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Abstract The aim of this study was to evaluate the
influence of different curing lights and chemical catalysts
on the degree of conversion of resin luting cements. A total
of 60 disk-shaped specimens of RelyX ARC or Panavia F
of diameter 5 mm and thickness 0.5 mm were prepared and
the respective chemical catalyst (Scotchbond Multi-Purpose
Plus or ED Primer) was added. The specimens were light-
cured using different curing units (an argon ion laser, an
LED or a quartz-tungsten-halogen light) through shade A2
composite disks of diameter 10 mm and thickness 2 mm.
After 24 h of dry storage at 37°C, the degree of conversion
of the resin luting cements was measured by Fourier-
transformed infrared spectroscopy. For statistical analysis,
ANOVA and the Tukey test were used, with p<0.05.
Panavia F when used without catalyst and cured using the
LED or the argon ion laser showed degree of conversion
values significantly lower than RelyX ARC, with and
without catalyst, and cured with any of the light sources.
Therefore, the degree of conversion of Panavia F with ED
Primer cured with the quartz-tungsten-halogen light was
significantly different from that of RelyX ARC regardless

E. J. Souza-Junior (P<) - L. T. Prieto

Piracicaba Dental School, Department of Restorative Dentistry,
University of Campinas - UNICAMP,

P.O. Box 52, Avenida Limeira, 901, Areido,

13414-903, Piracicaba, SP, Brazil

e-mail: edujcsj@gmail.com

G. P. Soares - F. H. B. Aguiar - L. A. M. S. Paulillo

Piracicaba Dental School, Department of Restorative Dentistry,
State University of Campinas — UNICAMP,

Piracicaba, SP, Brazil

C. T. dos Santos Dias
Department of Exact Science, University of Sao Paulo,
Sao Paulo, Brazil

of the use of the chemical catalyst and light curing source.
In conclusion, RelyX ARC can be cured satisfactorily with
the argon ion laser, LED or quartz-tungsten-halogen light
with or without a chemical catalyst. To obtain a satisfactory
degree of conversion, Panavia F luting cement should be
used with ED Primer and cured with halogen light.

Keywords Curing light - Degree of cure - Resin cement -
Photoactivation

Introduction

With the new developments in adhesive dentistry, resin luting
cements have become widely used due to their ability to bond
indirect restorations to the tooth structure [1, 2]. These
materials can minimize some adverse effects of direct
composite restorations, such as polymerization contraction
stress [3] and gap formation at the tooth/restoration interface
[4]. Therefore, the procedure involving resinous luting of
thick and opaque indirect restorations and fiber posts needs
an adequate cure to reach a satisfactory degree of conversion
of the cement used [2, 5]. The degree of conversion is
affected by the attenuation of the light that reaches the resin
cement, by the distance of the light source tip, irradiance and
energy density applied, and by the transmission properties of
the indirect restoration [5]. An insufficient degree of
conversion can lead to deficient mechanical properties of
the resin luting cement, including inadequate hardness [6, 7],
wear resistance [8] and water sorption, residual monomer
[9], and problems with biocompatibility. A low degree of
resin polymerization increases the risk of restoration failure
and marginal fracture, gap formation and the occurrence of
secondary caries [4], and reduces the retention of the indirect
restoration or the post [10].
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In an attempt to overcome these problems, dual curing
resin cements were developed to combine important
properties of chemical-cured and light-cured materials so
as to provide efficient cure in deeper areas and places with
reduced light penetration [2, 11]. However, in some
situations, the polymerization reaction may be mainly
activated by a chemical mechanism (self-cure). Chemical
catalysts have been used with luting materials with the aim
of promoting better resin cement properties [2]. These
catalyst formulations contain coinitiator systems, such as
tertiary amine/benzoyl peroxide, that may improve the rate
of monomer conversion when mixed with the material,
especially in regions with poor light penetration [2].

