the
bound [7] (for calculations based on parton transport, see
Ref. [8]). Moreover, calculations performed using hadronic
models at T ∼ mpion also resulted in values for the ratio above
the viscosity bound [9–12].

Owing to the observation made in Ref. [13] that a small
value of η/s in QCD should occur in the transition region
T ∼ 150–200 MeV owing to the rapid increase in the entropy
density observed in lattice simulations [14,15], the effects of an
exponentially increasing density of hadronic states on several
properties of hot hadronic matter were investigated using the
hadron resonance gas model in Refs. [16–20]. It was shown
in those studies that the addition of new hadronic states that
follow an exponentially increasing hadron mass spectrum as
proposed by Hagedorn [21],

lim
m→∞ ρ(m) ∼ em/TH

m5/2
, (1)

to the hadron resonance gas model led to a much better agree-
ment to the lattice data computed around the pseudocritical
QCD critical temperature Tc ∼ 196 MeV inferred from Ref.
[22]. Moreover, an estimate of η/s at T ∼ 190 MeV computed
using this model indicated that excited hadronic matter at
those temperatures could become a nearly perfect fluid [23]
where η/s approached 1/(4π ). In this case, the transition from

viscous hydrodynamics to typical hadronic transport would be
much smoother than expected. However, with the advent of
the lattice calculations published in Ref. [15] and the smaller
critical region T ∼ 155 MeV [24] obtained in those studies
(which has been independently confirmed in [25]), a revision
of the effects of heavy resonances on the hadron resonance gas
model became necessary. Reference [26] showed that a hadron
resonance gas model containing only the known hadrons and
resonances could only describe the lattice data up to T ∼
140 MeV, while the inclusion of states with mass m > 2 GeV
(which follow an exponential spectrum) could improve the
match to the lattice data of Ref. [15] and provide a good de-
scription of lattice QCD thermodynamics up to T = 155 MeV.

In this paper we present a more detailed comparison
between the hadron resonance gas model calculations and
the lattice data that not only provides strong evidence for
the need of an exponentially increasing density of hadronic
states with mass m > 2 GeV but also indicates that the density
of states goes as ρ(m) ∼ m−a exp(m/TH )/ at large m with
a > 5/2 (where TH ∼ 167 MeV). As in Ref. [26], we estimate
that the maximum temperature at which the hadron resonance
gas model is applicable is ∼155 MeV. A rough estimate of
the shear viscosity computed within the excluded volume
approximation for the hadron resonance model suggests that
the shear viscosity to entropy ratio of hot hadronic matter
is sensitive to the parameters that describe the hadron mass
spectrum. We briefly comment also on the value of the shear
relaxation time coefficient of hot hadronic matter.

II. HADRON MASS SPECTRUM AND THE HADRON
RESONANCE GAS MODEL

In the statistical bootstrap model of hadrons [21,27], a
hadron is considered to be a volume V (with typical length
∼1 fm) composed of two or more freely roaming constituents
and the hadron density of states is required to be consistent with
the spectrum of constituents, which are themselves hadrons.
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This is the so-called “bootstrap condition” pioneered in this
context by Hagedorn in 1965 [21]. Frautschi [27] reformulated
the bootstrap condition and wrote down an equation for the
total density of states ρ(m) in the hadronic volume (for
Boltzmann statistics) where different states of mass mi and
energy Ei =

√
p2

i + m2
i inside the box possess single particle

density ρin(mi). The bootstrap condition

lim
m→∞ ρ(m) =⇒ ρin(m) (2)

is exactly satisfied when limm→∞ ρ(m) ∼ c ebm/ma with a >

5/2 [27]. This exponentially rising mass spectrum is typical
of a system consisting of stringlike constituents such as a
gas of free strings [28–30] or large Nc glueballs [31]. The
spectrum of experimentally measured hadrons [32] was found
to be compatible with an exponential increase of the number of
states up to ∼1.7 GeV [33,34], although the subleading power
a cannot be reliably determined from such an analysis.

Once the hadron mass spectrum is given, the thermody-
namical quantities of the hadron resonance gas model (at zero
chemical potential) in the total volume V and temperature
T are fully determined by the partition function (assuming
Boltzmann statistics),

Z(T , V ) =
∞∑

N=0

1

N !

