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1 Introduction

There has been a renewed interest in the last decade to the theory of integrable models

and its various techniques, due to their numerous applications in the understanding of the

AdS/CFT correspondence (for a comprehensive review see [1, 2]). On the other hand, this

study has stimulated a deeper investigation of the subtleties associated to the quantization
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of integrable systems. The standard methods which work for the simpler classical integrable

models [3–6] often fail when considering a more complex theory such as the string theory

on AdS5 × S5 background, or even its smaller subsectors .

In this paper we address one such subsector, the su(1, 1) subsector, and point out some

of the new interesting features and problems that arise in the resulting Alday-Arutyunov-

Frolov (AAF ) model [7–13]. The first attempt to probe its quantum integrability has

been done in [14], where it has been shown that the quantum integrability of the AAF

model can indeed be verified directly by checking the S-matrix factorization property,

which is a necessary condition for the quantum integrability of the system. However,

the technically complex perturbative calculation was possible to carry out only up to the

1-loop order, and it does not seem to be possible to generalize the perturbative test of

this property to all-loop order. Besides, as we have emphasized in [14], the perturbative

calculations for the AAF model contain several subtleties and fine points. Moreover, the

most interesting properties of the integrable systems are generally non-perturbative in

nature, and, therefore, developing a more strict approach is very desirable.

Thus, our goal in this paper is to develop the more reliable inverse scattering method

for the AAF model, which does not utilize any perturbative calculations. The standard

path to quantizing an integrable system is to start from the classical integrability and

the corresponding Lax connection, and find the algebra of the corresponding monodromy

matrices, which determines the classical r-matrix of the model. The quantization is then

usually achieved by putting the system onto a lattice, with the use of the classical algebra.

While this works for a number of classical models, it does not work in such a straightfor-

ward manner for many interesting models, due to the following several reasons. First, while

the classical algebra may be simple, finding the lattice version of the Lax pair is a very

non-trivial problem. Even for the simplest classical models, for example, the sine-Gordon

model, the general techniques of constructing the lattice counterparts do not give a simple

local Hamiltonian, even though they may exist in principle [15–18]. In some cases, for ex-

ample, the non-linear Schrödinger (NLS) model, one may write the corresponding quantum

equations directly in the continuous case without any evident problems. This, however,

fails for other models, as we have shown in [19, 20] for the case of the Landau-Lifshitz (LL)

model [21], for which the direct generalization of the classical equations to the quantum

ones leads to meaningless singular expressions, due to the ill-defined operator product in

the same point. As was shown in [19, 20], a more mathematically correct procedure to

obtain the corresponding non-singular quantum expressions is to introduce a special op-

erator regularization, and necessarily construct the self-adjoint extensions. Together with

the self-adjointness of the quantum Hamiltonian this was shown to reproduce both the

correct spectrum and the factorization property of the S-matrix. The root of the problem

in the LL model was the very singular δ′′(x) type of interaction in the quantum-mechanical

description. We emphasize that even in the NLS model one in principle should construct

the corresponding self-adjoint extensions, although, in this case, the result is non-essential

for the integrability of the system.

The AAF model, which contains only fermionic degrees of freedom, is another inter-

esting example of such singular theories. Here one also has to deal with the δ′′(x) type of
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potential, and, therefore, all the methods and operator regularization techniques developed

for the LL model could also be applied in this case. However, unlike the LL model, there

is a further complication in the AAF model, apparent already on the classical level. As we

will show below, the algebra of the L-operators has a non-ultralocal form, which essentially

prevents one from using the standard methods of the integrable systems and quantize the

model via the Bethe Ansatz techniques. Although the non-ultralocality appears in many

interesting models, e.g. principal chiral mode, 2d gravity etc., the non-ultralocality in the

algebra of the L-operators is usually exhibited in terms proportional to ∂xδ(x−y). However,

the corresponding algebra of the L-operators for the AAF -model has a surprisingly more

complicated structure, containing higher order non-ultralocal terms of the type ∂2
xδ(x−y).

Thus, the AAF model is an interesting model in this context, which exhibits both

difficulties simultaneously - the singularity of the interaction, and the non-ultralocality of

the algebra of the L operators. The singular nature can be dealt with in the same manner

as it was done for the LL model [19, 20]. However, handling the non-ultralocal nature of the

algebra is not an easy task. There do not exist any satisfactory nor standard methods to

deal with such algebras. The main prescriptions in this direction are due to Maillet [22–25]

and, alternatively, to Faddeev and Reshetikhin [26]. The latter method, being more elegant

and physically clear, is, nevertheless, hard to use in practice for more involved models, and,

moreover, it still requires putting the system on the lattice.1 The method due to Maillet,

however, does not use any lattice regularization, and although it is not obvious how to

quantize such systems, some essential progress in understanding the integrability of such

models, e.g., the complex sine-Gordon model and non-linear sigma models, has been made

in the classical theory (for more recent applications see [29–33] and the references therein).

One of the main issues regarding the method proposed by Maillet is the ad hoc con-

struction of the symmetric limit procedure, in order to obtain well-defined algebras between

the monodromy matrices.2 In this paper we will argue that such symmetric limit proce-

dure is the result of the regularized operator product in the quantum theory, and which

naturally appears when one takes the classical limit ~→ 0.

Another interesting result we have obtained is that the AAF model admits a 2 × 2

Lax pair representation. Let us remind, that in [7] it was shown that one can obtain a

4 × 4 representation, starting from the Lax pair for the full superstring on AdS5 × S5

and carefully eliminating the degrees of freedom, in order to obtain the su(1, 1) subsector.

Moreover, it was proved there that the zero-curvature condition is satisfied on the equations

of motion. Here we demonstrate also the inverse, namely, we show that one can derive the

equations of motions from the zero-curvature condition. In the process, by analysing all the

constraints and the resulting equations, we show that the Lax connections can be recast

in the 2× 2 matrix form, which essentially simplifies the computation of the algebra of the

L-operators. This is quite remarkable, since the much simpler fermionic Thirring model

admits only a 3 × 3 matrix representation for the Lax operators [35, 36], which makes it

1For a recent attempt to apply this method to the strings on AdS5 × S5 see [27, 28].
2Remarkably, in some cases, such as the 2d gravity coupled to a dilaton field, the algebra is well-defined

(in the infinite space limit), despite the non-ultralocality in the algebra of the L-operators, due to the

presence of the dilaton field and its assymptotic behavior [34].
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complicated to use the Bethe Ansatz to find the spectrum. Surprisingly, the AAF model

appears to be simpler in this sense.