On the other hand, choosing the correct light source for
curing is important to achieve a satisfactory degree of cure
of the resin luting cement. Traditionally, quartz-tungsten-
halogen (QTH) lights have been widely used in dental
practice. They have a spectral wavelength in the range 400—
500 nm and an irradiance in the range 300—1,000 mW/cm?
[12, 13]. However, they have some drawbacks, such as
gradual reduction in irradiance over time, the need for
filters for wavelength selection, limited depth of cure, and
considerable heat generation [14, 15]. Blue light emitting
diode (LED) units have a narrow spectral range, which
targets the absorption wavelength of camphorquinone, with
a peak value of 468 nm, allowing low amounts of wasted
energy and minimum heat generation [14, 16]. It has been
claimed that this could provide higher monomer conversion
efficiency and reduce the exposure time required [17].
Studies have shown that current LED curing units can
replace, in most situations, conventional QTH light units
[15, 18].

The argon ion laser has arisen as an alternative light
source for polymerizing resin composites, resin luting
cements, and for bleaching procedures [19-21]. For
camphorquinone-based resins, the activation emits a blue
light in the wavelength range 400—500 nm with peak values
at about 468 and 480 nm, depending on the monomer
formulation, and it has an irradiance at up to 2,000 mW/cm?
[21-24]. Furthermore, the argon ion laser has certain
characteristics, such as low beam divergence, collimation,
monochromaticity, coherency, absorption selectivity and
fiber delivery ability, that make it particularly suitable for
clinical use to cure resinous materials with a greater degree
of cure and improved physical and mechanical properties
[22, 23, 25]. Although these laser units may accelerate the
cure of composites, they can promote a temperature increase
at the light-curing tip [21].

The effect of the chemical catalyst on the properties of
resin luting cements has not yet been clarified. Also,
determining the most effective light source for curing resin
cements still needs more study. Therefore, the aim of this
study was to evaluate the influence of the incorporation of a
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chemical catalyst on cement manipulation and different
light curing units on the degree of conversion of resin luting
cements.

Materials and methods
Experimental design

The dual cured resin luting cement Panavia F (Kuraray
Medical, Tokyo, Japan) and RelyX ARC (3 M ESPE, St.
Paul, MN), with their respective chemical catalysts incor-
porated by manipulation of the material, were tested. The
composition of the materials is shown in Table 1. A total of
60 disk-shaped specimens of diameter 5 mm and thickness
0.5 mm were prepared from the resin cements using the
respective chemical catalysts. For specimen preparation, the
cements were placed in a silicon mold (Express XT; 3 M
ESPE, St Paul, MN) and then covered with Mylar film and
a glass slide, in order to form a flat surface.

For Panavia F alone, equal amounts (27 g) of base and
catalyst were weighed on an analytical balance [2], mixed
for 15 s, and then immediately photocured. In the groups to
which the ED Primer had been added, one drop of each of
the primer liquids A and B was mixed for 10 s, and gently
air-dried for 5 s for solvent evaporation. Thereafter, 1.4 mg
of this solution was mixed with equal amounts (27 g) of
base and catalyst of Panavia F for 15 s, and immediately
photocured [2].

Specimens of RelyX ARC alone were prepared in the same
way as the Panavia F specimens, with equal amounts (27 g) of
base and catalyst, mixed for 15 s and then photocured. For
specimens with the added chemical catalyst (catalyst of
Scotchbond Multi-Purpose), 1.4 mg of the liquid was mixed
with equal amounts (27 g) of base and catalyst of RelyX ARC
for 15 s, and immediately photocured.

A disk (10 mm in diameter and 2 mm thick) of a
nanofilled resin composite shade A2 (Filtek Z350; 3 M
ESPE) was prepared to simulate an indirect restoration. The
resin luting cements were light-cured through the composite
for 40 s, using three light sources: argon ion laser at
600 mW/cm? (Accucure 3000/Lasermed); LED at
1,400 mW/cm® (FLASHIlite 1401/Discus Dental); and
QTH light at 600 mW/cm* (VIP/Bisco, Schaumburg, IL).
The irradiance of all curing sources was measured with a
radiometer before light activation (Demetron Kerr Corpo-
ration, Orange, CA). The light spectra of all curing units are
shown in Fig. 1.