N∏
i=1

∫
dmi ρ(mi)

∫
d3pi

(2π )3
e−Ei/T V N, (3)

which can be used to determine the usual thermodynamic
functions. In fact, one finds

p(T ) = T 2

2π2

∫ ∞

0
dm ρ(m)m2K2

(
m

T

)
(4)

for the pressure,

ε(T ) = 1

2π2

∫ ∞

0
dm ρ(m)m4

×
[

3

(
T

m

)2

K2

(
m

T

)
+

(
T

m

)
K1

(
m

T

)]
(5)

for the energy density,

s(T ) = dp(T )

dT
= 1

2π2

∫ ∞

0
dm ρ(m)m3K3

(
m

T

)
(6)

for the entropy density, and

ε(T ) − 3p(T ) = T

2π2

∫ ∞

0
dm ρ(m)m3K1

(
m

T

)
(7)

for the trace anomaly. The speed of sound can be found from
the relation c2

s = dp/dε. In this paper we discuss four different
forms for the density of states,

ρ1(m) = A1 em/TH1 , (8)

ρ2(m) = A2[
m2 + m2

02

]5/4
em/TH2 , (9)

ρ3(m) = A3[
m2 + m2

03

]3/2 em/TH3 , (10)

ρ4(m) = A4

TH4

(
m

TH4

)α

, (11)

where the parameters are shown in Table I.

TABLE I. Parameters for the mass spectra shown in Eqs. (8)–(11).

TH (GeV) A m0 (GeV) α

ρ1 0.252 2.84 (1/GeV)
ρ2 0.180 0.63 (GeV3/2) 0.5
ρ3 0.175 0.37 (GeV2) 0.5
ρ4 0.158 0.51 2

The parameters chosen for ρ1 and ρ2 are the same ones
used in Ref. [26] while the parameters for the other ρ’s were
obtained from a fit to the lattice data of Ref. [15]. The density
ρ3 satisfies the asymptotic bootstrap condition exactly, while
ρ1 (introduced in Ref. [26]) and Hagedorn’s ρ2 satisfy the
bootstrap condition within a power of m [27]. The power
law increase given by ρ4 (introduced by Shuryak in the early
1970s [35]) does not satisfy the bootstrap condition (it also
does not lead to any singularities in the thermodynamics),
but it provides a nice alternative to describe the rise of the
hadronic mass spectrum. As discussed in Ref. [26], the trace
anomaly at temperatures around 160 MeV becomes sensitive
to the heavy states in the spectrum with mass m > 2 GeV. A
comparison between the different ρ’s used here can be found
in Fig. 1, where the integrand (in units of 1/GeV) in Eq. (7)
is plotted as a function of m at T = 150 MeV. One can see
that the integrand computed using the first three ρ’s (black
solid, blue dashed, and red long-dashed curves, respectively)
are very similar but they can be clearly distinguished from the
result obtained using the power law in ρ4 (small-dashed green
curve).

Even though the upper limit of the mass integrals in
Eqs. (4)–(7) is taken to be infinity, the divergences implied
by an exponentially rising spectrum do not appear in the
calculations performed here because the limiting tempera-
tures THi

’s (i = 1, 2, 3) are above the largest temperature
considered in this paper, ∼160 MeV. One may wonder if the

ρ1

2

3

4

0 1000 2000 3000 4000
0.0

0.5

1.0

1.5

m M eV

ρ

ρ

ρ

FIG. 1. (Color online) Comparison between the integrand (in
units of 1/GeV) in Eq. (7) computed using the different ρ’s at
T = 150 MeV as a function of m. The black line was computed
using ρ1, the blue dashed line with ρ2, the red long-dashed line with
ρ3, while the short-dashed green line was obtained using ρ4.
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approximations made in Eqs. (4)–(7) (i.e., classical statistics
and continuous mass spectrum) are at all justified. After
all, we know that the measured hadronic spectrum is, of
course, discrete and that baryons and mesons obey different
statistics. However, as pointed out in Ref. [26], the simplified
formulas in Eqs. (4)–(7) provide an excellent description of
the thermodynamic properties of the hadron resonance gas
computed using the measured hadrons in the particle data
book with the correct statistics in the temperature range
T ∼ 100–140 MeV if one imposes an upper cutoff for the
mass integrals. In fact, for ρ1 and ρ2 the mass cutoff is
1.7 and 1.9 GeV, respectively [26]. We have verified that
p/T 4 computed using ρ3 with a mass cutoff of 1.9 GeV
approaches the result obtained using ρ1 with a mass cutoff of
1.9 GeV. When T < 100 MeV, the discreteness of the hadron
spectrum becomes relevant and the continuous approximation
discussed here gives a poor description of the thermodynamic
quantities of a hadron resonance gas. Therefore, to have a
hadronic equation of state that is valid at both low temperatures
(T < 100 MeV) and higher temperatures a hybrid model con-
taining the measured hadron states plus a continuous Hagedorn
spectrum above a certain mass cutoff is more appropriate
[16–20].