We also give the complete account of the non-ultralocal algebra between the L-

operators, which is hard to compute explicitly due to a very complex Dirac bracket structure

between the fermionic fields. We note here, that as has been shown in [14], in the pro-

cess of checking the S-matrix factorization property via perturbative 1-loop calculations,

we have discovered some missed numerical factors in the AAF Lagrangian in the earlier

works [7, 9], which essentially changed some of the results. Here, we also correct the missed

factors in the Dirac bracket structure of [7]. We show that in order to describe the inte-

grable structure of the AAF model, one needs to introduce three independent matrices

r, s1 and s2. The latter is due to the additional higher order non-ultralocal term in the

algebra. Moreover, we derive the algebra for the transition matrices and show that it has

exactly the same form as the Maillet algebra with the non-ultralocality of the simpler type,

containing only the terms proportional to ∂xδ(x − y). Thus, we show that the effect of

the higher order non-ultralocality can be absorbed into only two independent matrices, the

modified r and s pair.

Our paper is organized as follows: in section 2, we set up our notations and analyse the

4× 4 matrix representation in details. We show that the AAF equations of motion follow

from the off-diagonal part of the zero-curvature condition, while the diagonal part gives

some highly non-trivial constraints, satisfied on the equations of motion. In section 3,

we make the crucial observation that only half of the set of all equations, that follow

from the zero-curvature condition, are indeed independent, and show that due to this

doubling of the equations, one can reduce the Lax connections to a 2 × 2 matrix form.

In section 4, we briefly explain the Faddeev-Jackiw procedure to find the Dirac brackets,

and give the corrected canonical structure between the fermionic fields. In section 5,

we explicitly calculate the algebra between the L operators and show its non-ultralocal

nature. As an interesting consequence, we find that the field-independent truncation of

the algebra corresponds to the fermionic version of the Wadati model, which can serve as

a more simple characteristic example to analyse non-ultralocal algebras. In section 6, we

recapitulate the Maillet symmetric limit procedure to deal with such algebras, and give

its generalization adapted to the more general case of an algebra containing also terms

proportional to ∂2
xδ(x − y). We also briefly explain the operator product regularization

method proposed in [19, 20], and argue that Maillet’s symmetric limit procedure appears

naturally in the classical limit of the regularized quantum case. In conclusion we discuss

some open problems and the future work. Finally, we collect some important technical

details in the appendices.

2 Alday-Arutyunov-Frolov model: 4 × 4 Lax connection

In this section we setup our notations and give the complete analysis of the classical in-

tegrability, using the 4 × 4 Lax representation originally found in [7]. Let us note, that

it was claimed there that the corresponding zero-curvature condition is satisfied upon the

substitution of the equations of motion. Here we also prove the inverse: the equations of
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motion of the AAF model follow from the zero-curvature condition in the 4× 4 represen-

tation. This is a very non-trivial result, which we present in detail below. In the process

we will show that the resulting equations and constraints are such that one can reduce the

Lax representation to a 2× 2 form.

The AAF model is obtained (for a complete analysis, see the original paper [7]) by

starting from the full superstring theory on AdS5 × S5 and consistently reducing it to

the su(1, 1) subsector. The remarkable characteristic feature of this truncation is the

elimination of all the bosonic degrees of freedom through the constraints. Our starting

point is the Lagrangian of the AAF model in the form (see appendix A for our notations):

L = −J − iJ

2

(
ψ̄ρ0∂0ψ − ∂0ψ̄ρ

0ψ
)

+ iκ
(
ψ̄ρ1∂1ψ − ∂1ψ̄ρ

1ψ
)

+ Jψ̄ψ

+
κg2

2
εαβ

(
ψ̄∂αψ ψ̄ρ

5∂βψ − ∂αψ̄ψ ∂βψ̄ρ5ψ
)
− κg3

8
εαβ

(
ψ̄ψ
)2
∂αψ̄ρ

5∂βψ. (2.1)

Here, as explained in [14], we have introduced two coupling constants g2 and g3. The main

result of the analysis in [14] was the necessary relation between the coupling constants g2

and g3 in order the guarantee the quantum integrability of the model. Namely, in order for

the S-matrix factorization property to hold, up to the 1-loop order, the following relation

must be satisfied:

(g2)2 = g3. (2.2)

We will show below that the same condition must also hold for the classically integrable

theory. For now, we will consider a more general theory defined by (2.1) where the constants

g2 and g3 are independent, and below we will show, that the constraint (2.2) should be

imposed already in the classical theory, from the condition of classical integrability.

To analyse the classical integrability, it is convenient to write the equations of motion,

following from the Lagrangian (2.1), for each component ψ1 and ψ2 separately:

iJ∂0ψ1 −
√
λ∂1ψ2 + Jψ1 +

i
√
λg2

2

[
−ψ∗2 (∂0ψ1∂1ψ1 + ∂0ψ2∂1ψ2) + εαβ∂αψ

∗
1∂β(ψ1ψ2)

]
+
i
√
λg3

8
εαβ {ψ∗2∂αψ∗2ψ1ψ2∂βψ1 − [∂αψ

∗
1ψ
∗
2ψ1ψ2 + ∂α(ψ∗1ψ

∗
2ψ1ψ2)] ∂βψ2} = 0,

(2.3)

iJ∂0ψ2 +
√
λ∂1ψ1 − Jψ2 −

i
√
λg2

2

[
−ψ∗1 (∂0ψ1∂1ψ1 + ∂0ψ2∂1ψ2)− εαβ∂αψ∗2∂β(ψ1ψ2)

]
− i
√
λg3

8
εαβ {ψ∗1∂αψ∗1ψ1ψ2∂βψ2 + [ψ∗1∂αψ

∗
2ψ1ψ2 + ∂α(ψ∗1ψ

∗
2ψ1ψ2)] ∂βψ1} = 0.

(2.4)

This form, however, is still not suitable to proceed with the analysis, since the time deriva-

tive of the spinor components enters also into the cubic and higher order terms in (2.3)

and (2.4). To this end, one can substitute in these higher order terms the time derivatives

of the spinor components upon multiple usage of the equations (2.3) and (2.4), until the

higher order terms depend only on space derivatives, and the equations of motion have the

form:

∂0ψi = Fi(ψ1, ψ2, ∂1ψ1, ∂1ψ2). (2.5)

– 5 –
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We stress that the convergence of this procedure is guaranteed by the fermionic nature of

the fields. After very lengthy and tedious calculations, one obtains the expression (B.1)

and (B.2) of appendix B. Even though the resulting equations are rather cumbersome and

have a more complicated form in comparison to the original equations (2.3) and (2.4),

containing terms up to the seventh order in the fermions and their space derivative, they

will greatly simplify obtaining a number of very non-trivial relations, which will play a

central role in establishing the classical integrability.