Degree of conversion

After 24 hours of dry storage at 37°C in the dark, the
degree of conversion (DC) of the specimens was deter-
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Table 1 Materials used in the study with composition and manufacturer’s information
Resin cements Composition Manufacturer
Panavia F Paste A (batch 00250B): 10-Methacryloyloxydecyl dihydrogen phosphate, Kuraray Medical,
hydrophobic aromatic dimethacrylate, hydrophobic aliphatic dimethacrylate, Tokyo, Japan
hydrophilic dimethacrylate, silanated silica, photoinitiators, DL-camphorquinone,
benzoyl peroxide
Paste B (batch 00027B): Hydrophobic aromatic dimethacrylate, hydrophobic aliphatic
dimethacrylate, hydrophilic dimethacrylate. Sodium aromatic sulfinate, accelerator,
sodium fluoride, silanated barium glass
ED Primer Primer A (batch 00272A): 2-Hydroxyethyl methacrylate, methacryloyloxydecyl Kuraray Medical,

dihydrogen phosphate, NM-aminosalicylic acid, diethanol-p-toluidine, water

Tokyo, Japan

Primer B (batch 00147A): NM-Aminosalicylic acid, T-isopropylic benzenic
sodium sulfinate, diethanol-p-toluidine, water

RelyX ARC (batch GU9JG)

Paste A: Silane-treated ceramic, bis-glycidyl methacrylate, triethylene glycol dimethacrylate,
photoinitiators, amine, silane-treated silica, functionalized dimethacrylate polymer

3 M ESPE,
St Paul, MN

Paste B: Silane-treated ceramic, triethylene glycol dimethacrylate, bis-glycidyl methacrylate,
silane-treated silica, benzoyl peroxide, functionalized dimethacrylate polymer

Catalyst for Scotchbond
Multi-Purpose (batch 9BE)

Bisphenol A diglycidyl ether dimethacrylate, 2-hydroxyethyl methacrylate, benzoyl peroxide

3 M ESPE,
St Paul, MN

mined using Fourier transform infrared spectroscopy
(FTIR) with a Spectrum 100 instrument (PerkinElmer,
Shelton, CT). For each specimen 32 spectra were analyzed.
The ratio between the intensities of aliphatic C=C (at
1,637.3 cm™ ") and aromatic C=C (at 1,608.3 cm™ ") peaks
for uncured and cured samples were used to calculate the
degree of conversion, according to the following equation:

b= 1 [Abs (C = C aliph)/Abs (C C arom)] cured resin
N [Abs (C = C aliph)/Abs(C C arom)] uncured risen

x 100

where DC is the degree of conversion, Abs(C=C arom) is
the height of the benzene ring peak, and Abs(C=C aliph) is
the height of the aliphatic C=C bond peak, for both cured
and uncured composites.
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Fig. 1 Spectra of the light curing units used

A one-way ANOVA was performed to compare the
differences among the tested groups at a preset alpha of
0.05, followed by Tukey’s post hoc test.

Results

Means and standard deviations of the degree of conversion
of the resin luting cements are shown in Table 2. Panavia F
photocured with the LED and with the argon ion laser
without chemical catalyst exhibited the lowest degree of
conversion, which was significantly different from that of
the other groups tested (»p<0.05). For the RelyX luting
cement, no statistically significant differences in the degree
of conversion were found between the light sources and the
presence of chemical catalyst on manipulation. Photo-
polymerization with the QTH light showed better degree
of conversion, which was significantly different from the
degree of conversion with the LED and with the laser for
Panavia F without catalyst incorporation. However, for
RelyX ARC alone, there were no differences between the
degrees of conversion achieved with any of the light curing
units (p>0.05). Figures 2 and 3 show the means of the
degrees of conversion for Panavia F and RelyX ARC.

Discussion

The resin luting cements used in this study (RelyX ARC
and Panavia F) are widely used in clinical practice for
cementing fiber posts and indirect restorations. Most resin
luting materials contain a diketone photoinitiator, such as
camphorquinone with a broad absorption spectral peak at
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Table 2 Degrees of (percentage) conversion of the tested groups.
Values are means (standard deviations)

Group Degree of conversion (%)
1. RelyX ARC+LED 68.68 (9.10) A

2. RelyX ARC+Laser+catalyst 67.58 (5.84) A

3. RelyX ARC+LED+catalyst 62.0 (4.73) AB

4. RelyX ARC+Laser 60.4 (10.1) AB

5. RelyX ARC+QTH 59.2 (11.3) AB

6. RelyX ARC+QTH+catalyst 54.26 (5.84) ABC

7. Panavia F+QTH +catalyst 54.1 (5.61) ABC

8. Panavia F+QTH 44.9 (9.49) BC

9. Panavia F+LED+catalyst 42.0 (6.23) BC

10. Panavia F+Laser+catalyst 35.6 3.07) C
11. Panavia F+LED 10.91(8.68) D
12. Panavia F+Laser 7.10 (5.53) D

Different letters mean statistical significant difference among the groups

468 nm in the blue region of the visible spectrum [26, 27].
However, the spectral distribution of the output from the
curing light source and the maximum absorption peak of a
photoinitiator can affect the chemical and physical properties
of a given resin.