A comparison between p(T )/T 4, (ε − 3p)/T 4, and c2
s (T )

of the model defined by Eqs. (4)–(7) (for the four different
hadron density of states) and the Nt = 10 lattice data of
Ref. [15] can be found in Figs. 2–5. The black solid curves
denote the result obtained by taking the mass integrals in
Eqs. (4)–(7) to infinity while the dashed blue curves were
computed imposing an upper mass cutoff that varied for each
ρ: For ρ1 the cutoff is 1.7 GeV, while for ρ2 and ρ3 the cutoff is
1.9 GeV. These cutoffs were determined by requiring that the
trace anomaly computed in this continuous model matches
the result (up to T ∼ 140 MeV) obtained in a model where all
the hadron resonances of the particle data book are included,
as defined in Ref. [26].

The power law increase given by ρ4 considerably simplifies
the integrals in Eqs. (4)–(7) and all of them can be done analyt-
ically. For instance, one finds in this case that c2

s = 1/(α + 4).
However, note in Fig. 5 that the power law spectrum lacks the
exponential growth necessary to describe the lattice data for
temperatures above 140 MeV. This provides evidence that the
thermodynamic quantities of QCD computed on the lattice can
be understood in terms of a simple hadron resonance gas model
with an exponentially rising density of states at temperatures
T ∼ 100–155 MeV. This comparison to lattice data cannot pin
down the exact subleading power of m in the hadron density of
states. However, it is important to note that the specific value of
this power has some interesting consequences, as we elaborate
below.

The subleading contribution ∼m−a to the density of states
at large m, according to Frautschi’s seminal paper [27],
determines the decay properties of a heavy resonance. For
instance, when a > 5/2 (which is the case of ρ3), a heavy
resonance decays (in the first generation of its decay chain)
into a heavy secondary particle that carries almost all the
available mass plus one (with 69% probability) or two light
hadrons (with 24% probability). This should be contrasted
with Hagedorn’s original mass spectrum in Eq. (9) for which
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FIG. 2. (Color online) Trace anomaly, pressure, and speed of
sound squared for the hadron resonance model with density of states
ρ1. The black solid curves denote the result obtained by taking the
mass integrals in Eqs. (4)–(7) to infinity while the dashed blue curves
were computed imposing an upper mass cutoff of 1.7 GeV. The data
points correspond to the Nt = 10 lattice data published in Ref. [15]
(obtained from Table 5 in that paper).

the statistically favored process involves a heavy resonance
of mass m decaying into a number n ∼ ln m of secondary
particles, each of similar mass [27].

It is well known that hadrons interact with each other
in a variety of different channels; some of them give rise
to repulsive interactions, while others represent attractive
interactions. In Ref. [36] the pressure of an interacting gas
of pions was calculated within the virial expansion (using
experimentally determined phase shifts) and it was shown
that the thermodynamic quantities of this interacting system
nearly coincides with those of a free gas of pions and ρ
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FIG. 3. (Color online) Trace anomaly, pressure, and speed of
sound squared for the hadron resonance model with density of states
ρ2. The black solid curves denote the result obtained by taking the
mass integrals in Eqs. (4)–(7) to infinity, while the dashed blue curves
were computed imposing an upper mass cutoff of 1.9 GeV. The data
points correspond to the Nt = 10 lattice data published in Ref. [15]
(obtained from Table 5 in that paper).

mesons. In this case, there is an approximate cancellation
between the attractive and repulsive S-wave channels, which
effectively enhances the P -wave contribution from the ρ

resonance [37]. As more hadronic species are included, it is not
at all guaranteed that the standard assumption behind hadron
resonance models, that is, that the interacting hadronic system
can be described by a free gas of the original hadrons and their
resonances, is applicable. In general, the inclusion of reso-
nances represents the contribution from the attractive channels
while repulsive interactions can be modeled using simple
excluded volume corrections to the thermodynamics [38–40].