Let us now turn to the Lax representation. The 4×4 representation was given in [7], and

there it was shown that the zero-curvature condition is satisfied upon the substitution of

the equations of motion. In order to establish the inverse, namely, that the zero-curvature

condition produces the equations of motion (2.3) and (2.4), we will first generalize the

construction of [7], write down the equations following from the zero-curvature condition,

and find the general conditions upon which the off-diagonal terms produce the equations

of motion, while the diagonal terms give some very non-trivial identities.

The 4× 4 Lax connection has the form:3

L0 = ξ
(τ)
0 I0 + ξ

(τ)
1 J0 + Λτ , (2.6)

L1 = ξ(σ)0 I0 + ξ(σ)1 J0 + Λσ, (2.7)

where I0 ≡ σ3⊗σ3 and J0 ≡ σ3⊗1, and the other quantities in (2.6) and (2.7) are defined

as follows:4

ξ
(τ)
0 =

1

4
(1 + ψ̄ψ)(ψ̄ψ̇ − ˙̄ψψ) +

i

2
ψ̄ρ0ψ, (2.8)

ξ
(τ)
1 =

l1
8

(
ψ̄ρ0ψ̇ − ˙̄ψρ0ψ + 2iψ̄ψ − 4i

)
+
l2
√
λ

8J

(
ψ̄ρ0ψ′ − ψ̄′ρ0ψ

)
, (2.9)

ξ
(σ)
0 =

1

4
(1 + ψ̄ψ)(ψ̄ψ′ − ψ̄′ψ), (2.10)

ξ
(σ)
1 =

l1
8

(
ψ̄ρ0ψ′ − ψ̄′ρ0ψ

)
+

il2

4
√
λ

[
2J − i

√
λ

2

(
ψ̄ρ1ψ′ − ψ̄′ρ1ψ

)
− Jψ̄ψ

]
. (2.11)

Furthermore, the off-diagonal matrices Λτ and Λσ have the following form:

Λτ =
[
γτJ0, l3θ + l4θ̃

]
− ∂τ

(
l3θ − l4θ̃

)
, (2.12)

Λσ =
[
γσJ0, l3θ + l4θ̃

]
− ∂σ

(
l3θ − l4θ̃

)
, (2.13)

where the functions li ≡ li(µ), i = 0, . . . , 4, given explicitly in appendix A, depend on the

3As explained in [7], this Lax representation was obtained by starting from the one for the full superstring

on AdS5 × S5 and consistently reducing it to the su(1, 1) subsector. We also note, that under the scale

transformation: ψi → cψi, the Lagrangian (2.1) transforms as: L (g2, g3) → c2L (g′2, g
′
3), where g′2 = c2g2

and g′3 = c4g3. One can use such transformation to set: g2 = 1. The Lax connection (2.6) and (2.7) is

written after making such a scaling.
4We write these quantities explicitly in terms of the spinor components ψ1 and ψ2 in appendix G.
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spectral parameter µ, and:

γσ =
1

8

(
ψ̄ρ0ψ′ − ψ̄′ρ0ψ

)
, (2.14)

γτ =
1

8

(
ψ̄ρ0ψ̇ − ˙̄ψρ0ψ + 2iψ̄ψ − 4i

)
. (2.15)

Finally, the matrices θ and θ̃ have the form:

θ = α0


0 0 0 ν1

0 0 ν2 0

0 ν3 0 0

ν4 0 0 0

 , θ̃ = iα0


0 0 0 ν̃1

0 0 ν̃2 0

0 ν̃3 0 0

ν̃4 0 0 0

 with α0 = 1 +
1

4
(ψ̄ψ). (2.16)

The fermionic degrees νm, ν̃m, m = 1, . . . , 4 will be determined below from the zero-

curvature condition:

∂0L1 − ∂1L0 − [L0, L1] = 0. (2.17)

In order to write the complete set of equations following from (2.17) in a more compact

form, it is convenient to write the Λτ and Λσ matrices in the basis σi ⊗ σj , where σi are

the usual Pauli matrices. It is easy to check the following relations:

θ = α0σ
i ⊗ σjχij and θ̃ = iα0σ

i ⊗ σjχ̃ij , (2.18)

where

χ11 =
1

4
(ν1 + ν2 + ν3 + ν4) , χ12 =

i

4
(ν1 − ν2 + ν3 − ν4) ,

χ21 =
i

4
(ν1 + ν2 − ν3 − ν4) , χ22 =

1

4
(−ν1 + ν2 − ν3 + ν4) , (2.19)

χ3i = χi3 = 0.

Similarly, one obtains the relations between χ̃ij and ν̃i. Finally, introducing:

µ
(±)
ij = l3χij ± il4χ̃ij , µ̃

(+)
1i = −µ(+)

2i and µ̃
(+)
2i = −µ(+)

1i (2.20)

one arrives at the desired form:

Λτ = Λijτ σ
i ⊗ σj with Λijτ = 2iα0γτ µ̃

(+)
ij − ∂τ

(
α0µ

(−)
ij

)
, (2.21)

Λσ = Λijσ σ
i ⊗ σj with Λijσ = 2iα0γσµ̃

(+)
ij − ∂σ

(
α0µ

(−)
ij

)
. (2.22)

Writing the zero-curvature condition for the diagonal and off-diagonal parts separately, we

find the following equations:

∂0ξ
(σ)
0 I0 + ∂0ξ

(σ)
1 J0 − ∂1ξ

(τ)
0 I0 − ∂1ξ

(τ)
1 J0 − [Λτ ,Λσ] = 0, (2.23)

∂0Λσ − ∂1Λτ − ξ(τ)
1 [J0,Λσ]− ξ(σ)1 [J0,Λσ] = 0. (2.24)

We first analyse the equation (2.24) for the off-diagonal part of the zero-curvature

condition (2.17), and show that the equations of motion (2.3), (2.4) follow from it. Using the

– 7 –
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expressions (2.21) and (2.22) for the tensors Λijτ and Λijσ , one can write the expression (2.24)

in the component form:

∂0Λijσ − ∂1Λijτ − 2iε3kiΛ
kj
σ ξ

(τ)
1 + 2iε3kiΛ

kj
τ ξ

(σ)
1 = 0, for i, j = 1, 2. (2.25)

Substituting all possible values for the indices (i, j), and using the explicit expressions (2.8)–

(2.11), one obtains the following system of equations:

l3M
(ij)
3 + l4M

(ij)
4 + l1l3M

(ij)
13 + l1l4M

(ij)
14 + l2l3M

(ij)
23 + l2l4M

(ij)
24 = 0. (2.26)