Some resinous photocure or dual cure materials, such as
resin cements, may have a lower concentration of cam-
phorquinone or other photoinitiator such as phenyl pro-
panedione [28] (PPD) and monoacrylphosphine oxide [29]
(TPO), and sometimes the percentage of photoinitiator is
not clarified by the manufacturer because a patent on the
product has been applied for. For Panavia F, the manufac-
turer omits the percentage of the camphorquinone-based
photoinitiator system, and the percentage and composition
of the photoinitiator component for RelyX ARC is
unknown. The degree of conversion of RelyX ARC was
not influenced by either the curing light or chemical
catalyst (54.26% to 68.68%); however, Panavia F just
reached an adequate monomer conversion rate (44.9% and
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Fig. 2 Degrees of conversion (means+SD) for Panavia F (*p<0.05)
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Fig. 3 Degrees of conversion (meanstSD) for RelyX ARC

54.1%) when QTH light was used, regardless of the
incorporation of ED Primer. The results suggest that RelyX
ARC may contain camphorquinone in a higher percentage
than Panavia F, since the curing units with a narrower
spectrum range for the absorption peak of this photo-
initiator (the LED and the argon ion laser) did not influence
monomer conversion, compared to the QTH curing light.
Therefore, Panavia F, when cured with the LED and the
laser without ED Primer incorporation, reached a poor
degree of conversion in comparison with that achieved with
the QTH light. Thus, ED Primer should be incorporated
with Panavia F in any manipulation procedure in order to
achieve a satisfactory degree of monomer conversion and,
consequently, clinical success.

Faria-e-Silva et al. [2] found that the degree of conversion
of Panavia F was approximately 60% when photocured with
halogen light under a resin composite disk. In this study, the
highest degree of conversion of Panavia F was 54.1% when
used with the chemical catalyst and cured with the QTH
light. However, other authors [30] have stated that when
cured directly with a LED, this cement reaches about 48%
monomer conversion; however, in this study when this
cement was cured with the LED unit under a resin composite
disk, the degree of conversion reached about 10.91%, which
is unsatisfactory for clinical applications.

The curing units used in this work emitted different
irradiances and final energy densities after 40 s for photo-
activation was adopted for all light sources (QTH and laser,
600 mW/cm? and 24 J; LED, 1,200 mW/cm?® and 48 J).
Although higher values of irradiance induce greater heat
generation, the composite disk attenuated the temperature
alteration caused by the LED since the composite had a low
thermal conductivity [27, 29], and did not affect the degree
of conversion of the tested resin cements. The curing unit
energy density did not influence the degree of conversion of
Panavia F cured without ED primer, since QTH provided a
significantly higher degree of conversion than the LED when
ED Primer was not used. This finding may be associated
with the photoinitiator content of Panavia F and the broad
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spectral range of QTH light that can reach alternative
photoinitiators better than the second-generation LED used
in this study, even though the latter emits a higher irradiance
for the same curing time than the QTH light. For
conventional camphorquinone-based resin composites, no
difference has been observed in the development of physical
properties, such as the degree of conversion, when LED and
QTH units are compared [13, 31].

The argon ion laser has been described as a promising
light source for curing resinous materials [21]. In spite of
some benefits, such as an economic benefit of 25-33%,
adequate depth of cure, and enhancement in resin physical
properties after polymerization, the laser absorption peak is
at 488 nm, displacing the camphorquinone absorption peak
at 468 nm [32, 33]. In some situations, this distance can
make activation with the argon ion laser inefficient [21, 34].
In this study, the argon ion laser, working with the same
energy density as the QTH light, achieved an inadequate
degree of conversion of Panavia F alone, due to the offset
narrower spectral peak at about 488 nm, which could not
initiate the photoinitiators present in this cement under the
resin composite disk. When used with ED Primer, Panavia
F cured with argon ion laser did not display a significantly
different degree of monomer conversion than that cured
with the QTH or LED. For RelyX ARC there was no
difference in the degree of conversion between the curing
lights, indicating that the argon ion laser is suitable for
cementing of indirect restorations, similar to the QTH and
LED lights, when this material is used.