M

M 1.9 GeV

3

100 110 120 130 140 150 160 170
0

1

2

3

4

T MeV

3 p

T 4

M

M 1.9 GeV

3

100 110 120 130 140 150 160 170
0.0

0.2

0.4

0.6

0.8

1.0

T MeV

p

T 4

M M 1.9 GeV

3

100 110 120 130 140 150
0.00

0.05

0.10

0.15

0.20

0.25

0.30

T MeV

cs
2

ρ

ρ

ρ

FIG. 4. (Color online) Trace anomaly, pressure, and speed of
sound squared for the hadron resonance model with density of states
ρ3. The black solid curves denote the result obtained by taking the
mass integrals in Eqs. (4)–(7) to infinity, while the dashed blue curves
were computed imposing an upper mass cutoff of 1.9 GeV. The data
points correspond to the Nt = 10 lattice data published in Ref. [15]
(obtained from Table 5 in that paper).

The suggestion, obtained from a comparison to lattice data, that
the complicated interactions among hadrons that enter in the
calculations of QCD thermodynamics at temperatures of the
order of the pion mass can be effectively modeled by a simple,
noninteracting gas of hadrons and resonances in accordance
with the bootstrap model [21] is therefore quite unexpected and
remarkable.

Given the known uncertainties in lattice calculations at
low temperatures, the conclusion made above regarding the
applicability of the hadron resonance gas should be taken with
great care. If results obtained with finer lattices confirm this
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FIG. 5. Trace anomaly, pressure, and speed of sound squared for
the hadron resonance model with density of states ρ4. The black
solid curves denote the result obtained by taking the mass integrals
in Eqs. (4)–(7) to infinity. The data points correspond to the Nt = 10
lattice data published in Ref. [15] (obtained from Table 5 in that
paper).

picture, this would provide very strong evidence for the validity
of Hagedorn’s bootstrap hypothesis. We note in passing that
recent lattice calculations of the thermodynamical properties
of SU(3) pure glue have shown evidence for the presence
of an exponentially rising glueball mass spectrum below the
deconfinement critical temperature [41,42].

III. EXCLUDED VOLUME CORRECTIONS
TO THE HADRON RESONANCE GAS MODEL

As mentioned in the previous section, in general, one
should expect that there are repulsive interactions among

hadrons and that a simple way to take that into account in
the hadron resonance model is via the excluded volume cor-
rections [38–40]. In this case, the partition function in Eq. (3)
becomes

Z(T , V ) =
∞∑

N=0

1

N !

N∏
i=1

∫
dmi ρ(mi)

×
∫

d3pi

(2π )3
e−Ei/T

⎛
⎝V −

N∑
j=1

Vj

⎞
⎠

N

, (12)

where Vj denotes the excluded volume by the j th hadron. We
assume for simplicity that the volume excluded by each hadron
is a constant that is basically the same for all hadrons, that is,
Vj = v. This parameter can be written in terms of an effective
hard-core volume, v = 4 · 4πr3/3, where r is the effective
core radius. The excluded volume pressure is determined by
the equation

pv(T )

T
= n(T ) exp (−vpv(T )/T ), (13)

where n(T ) = p(T )/T is the total particle density computed
without volume corrections [40]. The equation above can be
solved analytically in terms of the Lambert W function [43]
and it reads

pv(T )

T
= W (v n(T )). (14)

The other thermodynamic quantities, εv(T ), sv(T ), and nv(T ),
can be obtained through the pressure using the standard
thermodynamic identities. In the limit where v → 0 one
recovers the formulas in Eqs. (4)–(7).