The explicit form of the functions M
(ij)
3 ,M

(ij)
4 ,M

(ij)
13 ,M

(ij)
14 ,M

(ij)
23 and M

(ij)
24 are given in

appendix C. By using the explicit dependence of the li functions on the spectral parameter

µ, given in the equation (A.3), and analysing its various values and asymptotics, one can

show that the equation (2.26) is equivalent to the following set of constraints:

M
(ij)
3 +M

(ij)
13 = 0, (2.27)

M
(ij)
14 −M

(ij)
23 = 0, (2.28)

M
(ij)
13 −M

(ij)
24 = 0, (2.29)

M
(ij)
4 −M (ij)

14 = 0. (2.30)

Despite the complicated dependence of the M (ij) functions on the fields, one can show

that by an appropriate choice of νi in (2.16), the above system of equations reproduces

the equations of motion (2.3) and (2.4). This in turn will imply that the equations (2.27)–

(2.30) are not independent, leading to the construction of the 2× 2 Lax connection, which

we present in the next section.

We start with the equation (2.27). Using the formulas in appendix C, it is easy to show

that, for any choice of the (i, j) indices, the equation (2.27) is equivalent to the following

constraint:

∂1γτ − ∂0γσ = 0, (2.31)

or, more explicitly:

ψ′∗1 ψ̇1 + ψ′∗2 ψ̇2 − ψ̇∗1ψ′1 − ψ̇∗2ψ′2 = −i∂1

(
ψ̄ψ
)
, (2.32)

where we have used the γτ and γσ defined correspondingly in (2.15) and (2.14). The

dependence of the fields νi, ν̃i on the fermionic fields must be chosen so that this constraint

is satisfied.

Let us now turn to the equation (2.29), from which the fields νi, ν̃i are determined.

Considering all possible choices of indices (i, j), using the formulas in appendix C, as well

as inverting the relations (2.19), one arrives at the following equations:

2iγτ∂1(α0νk)− 2iγσ∂0(α0νk)−
4
√
λ

J
γσα0γσν̃k −

2
√
λ

J
γσ∂1(α0ν̃k)

+
i√
λ
ζα0γτ ν̃k +

i

2
√
λ
ζ∂0(α0ν̃k) = 0, for k = 1, 2,

(2.33)
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and

2iγτ∂1(α0νm)− 2iγσ∂0(α0νm) +
4
√
λ

J
γσα0γσν̃m −

2
√
λ

J
γσ∂1(α0ν̃m)

− i√
λ
ζα0γτ ν̃m +

i

2
√
λ
ζ∂0(α0ν̃m) = 0, for m = 3, 4,

(2.34)

where have we denoted:

ζ := 2J − i
√
λ

2

(
ψ̄ρ1ψ′ − ψ̄′ρ1ψ

)
− Jψ̄ψ. (2.35)

Thus, we see that the equations following from the off-diagonal part of the zero-curvature

condition are not independent, and there are in fact only two independent equations.

Before proceeding to the analysis of the equations (2.33) and (2.34) in all orders in ψi,

one can first readily compare the linear terms with the ones arising from the equations of

motion of the AAF model (2.3) and (2.4). One of the possible choices is the following:5

ν1 = ψ2, ν2 = ψ∗1, ν3 = ψ1, ν4 = ψ∗2,

ν̃1 = −ψ1, ν̃2 = −ψ∗2, ν̃3 = ψ2, ν̃4 = ψ∗1.
(2.36)

One may then examine the connections between the equations (2.27)–(2.30). The explicit

relations are given in details in appendix C, and we conclude that there are only two

independent equations, following from the off-diagonal part of the zero-curvature condition,

which we take to be the following:

M
(ij)
3 +M

(ij)
13 = 0, (2.37)

M
(ij)
13 −M

(ij)
24 = 0. (2.38)

Substituting the formulas (2.8)–(2.15) into (2.38), and considering now all orders in the

fields, one can derive the dynamical equations (B.3) and (B.4) for ψ1 and ψ2 following from

the off-diagonal part of the zero-curvature condition.

One immediately sees that these equations do not seem to coincide with the equations of

motion for the AAF model (2.3) and (2.4). This is, however, due to the presence of the time

derivatives of the spinor components in the higher order terms. As we discussed earlier,

one can, upon multiple substitutions of the time derivatives of the spinor components

into the cubic and the higher order terms, eliminate such dependences, and arrive at the

equations of motion where all the cubic and higher order terms depend only on the fields

and their space derivatives. After this very lengthy and tedious elimination procedure one

arrives exactly at the equations (B.1) and (B.2), provided the constraint (2.2) is satisfied.6

Now, using these equations, it is simple to check the remaining independent equation of the

off-diagonal part (2.37), which, as we discussed above, is equivalent to the constraint (2.32).

5We also note, that this choice is consistent with the involution, under which ζ∗ = ζ, γ∗τ = −γτ , γ∗σ = −γσ
and α∗0 = α0.

6In terms of the rescaled fields (see footnote 3), this constraint becomes: g22 = g3 = 1.
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Let us now consider the equations arising from the diagonal part (2.23) of the zero-

curvature condition (2.17). Writing the Λτ and Λσ matrices in the form:

Λτ =


0 0 0 Λ1

τ

0 0 Λ2
τ 0

0 Λ3
τ 0 0

Λ4
τ 0 0 0

 and Λσ =


0 0 0 Λ1

σ

0 0 Λ2
σ 0

0 Λ3
σ 0 0

Λ4
σ 0 0 0.

 , (2.39)

one easily obtains the following constraints:

∂0ξ
(σ)
1 − ∂1ξ

(τ)
1 = 0, (2.40)

∂0ξ
(σ)
0 − ∂1ξ

(τ)
0 =

1

2

(
φ11 − φ22

)
, (2.41)

φ11 + φ22 = 0, (2.42)

where we have denoted

[Λτ ,Λσ] = diag(φ11, φ22, φ33, φ44). (2.43)

It is important to stress that, as it was the case when considering the off-diagonal part of

the zero-curvature condition, each of these equations appears twice. Thus, we come to the

conclusion that each independent equation that follows from the 4 × 4 representation of

the Lax connection appears exactly twice in the full set of equations and constraints. This

important observation will lead us to the construction of the 2 × 2 Lax connection in the

next section.

The verification of the equations (2.40), (2.41) and (2.42) again requires very lengthy

calculations, and the usage of the equations (B.1) and (B.2).7 Nevertheless, it is quite

remarkable that these equations are indeed satisfied. In appendix D we give some useful

expressions and additional technical details related to the above constraints.