For the photoactivation procedure, a resin composite disk
was prepared to simulate an indirect restoration, which is able
to provide adequate physical and mechanical cement proper-
ties [17]. It is important to simulate a clinical situation
representative of cementing an indirect restoration, since
light would be attenuated by the composite [2, 5] or ceramic
[17, 26, 35, 36], and the degree of cure might be lower than
with direct curing. Besides, the resin luting thickness was
0.5 mm, which is close to that seen in clinical situations, and
it allowed satisfactory measurement by FTIR [1, 5]. Some
studies [26, 30] used specimens with a cement thickness of
about 1-2 mm, which is not clinically acceptable, as it may
result in a lower degree of conversion at the bottom of the
sample due to the depth of cure of the resinous material [21,
30] and differences in the light curing irradiance that reaches
all surfaces of the composite [14, 37].

The resin cements were activated totally by dual curing.
The chemical curing of the luting materials with incorpo-
ration of the chemical catalyst was not tested because the
results of some studies have shown that chemical curing
alone does not promote an adequate degree of conversion
of resin cements [2, 5]. On the other hand, many
manufacturers state that resin cement photoactivation may
be delayed for 5 or 10 minutes, since important chemical

curing can occur and such a delay does not stop the
conversion of monomers by the free radical polymerization
center [2]. In this study specimens were immediately
photocured for the sake of standardization because the
manufacturers of some resin luting cements do not
recommend such a delay in photoactivation.

The chemical catalysts used in this study contained
benzoyl peroxide, which might be able to start some
chemical cure at the material matrix [5]. The self-cure is
initiated with a reaction between benzoyl peroxide and
tertiary amine that releases free radicals which promote
monomer conversion regardless of exposure to light curing
[38]. Thus, the catalyst of the Scotchbond Multi-Purpose
system contains only benzoyl peroxide as an initiator
system. This catalyst did not influence the degree of cure
of RelyX ARC, regardless of the light curing source. This
may be explained by the chemical reaction that normally
occurs between benzoyl peroxide and the tertiary amine
present in the composite material. If the tertiary amine
supply is lower than the benzoyl peroxide content, the
reaction cannot initiate, and the degree of conversion
remains undisturbed [38]. However, ED Primer is a system
that contains a tertiary amine/benzoyl peroxide system,
providing a complete self-cure reaction that could have
improved the physical properties of Panavia F when mixed
with this resin cement [2]. For Panavia F, a primer A and B
mixture incorporated with the cement increased the degree
of conversion when the LED and the argon ion laser were
used; whereas a similar degree of conversion was obtained
when the QTH curing light was used. So for Panavia F, the
ED Primer is essential for maintaining a satisfactory degree
of monomer conversion when cured with the light sources
most frequently used in clinical practice.

For indirect esthetic restorations, light plays an important
role in promoting satisfactory conversion of the resin
cement, ensuring adequate cementation [2, 5]. However,
the attenuation of the irradiance by ceramic or resin indirect
restorations with a 2-mm thickness is such that only a half
of the irradiance reaches the resin cement beneath these
materials [5, 39]. For metallic crowns, the chemical curing
and incorporation of the catalyst into the resin luting
cement might compensate for the total attenuation of the
curing light, since that would cause an effect only around
the margin. Thus, clinicians should incorporate the chemical
catalyst into the manipulation of resin cements, since it
improves or does not affect the degree of conversion of these
luting materials.

Conclusion

Based on these results, it can be concluded that the argon
ion laser, LED, and QTH light promote an adequate degree
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of conversion for RelyX ARC, regardless of the
addition of the chemical catalyst. Nevertheless, Panavia
F, when photocured with the LED or argon ion laser,
should be mixed with the chemical catalyst (ED Primer)
to achieve a satisfactory degree of conversion, especially
in situations affected by the attenuation of light. Thus,
Panavia F should be used with the incorporation of the
ED Primer on manipulation and photocured with a QTH
light unit.