Given that the free hadronic gas of the previous section
provided a good description of the data, one should expect
that the volume corrections should be minimal in this case.
In fact, one can again use the lattice data and the different
hadron mass spectra discussed before to show that the excluded
radius cannot be larger than 0.2 fm for ρi (i = 1, 2, 3). ρ4

is not considered in this case because it fails to describe
the data for T > 140 MeV. We show a comparison between
the lattice data and the ρ3 model curves for r = 0.2 fm in
Fig. 6. The small excluded volume shifts the curves slightly
downwards, which makes them get closer to the lattice
data at T = 160 MeV. Similar results hold for the other
exponentially increasing spectra considered before. For larger
excluded volumes the hadron resonance gas curves start to
deviate from the lattice at lower temperatures and this is why
we here take r � 0.2 fm. This analysis shows that volume
corrections do not play a significant role in the description
of lattice data (at least for the mass spectra parameters
determined in the previous section). Of course, given the
known uncertainties in lattice calculations at low temperatures,
another possibility would be to define the parameters in a
way that the model including the continuous spectrum fits the
lattice data only at higher temperatures around T ∼ 150 MeV,
as was done in Ref. [17]. This is discussed further in the next
section.
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FIG. 6. (Color online) Trace anomaly, pressure, and speed of
sound squared for the hadron resonance model with density of states
ρ3 and an excluded volume radius of r = 0.2 fm. The dashed blue
curves denote the excluded volume results, while the solid black
curves show the corresponding quantities without excluded volume
corrections. The data points correspond to the Nt = 10 lattice data
published in Ref. [15] (obtained from Table 5 in that paper).

IV. CALCULATION OF THE SHEAR VISCOSITY
TO ENTROPY DENSITY RATIO AND THE SHEAR

RELAXATION TIME COEFFICIENT OF THE HADRON
RESONANCE GAS MODEL WITH EXCLUDED

VOLUME CORRECTIONS

The computation of the transport properties of a hadronic
mixture is not an easy task. There have been several studies
on this subject in the last few years [9–12,17,44,45]. To find
at least an estimate of the order of magnitude of the η/s

ratio of hot hadronic matter at T ∼ 160 MeV, we follow the
approximations made by Ref. [9], where the shear viscosity

of a multicomponent gas of hadrons and resonances in the
excluded volume approximation (described in the previous
section) is given by

η = 5

64 r2

(
T

π

)1/2
T

2π2 n(T )

∫ ∞

0
dm ρ(m) m5/2K5/2

(
m

T

)
.

(15)

Currently, it is not known how to compute the contribution to
the shear viscosity from heavily massive and highly unstable
resonances that cannot rigorously be described using the Boltz-
mann equation. These states contribute significantly to the
thermodynamic properties of the matter at high temperatures
(as shown in the previous sections) and, owing to their rapid
decay, it is natural to assume that their presence will affect
the mean free paths of the other hadrons. In Ref. [17], it
was assumed that the mean free path of these resonances
with m > 2 GeV equals their inverse decay width. Obviously,
further studies have to be carried out to properly include the
effects of Hagedorn states on transport coefficients of hot
hadronic matter. While the formula in Eq. (15) may only
provide an estimate of the shear viscosity of an interacting
hadron gas, the temperature behavior of η computed with
this approximation [9] follows the estimates made using other
methods and thus we proceed using this formula.

In Eq. (15), the dependence on the excluded radius only
appears via the 1/r2 factor. However, when computing η/s,
the entropy density should be the one determined within the
same approximation, that is, sv(T ). Therefore, even in this
approximation η/s possesses a nontrivial dependence on the
hadron cross section ∼r2. This is shown in Fig. 7, where
the η/s ratio is computed for different r’s using ρ3 (10)
and T = 155 MeV. Note that for the highest temperature
considered, T = 155 MeV, η/s depends very weakly on r

AdS/CFT

3

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

r fm

s

ρ

FIG. 7. (Color online) The ratio η/s (dashed blue line) as a
function of the excluded volume radius computed via (15) using
the density of states ρ3 in Eq. (10) and T = 155 MeV. The black line
denotes the viscosity lower bound η/s = 1/(4π ).
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FIG. 8. (Color online) The ratio η/s (dashed blue line) computed
within the excluded volume approximation defined via Eqs. (13)
and (15) using the density of states ρ3 in Eq. (10) and r = 0.2 fm.
The entropy density computed in this model fits the lattice data [15]
in the temperature range shown. The black line denotes the viscosity
lower bound η/s = 1/(4π ).

when the excluded radius is larger than 0.2 fm (using this
specific set of parameters that define the mass spectrum).