Let us also address one subtlety which we have so far ignored. Since the 4 × 4 repre-

sentation for the Lax connection was obtained from the original Lax connection for the full

superstring on AdS5 × S5, and, as it is well known, there is no matrix representation for

the psu(2, 2|4) superalgebra, there is a possible anomaly in the diagonal part (for a detailed

discussion, see [12]). In other words, the diagonal part of the zero-curvature condition for

the full superstring on AdS5 × S5 should be generalized to be equal to a term of the form

Γ4×4(ψi)14, where Γ4×4(ψi) is some function depending on the fields and 14 is the 4 × 4

unit matrix. It does not vanish, in general, when reduced to smaller subsectors, which is,

for example, the case for the reduction to the AdS3 × S3 subsector [12]. For the AAF

model, however, the equation (2.42) is essentially the condition that the anomaly Γ4×4(ψi)

vanishes. Indeed, it is easy to see that the anomalous term Γ4×4(ψi) can be written as

follows:

Γ4×4(ψi) = −1

2

(
φ11 + φ22

)
. (2.44)

7We emphasize that the equations (B.1) and (B.2) have already been obtained from the off-diagonal

part of the zero-curvature condition (2.17), and, therefore, we are allowed to use them.
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It is interesting to note, that for the 2× 2 representation of the Lax connection, which we

will give in the next section, the anomaly Γ2×2(ψi) identically coincides with the anomaly

Γ4×4(ψi). Therefore, the anomalous term vanishes in both cases.

Finally, it is tempting to try to generalize the construction of the Lax connection (2.6)–

(2.16) in such a way that the classical integrability holds without imposing the quantum

constraint (2.2), which was originally obtained in [14] from the S-matrix factorization

property in the 1-loop order. Without giving here the explicit analysis, which is quite

tedious and follows the same type of steps we outlined above, we can state that under no

deformation of the parameters, or addition of higher order terms in the formulas (2.8)–

(2.16) the AAF model is classically integrable for arbitrary constants g2 and g3. Hence,

the quantum constraint (2.2) must also be imposed in the classical theory.

Thus, we have strictly proved the classical integrability of the AAF model, based on

the 4× 4 Lax connection, provided the constraint (2.2).

3 2 × 2 Lax connection

As we showed in the previous section, the equations that follow from the zero-curvature

condition (2.17) and the 4× 4 Lax connection are not independent, and each independent

equation appears exactly twice in the set of all equations. This simple observation allows

one to reduce the Lax connection to a 2×2 representation. Indeed, the 2×2 Lax connection

can be written in the following form:

L0 = ξ
(τ)
0 Ī0 + ξ

(τ)
1 J̄0 + Λ̄τ , (3.1)

L1 = ξ(σ)0 Ī0 + ξ(σ)1 J̄0 + Λ̄σ. (3.2)

Here ξ
(τ)
0 , ξ

(τ)
1 , ξ

(σ)
0 and ξ

(σ)
1 are defined by the same formulas (2.8)–(2.11), and the 2 × 2

matrices Ī0 and J̄0 have now the form:

Ī0 = η112 and J̄0 = η2σ
3, (3.3)

where η1 and η2 are some constants which we will fix below. The off-diagonal matrices Λ̄τ
and Λ̄σ now take the following form:

Λ̄τ =
[
γτ J̄0, l3θ̄ + l4

˜̄θ
]
− ∂τ

(
l3θ̄ − l4 ˜̄θ

)
, (3.4)

Λ̄σ =
[
γσJ̄0, l3θ̄ + l4

˜̄θ
]
− ∂σ

(
l3θ̄ − l4 ˜̄θ

)
, (3.5)

where the matrices θ̄ and ˜̄θ are defined by:

θ̄ = α0

(
0 ν̄1

ν̄2 0

)
and ˜̄θ = iα0

(
0 ˜̄ν1

˜̄ν2 0

)
. (3.6)

As before, we will determine the fermionic degrees ν̄m and ˜̄νm, m = 1, 2 from the

zero-curvature condition:

∂0L1 − ∂1L0 − [L0,L1] = 0. (3.7)
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Introducing the notations:

ζ1 =
1

2
(ν̄1 + ν̄2) , ζ2 =

i

2
(ν̄1 − ν̄2) , (3.8)

ζ̃1 =
1

2
(˜̄ν1 + ˜̄ν2) , ζ̃2 =

i

2
(˜̄ν1 − ˜̄ν2) , (3.9)

from which we construct the combinations:

µ̄
(±)
i = l3ζi ± il4ζ̃i, ˜̄µ

(+)
1 = −µ̄(+)

2 and ˜̄µ
(+)
2 = µ̄

(+)
1 , (3.10)

and writing:

Λ̄τ = Λ̄iτσ
i with Λ̄iτ = 2iη2α0γτ ˜̄µ

(+)
i − ∂τ

(
α0µ̄

(−)
i

)
, (3.11)

Λ̄σ = Λ̄iσσ
i with Λ̄iσ = 2iη2α0γσ ˜̄µ

(+)
i − ∂σ

(
α0µ̄

(−)
i

)
, (3.12)

it is easy to show that the zero-curvature condition (3.7) can be written as the equations

for the diagonal and off-diagonal parts, similar to (2.23) and (2.24):(
∂0ξ

(σ)
0 − ∂1ξ

(τ)
0

)
Ī0 +

(
∂0ξ

(σ)
1 − ∂1ξ

(τ)
1

)
J̄0 −

[
Λ̄τ , Λ̄σ

]
= 0, (3.13)

∂0Λ̄σ − ∂1Λ̄τ − ξ(τ)
1

[
J̄0, Λ̄σ

]
− ξ(σ)1

[
J̄0, Λ̄σ

]
= 0. (3.14)

One can then analyse these equations similarly to the 4 × 4 representation case. For

the off-diagonal equation (3.14) one can show, repeating each step of the calculation in the

previous section, that the resulting equations coincide with the equations (2.37) and (2.38),8

provided the constraint (2.2) on the coupling constants g2 and g3, as well as the relations:

η2 = 1, ν̄1 = ψ2, ν̄2 = ψ∗2, ˜̄ν1 = −ψ1 and ˜̄ν2 = ψ∗1. (3.15)

To simplify the analysis of the diagonal part (3.13), we write:

Λτ =

(
0 λ1

τ

λ2
τ 0

)
and Λσ =

(
0 λ1

σ

λ2
σ 0

)
. (3.16)

Noting that the second term in (3.13) is equal to zero, due to the identity (2.40), and

denoting: [
Λ̄τ , Λ̄σ

]
= diag(φ, φ), (3.17)

it is easy to see that the off-diagonal part (3.13) reduces to the following equation:

η1

(
∂0ξ

(σ)
0 − ∂1ξ

(τ)
0

)
− φ = Γ2×2(ψi), (3.18)

where Γ2×2(ψi) is the term that may appear due to the possible anomaly in the diagonal

part, as we discussed in the end of the previous section. Using the relations (3.15), which

were determined from the off-diagonal part, and the identity (2.41), one can show, that:

φ = φ(11), (3.19)

Γ2×2(ψi) =
1

2

[
(η1 − 2)φ(11) − η1φ

(22)
]
. (3.20)

8We stress that the equations of motion for the AAF model (2.3) and (2.4) follow from the equa-

tions (2.37) and (2.38).
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Remarkably, it follows from (2.44) and (3.20) that the anomaly Γ2×2(ψi) in the 2× 2 case

coincides identically with the anomaly Γ4×4(ψi) of the 4× 4 case, provided η1 = 1. Thus,

in both cases the anomalous terms vanish.