Aknowledgments We are grateful to CAPES for supporting this
study and to William Cunha Brandt for his scientific contribution.

References

1. Bandeca MC, El-Mowafy O, Saade EG, Rastelli ANS, Bagnato VS,
Porto-Neto ST (2009) Changes on degree of conversion of dual-cure
luting light-cured with blue LED. Laser Phys 19:1050-1055

2. Faria-e-Silva AL, Moraes RR, Ogliari FA, Piva E, Martins LRM
(2009) Panavia F: the role of the primer. J Oral Sci 51:255-259

3. Cunha LG, Alonso RCB, Pfeifer CSC, Correr-Sobrinho L,
Ferracane JL, Sinhoreti MAC (2008) Contraction stress and
physical properties development of a resin-based composite
irradiated using modulated curing methods at two C-factors
levels. Dent Mater 24:392-398

4. Alonso RCB, Cunha LG, Pantoja CAS, Puppin Rontani RM, Sinhoreti
MAC (2007) Modulated curing methods — effect on marginal and
internal gap formation of restorations using different restorative
composites. J Biomed Mat Res B Appl Biomat 82:346-351

5. Arrais CAG, Rueggeberg FA, Waller JL, De Goes MF, Giannini
M (2008) Effect of curing mode on the polymerization character-
istics of dual-cured resin cement systems. J Dent 36:418-426

6. Ferracane JL (1985) Correlation between hardness and degree of
conversion during the setting reaction of unfilled dental restorative
resins. Dent Mat 1:11-14

7. Rueggeberg FA, Craig RG (1988) Correlation of parameters used
to estimate monomer conversion in a light-cured composite. J
Dent Res 67:932-937

8. Ferracane JL, Mitchem JC, Condon JR, Todd R (1997) Wear and
marginal breakdown of composites with various degrees of cure. J
Dent Res 76:1508-1516

9. Pearson GL, Longman CM (1989) Water sorption and solubility
of resin-based materials following inadequate polymerization by a
visible-light curing system. J Oral Rehab 16:57-61

10. Faria-e-Silva AL, Arias VG, Soares LE, Martin AA, Martins LR
(2007) Influence of fiber-post translucency on the degree of
conversion of a dual-cured resin cement. J Endod 33:303-305

11. Peutzfeldt A (1995) Dual-cure resin cements: in vitro wear and
effect of quantity of remaining double bonds, filler volume and
light curing. Acta Odontol Scand 53:29-34

12. Knezevic A, Ristic M, Demoli N, Tarle Z, Music S, Negovetic
Mandic V (2007) Composite photopolymerization with diode
laser. Oper Dent 32:279-284

13. Cunha LG, Alonso RCB, Souza-Junior EJC, Neves ACEC,
Correr-Sobrinho L, Sinhoreti MAC (2008) Influence of the curing
method on the post-polymerization shrinkage stress of composite
resins. J Appl Oral Sci 16:266-270

14. Cunha LG, Alonso RCB, Pfeifer CSC, De Goes MF, Ferracane
JL, Sinhoreti MAC (2009) Effect of irradiance and light source on
contraction stress, degree of conversion and push-out bond
strength of composite restoratives. Am J Dent 22:165-170

@ Springer

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Alonso RCB, Cunha LG, Correr GM, Puppin-Rontani RM,
Correr-Sobrinho L, Sinhoreti MAC (2006) Marginal adaptation
of composite restorations photoactivated by LED, plasma ARC
and QTH light using low modulus resin liners. J Adhes Dent
8:223-228

Jandt KD, Mills RW, Blackwell GB, Ashworth SH (2000)
Depth of cure and compressive strength of dental composites
cured with blue light emitting diodes (LEDs). Dent Mat
16:41-47

Ozturk N, Usumez A, Usumez S, Ozturk B (2005) Degree of
conversion and surface hardness of resin cement cured with
different curing units. Quintes Int 36:771-777

Knezevic A, Tarle Z, Meniga A, Sutalo J, Pichler G, Ristic M
(2001) Degree of conversion and temperature rise during
polymerization of composite resin samples with blue diodes. J
Oral Rehab 28:586-591