In Fig. 8 we show the temperature dependence of η/s

computed using the density of states ρ3 in Eq. (10) and
r = 0.2 fm. As discussed in the previous section, for the
specific choice of parameters that define ρ3, calculations
of thermodynamical quantities performed with an excluded
radius of r = 0.2 fm can describe the lattice data in the
entire temperature range, T = 100–160 MeV. This value of
the excluded radius is smaller than other estimates [9], which,
however, were not constrained by fitting the lattice data.
Perhaps it would be more physical to consider a model where
the excluded radius increases with the mass of the hadron but
for simplicity’s sake in the current study we limit ourselves to a
constant excluded radius, hoping that we are correct within an
order of magnitude. In Fig. 8, we see that the η/s ratio remains
an order of magnitude above the viscosity lower bound up to
T = 155 MeV (this remains the case when other expressions
for the density of states mentioned in the previous sections are
used). The entropy density computed in this case matches the
lattice data well, as it can be inferred from the other quantities
shown in Fig. 6. Therefore, this simple hadron resonance gas
model with constant excluded volume corrections is able to
describe the thermodynamic quantities computed by lattice
data below T = 160 MeV and the corresponding η is computed
self-consistently within the same framework.

In viscous hydrodynamic calculations of the QGP time
evolution [1–3], there is at least another transport coefficient
that must be included in the fluid equations, the shear viscosity
relaxation time τπ , which enters in second-order viscous hy-
drodynamic calculations. In fact, in relativistic fluids causality
is intimately connected to stability [46,47] and Israel and
Stewart [48] were among the first to understand that the
characteristic times within which fluid dynamical dissipative
currents relax towards their asymptotic Navier-Stokes values
cannot be arbitrarily small. Using the Boltzmann equation, it
is possible to show [48–51] that in relativistic gases τπ is of
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FIG. 9. (Color online) The lowest relaxation time coefficient τπ

computed using the inequality in Eq. (16) for the hadron resonance
gas model defined with density of states ρ3 and η/s and c2

s computed
within the excluded volume approximation with excluded volume
radius r = 0.2 fm (dashed blue curve). The black line denotes the
lowest value for τπ in a conformal “nearly perfect” fluid, where
c2
s = 1/3 and η/s = 1/(4π ).

the order of the microscopic collision time. A detailed linear
stability analysis made in Ref. [52] showed that stability and
causality require that τπ in any viscous relativistic fluid cannot
be arbitrarily small. In fact, this transport coefficient must obey
the following inequality [52]:

τπ � 4

3

η

s T

1(
1 − c2

s

) . (16)

While we do not compute τπ for the hadron resonance gas
model considered here, we find it instructive to consider the
smallest τπ implied by the inequality above because it provides
an estimate for the value of this parameter that can be used
in hydrodynamic simulations. In Fig. 9 we show (dashed
blue line) the lowest value for τπ computed using the η/s

in Fig. 8 that fulfills the stability and causality criteria. We

free

r 0.2

r 0.5

3

100 110 120 130 140 150 160 170
0

1

2

3

4

T MeV

3 p

T 4

ρ

FIG. 10. (Color online) Comparison between the model’s trace
anomaly computed different excluded volumes and the Nt = 10
lattice data published in Ref. [15] (obtained from Table 5 in
that paper). The solid black curve was computed using ρ3 with
the parameters defined in Table I. The short-dashed blue curve
is computed using the same ρ3 but with an excluded volume of
r = 0.2 fm. The long-dashed red curve was computed using ρ3 but
with A3 = 3.7 GeV2 and m03 = 1 GeV together with an excluded
volume of r = 0.5 fm.
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FIG. 11. (Color online) The ratio η/s computed within the
excluded volume approximation. The short-dashed blue curve is
computed using ρ3 with the parameters defined in the Table I but
with an excluded volume of r = 0.2 fm. The long-dashed red curve
was computed using ρ3 but with A3 = 3.7 GeV2 and m03 = 1 GeV
together with an excluded volume of r = 0.5 fm.

also show in the same plot the lowest value for τπ in a
generic conformal “nearly perfect” fluid where c2

s = 1/3 and
η/s = 1/(4π ) for reference. Note that the lowest value of τπ

computed in the hadron resonance gas model employed here
remains well above the lowest value for a nearly perfect fluid
up to T = 160 MeV.