4 Dirac brackets

Having derived the reduced 2 × 2 Lax representation for the AAF model, we turn our

attention to its Poisson structure. This analysis has already been carried out in the original

paper [7], however, due to some missed coefficients in their original Lagrangian, we carefully

redo this derivation. Our first step is to obtain a Hamiltonian formulation of the model.

It is convenient to rescale the fields in the Lagrangian (2.1) as follows: ψ → J−
1
2ψ. Then,

the rescaled Lagrangian becomes:9

L = −J − i

2

(
ψ̄ρ0∂0ψ − ∂0ψ̄ρ

0ψ
)

+ i

√
λ

2J

(
ψ̄ρ1∂1ψ − ∂1ψ̄ρ

1ψ
)

+ ψ̄ψ

+

√
λ g2

4J2
εαβ

(
ψ̄∂αψ ψ̄ρ

5∂βψ − ∂αψ̄ψ ∂βψ̄ρ5ψ
)
−
√
λ g3

16J3
εαβ

(
ψ̄ψ
)2
∂αψ̄ρ

5∂βψ. (4.1)

The AAF Hamiltonian can be obtained by the standard Legendre transform:

H = −Πψψ̇ −Πψ̄
˙̄ψ −L , (4.2)

where the canonical conjugate momenta are defined by:

Πψ =
∂L

∂ψ̇
=
i

2
ψ̄ρ0 +

√
λ g2

4J2

(
−ψ̄ ψ̄ρ5∂1ψ + ψ̄∂1ψ ψ̄ρ

5
)
−
√
λ g3

16J3

(
ψ̄ψ
)2
∂1ψ̄ρ

5, (4.3)

Πψ̄ =
∂L

∂ ˙̄ψ
=
i

2
ρ0ψ +

√
λ g2

4J2

(
−ψ ∂1ψ̄ρ

5ψ + ∂1ψ̄ψ ρ
5ψ
)
−
√
λ g3

16J3

(
ψ̄ψ
)2
ρ5∂1ψ (4.4)

so that the Hamiltonian becomes:

H = J − i
√
λ

2J

(
ψ̄ρ1∂1ψ − ∂1ψ̄ρ

1ψ
)
− ψ̄ψ. (4.5)

Since the Lagrangian (4.1) is linear in the time derivatives, the canonical momenta are

independent of the time derivatives of the fields. Hence, the attempt to eliminate the time

derivatives of the fields in favour of the canonical momenta fails, and one must analyse the

constrains in the theory and construct the Dirac brackets [37]. This is rather a cumbersome

procedure for the AAF model, which can be avoided by utilizing the equivalent prescription

by Faddeev and Jackiw [38, 39], which we briefly review below.

9It is interesting to keep the coupling constants g2 and g3 independent throughout the analysis carried

out in this section and, therefore, uncover the explicit dependence of the Dirac brackets on them. However,

when considering the algebra of Lax operators in section 5, we shall use the rescaled fields in which the

constraint is g22 = g3 = 1.
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4.1 Overview of the Faddeev-Jackiw formalism

Faddeev and Jackiw’s method is based on the observation that a conventional second order

in time derivatives Lagrangian can always be converted to a first order in time derivatives

Lagrangian by the exact same Legendre transform used to go from the Lagrangian to the

Hamiltonian formulation. Let us briefly describe this approach by considering a general

first order in time derivatives Lagrangian:10

L = ai(ξ)ξ̇i − V (ξ), (4.6)

where ξi denote the 2n phase space coordinates:

ξi = pi , i = 1, . . . , n and ξi = qi , i = n+ 1, . . . , 2n,

with the sum over repeated indices, as usual, implied, and where ai(ξ) is an arbitrary

function of the ξi, without explicit time dependence. Noting the absence of first order time

derivatives in the combination:
∂L

∂ξ̇i
ξ̇i − L,

when defining a Hamiltonian by the standard Legendre transform, it is possible to identify

the potential V with the Hamiltonian:

H =
∂L

∂ξ̇i
ξ̇i − L ≡ V. (4.7)

Thus the first term on the right hand side of (4.6) defines the canonical 1-form: a(ξ) ≡
ai(ξ)dξi.

The Euler-Lagrange equations obtained from (4.6) have the form:

ωij ξ̇j =
∂H

∂ξi
, with ωij =

∂aj(ξ)

∂ξi
− ∂ai(ξ)

∂ξj
. (4.8)

If the 2-form: ω ≡ da = 1
2ωij dξi dξj is nonsingular, then the matrix ωij is invertible,

and (4.8) can be recast in the form:

ξ̇i = ω−1

ij

∂V

∂ξj
. (4.9)

Since V is the Hamiltonian for Lagrangian (4.6), the equations (4.9) are also Hamiltonian:

ξ̇i = {V, ξi} =
∂V

∂ξj
{ξj , ξi} , (4.10)

provided one defines the bracket such that:

{ξi, ξj} = ω−1

ij . (4.11)

10The Lagrangian considered in this example describes a typical mechanical system. The generalization

to a field theoretical setting with the inclusion of anticommuting variables is straightforward. It will be

considered in detail for the AAF model in the next section.
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It is important to emphasize that it was not necessary to consider any constraints in

the analysis so far. They only appear in the case where the matrix ωij is singular, and

a more involved analysis is required. This discussion is, however, out of the scope of the

present work, since, in the case of the AAF model, the matrix ωij is invertible. We refer

the interested reader to [38, 39]. Finally, we stress that the bracket (4.11) coincides with

the one obtained through the Dirac procedure [40].

4.2 Faddeev-Jackiw formalism for the AAF model

In this section we apply the prescription due to Faddeev and Jackiw to the AAF model.