Khosroshahi ME, Atai M, Nourbakhsh MS (2008) Photopolyme-
rization of dental resin as restorative material using an argon laser.
Lasers Med Sci 23:399-406

Cassoni A, Ferla JO, Shibi JA, Kawano Y (2008) Knoop
microhardness and FT-Raman spectroscopic evaluation of a
resin-based dental material light-cured by an argon ion laser
and halogen lamp: an in vitro study. Photomed Laser Surg
26:531-539

Rode KM, Freitas PM, Lloret PR, Powell LG, Turbino ML (2009)
Micro-hardness evaluation of a micro-hybrid composite resin
cured with halogen light, light-emitting diode and argon ion laser.
Lasers Med Sci 24:87-92

Fleming M, Mailet W (1999) Photopolymerization of composite
using the argon laser. Clin Prac 65:447-450

Kelsey WP, Powell GL, Blankenau RJ, Whisenat BK (1989)
Enhancement of physical properties of resin restorative
materials by laser polymerization. Lasers Surg Med 9:623—
627

Cassoni A, Youssef MN, Prokopowitsch I (2005) Bond strength
of a dentin bonding system using two techniques of polymeriza-
tion: visible-light and argon ion laser. Photomed Laser Surg
23:493-497

Conrado L, Munin E, Zangaro R (2004) Root apex sealing with
different filling materials photopolymerized with fiber optic
delivered argon laser light. Lasers Med Sci 19:95-99

Ozyesilag AG, Usumeza A, Gunduz B (2004) The efficien-
cy of different light sources to polymerize composite
beneath a simulated ceramic restoration. J Prosthet Dent
91:151-157

Lu H, Stansbury JW, Bowman CN (2005) Impact of curing
protocol on conversion and shrinkage stress. J Dent Res
84:822-826

Schneider LFJ, Consani S, Sakagushi RL, Ferracane JL (2009)
Alternative photoinitiator system reduces the rate of stress
development without compromising the final properties of dental
composite. Dent Mat 25:566-572

Arikawa H, Takahashi H, Kanie T, Ban S (2009) Effect of various
visible light photoinitiators on the polymerization and color of
light-activated resins. Dent Mat J 28:454—460

Vrochari AD, Eliades G, Hellwig E, Wrbas K (2009) Curing
efficiency of four self-etching, self-adhesive resin cements. Dent
Mat 25:1104-1108

Cunha LG, Alonso RCB, Neves AC, De Goes MF, Ferracane JL,
Sinhoreti MAC (2009) Degree of conversion and contraction
stress development of a resin composite irradiated using halogen
and LED at two C-factor levels. Oper Dent 34:24-31

Powell GL, Blankenau RJ (2000) Laser curing of dental materials.
Dent Clin N Am 44:923-930

Veheyen P (2001) Photopolymerization with the argon laser. J
Oral Laser Appl 1:49-54



Lasers Med Sci (2012) 27:145-151

151

34.

35.

36.

Hammesfahr PD, O’Connor MT, Wang X (2002) Light-curing
technology: past, present and future. Compend Cont Educ Dent
23:18-24

Lee IB, An W, Chang J, Um CM (2008) Influence of
ceramic thickness and curing mode on the polymerization
shrinkage kinetics of dual-cured resin cements. Dent Mat
24:1141-1147

Meng X, Yoshida K, Atsuda M (2008) Influence of ceramic
thickness on mechanical properties and polymer structure of
dual-cured resin luting agents. Dent Mat 24:594-599

37.

38.

39.

Jung H, Friesl KH, Hiller KA, Furch H, Bernhart S, Schmalz G
(2006) Polymerization efficiency of different photocuring units
through ceramic discs. Oper Dent 31:68-77

Arrais CAG, Giannini M, Rueggeberg FA (2009) Effect of sodium
sulfinate salts on the polymerization characteristics of dual-cured
resin cement systems exposed to attenuated light-activation. J Dent
37:219-227

Morais RR, Brandt WC, Naves LZ, Correr-Sobrinho L, Piva E
(2008) Light- and time-dependent polymerization of dual-cured resin
luting agent beneath ceramic. Acta Odontol Scand 66:257-261

@ Springer