Throughout our calculations thus far we have the underlying
assumption that the hadron gas model must fit the entire lower
temperature region T ∼ 100 MeV of the lattice data. However,
it is interesting to consider the possibility of just fitting the
lattice data at higher temperatures T ∼ 150 MeV to see how
that affects the η/s calculation. This can be accomplished by
changing some of the parameters of the hadron mass spectrum.
Before doing so, we increase r = 0.5 fm [9]. Then we refitted
the parameters A3 and m03 in Eq. (10) to fit only the high-
temperature region of the lattice trace anomaly. This is shown
in Fig. 10. The corresponding η/s and shear relaxation time

AdS CFT
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FIG. 12. (Color online) The lowest relaxation time coefficient τπ

computed using the inequality in Eq. (16) for the hadron resonance
gas model. The short-dashed blue curve is computed using ρ3 with
the parameters defined in the Table I but with an excluded volume of
r = 0.2 fm. The long-dashed red curve was computed using ρ3 but
with A3 = 3.7 GeV2 and m03 = 1 GeV together with an excluded
volume of r = 0.5 fm.

computed with this setup are shown in Figs. 11 and 12. Note
that with this new set of parameters η/s drops down to 1/(4π )
around T = 160 MeV and τπ also decreases significantly in
that region. The decrease of the transport coefficients is mainly
driven by the larger entropy that results from this new fit
that is only constrained by the higher lattice temperatures.
This emphasizes the sensitivity of such calculations to the
thermodynamic properties of the matter.

V. CONCLUSIONS

In this paper we performed a detailed comparison of hadron
resonance gas model calculations to recent lattice data [15] that
confirmed the need for an exponentially increasing density
of hadronic states. Also, we showed that the hadron mass
spectrum, extracted from a comparison to lattice data, is
compatible with ρ(m) ∼ m−a exp(m/TH ) at large m with
a > 5/2 (where TH ∼ 167 MeV). With this specific m−a (with
a > 5/2) factor in the density of states, heavy resonances most
likely undergo two-body decay (instead of multiparticle decay)
[27], which facilitates their inclusion into hadron transport
codes. Moreover, we have computed the shear viscosity to
entropy density ratio of this system within the excluded volume
approximation and the results suggest that η/s of hot hadronic
matter is very sensitive to the temperature dependence of
the thermodynamic quantities. Using this calculation of η/s,
we were able to compute the lowest value for the shear
relaxation time coefficient used in second-order hydrodynamic
calculations that respects the criteria of causality and stability
of a relativistic viscous fluid.

Previous estimates for the η/s ratio in a hadronic gas
[17] had concluded that hadronic matter at temperatures
T ∼ 190 MeV behaved as a nearly perfect fluid. This is
not at odds with the findings presented in this paper as we
explained in the previous section. In fact, the curve shown
in Fig. 8 approaches 1/(4π ) when continued to temperatures
∼190 MeV. Moreover, if only the high-temperature region of
the lattice data is fitted, then the transport coefficients calcu-
lated here decrease significantly [e.g., η/s ∼ 1/(4π ) near T =
160 MeV]. This highlights the importance of knowing the cor-
rect temperature dependence of the thermodynamic quantities
of QCD at temperatures ∼100–160 MeV because it may play
an important role in the calculation of transport coefficients.

The key difference between these studies is the lattice
data used as a reference for the hadron gas calculations.
Reference [17] used the most recent lattice data at the time [22],
which indicated a phase transition pseudocritical temperature
Tc ∼ 196 MeV. The much lower value for this pseudocritical
temperature found in Refs. [15,24] severely reduced the value
of the maximum temperature at which the hadron resonance
gas is still applicable because “Tc” decreased from 190 to
160 MeV. Given that this low pseudocritical temperature has
already been independently confirmed by other lattice groups
[25], if there is no change in the low-temperature behavior
of the thermodynamic quantities as determined by lattice, the
analysis performed in this paper indicates that the hot hadronic
matter formed in ultrarelativistic heavy-ion collisions is far
from being a nearly perfect fluid. However, this should be
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taken with a grain of salt given the sensitivity mentioned above
within the transport coefficients.

Because (ε − 3p)/T 4 in the lattice data [15] continues to
increase until it reaches a turning point around T ∼ 200 MeV,
one may wonder if it is possible to devise a model that
reduces to the Hagedorn resonance gas discussed here at low
temperatures that also incorporates the correct degrees of free-
dom in the crossover region between T ∼ 160 MeV and T ∼
200 MeV [53]. Perhaps such an effective model can be
constructed by taking into account the Polyakov loop [54].
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