We start by noting that the Lagrangian (4.1) admits the following decomposition:

L = Lkin −H , (4.12)

where H is the AAF Hamiltonian written in equation (4.5) and Lkin stands for the kinetic

part of the Lagrangian:

Lkin = − i
2

(
ψ̄ρ0∂0ψ − ∂0ψ̄ρ

0ψ
)

+

√
λ g2

4J2
εαβ

(
ψ̄∂αψ ψ̄ρ

5∂βψ − ∂αψ̄ψ ∂βψ̄ρ5ψ
)

−
√
λ g3

16J3
εαβ

(
ψ̄ψ
)2
∂αψ̄ρ

5∂βψ. (4.13)

In order to obtain an analogue of (4.6), we must extract the canonical 1-form from Lkin,

namely, we must write:

Lkin = ai (χ) χ̇i, (4.14)

where we introduced, following the notations in [7], the auxiliary notation for the fermonic

fields:

χ1 ≡ ψ1 , χ2 ≡ ψ2 , χ3 ≡ ψ∗1 , χ4 ≡ ψ∗2 . (4.15)

In this case, the functions ai(χ) take the form:

a1 = − i
2
χ3 −

i
√
λ g2

2J2
χ3χ4χ

′
1 +

i
√
λ g3

8J3
χ1χ2χ3χ4χ

′
4, (4.16)

a2 = − i
2
χ4 −

i
√
λ g2

2J2
χ3χ4χ

′
2 +

i
√
λ g3

8J3
χ1χ2χ3χ4χ

′
3, (4.17)

a3 = − i
2
χ1 +

i
√
λ g2

2J2
χ1χ2χ

′
3 +

i
√
λ g3

8J3
χ1χ2χ3χ4χ

′
2, (4.18)

a4 = − i
2
χ2 +

i
√
λ g2

2J2
χ1χ2χ

′
4 +

i
√
λ g3

8J3
χ1χ2χ3χ4χ

′
1. (4.19)

The next step is to derive the Euler-Lagrange equations following from (4.12). Thus, we

consider:

δ (L ) = δ [ai (χ) χ̇i]− δ (H ) = 0, (4.20)

with the implied sum over i going from 1 to 4.

– 15 –



J
H
E
P
1
1
(
2
0
1
2
)
1
6
5

It is easier to evaluate each variation separately:

δ [ai (χ) χ̇i] =

ˆ
dy

{
δχj(y)

[
δai(x)

δχj(y)
− ∂y

δai(x)

δχ′j(y)

]
χ̇i(x)

+ δχj(x)

[
δaj(x)

δχi(y)
χ̇i(y) +

δaj(x)

δχ′j(y)
χ̇′i(y)

]}
. (4.21)

To make it possible to write the Euler-Lagrange equations as in (4.8), we must be able to

write this variation as follows:

δ [ai (χ) χ̇i] = δχj(x) Ωji(x) χ̇i(x). (4.22)

Clearly, the expression (4.21) does not have such a form. However, as we will show bellow,

once we fix the values of the indices i and j, it is possible to reduce (4.21) to (4.22). Let

us then compute the right hand side of (4.21) for the case i = j = 1. One has:

ˆ
dy

{
δχ1(y)

[
δa1(x)

δχ1(y)
− ∂y

δa1(x)

δχ′1(y)

]
χ̇1(x) + δχ1(x)

[
δa1(x)

δχ1(y)
χ̇1(y) +

δa1(x)

δχ′1(y)
χ̇′1(y)

]}
= δχ1(x)

[
i
√
λ g2

2J2

(
χ3χ

′
4 − χ4χ

′
3

)
+
i
√
λ g3

4J3
χ2χ3χ4χ

′
4

]
χ̇1(x)

= δχ1(x) Ω11(x) χ̇1(x), (4.23)

with

Ω11(x) =
i
√
λ g2

2J2

(
χ3χ

′
4 − χ4χ

′
3

)
+
i
√
λ g3

4J3
χ2χ3χ4χ

′
4. (4.24)

Repeating this calculation for the other indices (i, j) we can obtain all the elements of the

matrix Ωij(x), which we collect in appendix E.

Computing the variation of H one obtains:

δH (x) =

ˆ
dy

[
δχi(y)

δH (x)

δχi(y)
+ δχ′i(y)

δH (x)

δχ′i(y)

]
= δχi(x)Hi(x), (4.25)

where we have introduced the functions:

H1 =

√
λ

J
χ′4 − χ3, H2 = −

√
λ

J
χ′3 + χ4, H3 = −

√
λ

J
χ′2 + χ1 and H4 =

√
λ

J
χ′1 − χ2.

Now, substituting (4.22) and (4.25) back into the equation (4.20), we obtain:

Ωij(x)χ̇j(x) = Hi(x), (4.26)

which is in direct correspondence to (4.8).

The Dirac structure is defined in the standard manner [3]. Let F [χi(x)] and G [χi(x)]

be two functionals of the fields and define the Dirac brackets between them in the usual

way:

{F,G} =

¨
dx dy ωij(x, y)

δF

δχi(x)

δG

δχi(y)
, (4.27)
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where ωij is some function of x, y ∈ R. For any even functional of the fields F [χi(x)], we

can write:

{χk(z), F} =

ˆ
dw {χk(z), χl(w)} δF

δχl(w)
. (4.28)

Clearly, the Hamiltonian (4.5) is an even functional of the fields, so that we can use (4.28)

to write Hamilton’s equations as:

χ̇i(x) = {χi(x), H} =

ˆ
dy {χi(x),H (y)} =

¨
dy dz {χi(x), χj(z)}Hj(y)δ(y − z)

=

ˆ
dy {χi(x), χj(y)}Hj(y). (4.29)

Finally, since the matrix Ω(x) is non-singular,11 one can invert it and combine the equa-

tions (4.26) and (4.29) as follows:

χ̇j(x) = Ω−1

ij (x)Hi(x) =

ˆ
dy {χi(x), χj(y)}Hi(y). (4.30)

Then, we obtain:

{χi(x), χj(y)} = Ω−1

ij (x)δ(x− y). (4.31)

Thus, the matrix Ω−1(x) defines the Dirac structure. We collect all the matrix elements of

Ω−1(x) in appendix F.

5 The algebra of Lax operators

With the reduced 2×2 Lax connection derived in section 3 and the Dirac brackets deduced

in section 4, we are finally in the position to obtain the algebra between the Lax operators

and show its non-ultralocal structure. We start by also rescaling the fields in the expression

for the spacial component of the Lax connection (3.1): χi → J1/2χi, so that it is consistent

with the Lagrangian (4.1), which we used to derive the Dirac algebra, provided we further

impose the constraint (2.2) by setting g2 = 1 = g3.12 Moreover, we decompose the spacial

component of the Lax connection in a more convenient structure:

L1(x;µ) = ξ(σ)0 (x;µ)Ī0 + ξ(σ)1 (x;µ)J̄0 + Λ̄σ(x;µ)

= ξ(σ)0 (x;µ)12 + ξ(σ)1 (x;µ)σ3 + Λ(−)
σ (x;µ)σ+ + Λ(+)

σ (x;µ)σ−, (5.1)

where σi, i = +,−, 3 correspond to the usual Pauli matrices. Here we also introduced the

functions ξ(σ)j (x;µ), j = 0, 1 and Λ(±)
σ (x;µ). The former (latter) are even (odd) polynomials

of the fermionic fields, containing at most one space-derivative, the expressions of which

are relegated to appendix G.

11The non-singularity of Ω(x) can be directly established by explicitly checking the existence of the inverse

matrix Ω−1(x). See appendices E and F for details.
12Alternatively, we could use the inverse scaling transformations (see footnote 3) to restore the general

coupling constants g2 and g3 satisfying the constraint (2.2).
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Using the decomposition (5.1), we reduce the task of computing the Dirac brackets

between two L-operators to the evaluation of the following sixteen Dirac brackets between

the functions ξ(σ)j (x;µ) and Λ(±)
σ (x;µ):{

L1(x;µ1) ⊗, L1(y;µ2)
}

=
{
ξ(σ)0 (x;µ1), ξ(σ)0 (y;µ2)

}
12 ⊗ 12 +

{
ξ(σ)0 (x;µ1), ξ(σ)1 (y;µ2)

}
12 ⊗ σ3

+
{
ξ(σ)0 (x;µ1),Λ(−)

σ (y;µ2)
}

12 ⊗ σ+ +
{
ξ(σ)0 (x;µ1),Λ(+)

σ (y;µ2)
}

12 ⊗ σ−

+
{
ξ(σ)1 (x;µ1), ξ(σ)0 (y;µ2)

}
σ3 ⊗ 12 +

{
ξ(σ)1 (x;µ1), ξ(σ)1 (y;µ2)

}
σ3 ⊗ σ3

+
{
ξ(σ)1 (x;µ1),Λ(−)

σ (y;µ2)
}
σ3 ⊗ σ+ +

{
ξ(σ)1 (x;µ1),Λ(+)

σ (y;µ2)
}
σ3 ⊗ σ−

+
{

Λ(−)
σ (x;µ1), ξ(σ)0 (y;µ2)

}
σ+ ⊗ 12 +

{
Λ(−)
σ (x;µ1), ξ(σ)1 (y;µ2)

}
σ+ ⊗ σ3

+
{

Λ(−)
σ (x;µ1),Λ(−)

σ (y;µ2)
}
σ+ ⊗ σ+ +

{
Λ(−)
σ (x;µ1),Λ(+)

σ (y;µ2)
}
σ+ ⊗ σ−

+
{

Λ(+)
σ (x;µ1), ξ(σ)0 (y;µ2)

}
σ− ⊗ 12 +

{
Λ(+)
σ (x;µ1), ξ(σ)1 (y;µ2)

}
σ− ⊗ σ3

+
{

Λ(+)
σ (x;µ1),Λ(−)

σ (y;µ2)
}
σ− ⊗ σ+ +

{
Λ(+)
σ (x;µ1),Λ(+)

σ (y;µ2)
}
σ− ⊗ σ−. (5.2)

At first glance it seems that this decomposition only makes the calculations even more

daunting. However, this computation is, in fact, easier, since only half of the Dirac brackets

need to be evaluated. The other brackets can be obtained by taking the involution of the

corresponding brackets, as we will explain bellow.

Let A (χi(x)) and B (χi(y)) be two arbitrary functions of the fields, then the behaviour

of the Dirac brackets defined by the matrix Ω−1 through (4.31) under involution is deter-

mined by the parity of such functions,

{A(x), B(y)}∗ =

{
+ {A∗(x), B∗(y)} , if A or B even ,

−{A∗(x), B∗(y)} , if A and B odd .
(5.3)

Furthermore, taking into account that the functions ξ(σ)j (x;µ) and Λ(±)
σ (x;µ) have a defined

parity and behave under involution as:

ξ(σ)i
∗
(x, µ) = −ξ(σ)i (x, µ∗) and Λ(−)

σ
∗
(x, µ) = Λ(+)

σ (x, µ∗), (5.4)

one can obtain some non-trivial relations amongst the following brackets:{
ξ(σ)i (x;µ1),Λ(±)

σ (y, µ2)
}∗

= −
{
ξ(σ)i (x;µ∗1),Λ(∓)

σ (y, µ∗2)
}
, (5.5){

Λ(±)
σ (x, µ1),Λ(±)

σ (y, µ2)
}∗

=
{

Λ(∓)
σ (x, µ∗1),Λ(∓)

σ (y, µ∗2)
}
. (5.6)

Moreover, if we restrict the arbitrary functions of the fields A (χi(x)) and B (χi(y))

to the subset comprised of the functions ξ(σ)j (x;µ) and Λ(±)
σ (x;µ), one can show that the

Dirac brackets between A (χi(x)) and B (χi(y)) have the general form:13

{A(x), B(y)} = f1(x)δ(x− y) + f2(x)∂xδ(x− y) + f3(x)∂2
xδ(x− y), (5.7)

13The relevant question one could still pose about the generality of the expression (5.7) regards the

truncation of this series at the second derivative of the delta function. As a matter of fact, there cannot be

terms proportional to the third derivative of the delta function or higher, because the functions ξ(σ)

j (x;µ)

and Λ(±)
σ (x;µ) are at most linear in the space derivatives. Hence, at most two space derivatives can act on

the delta function after the Dirac brackets are computed. We note, nevertheless, that the functions fi(x)

can still be proportional to some derivative of the fields. In this case the derivatives may come not only

from the functions ξ(σ)

j (x;µ) and Λ(±)
σ (x;µ), but also from the Dirac structure itself.
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where fi(x), i = 1, 2, 3 are some polynomials of the fields and their space derivatives. Then,

by invoking the (anti)symmetry of the brackets:

{A(x), B(y)} =

{
−{B(y), A(y)} , if A or B even ,

+ {B(y), A(x)} , if A and B odd ,
(5.8)

one can easily derive the following relation:

{B(x), A(y)} = ∓
{[
f1(x)− ∂xf2(x) + ∂2

xf3(x)
]
δ(x− y) + [−f2(x) + 2∂xf3(x)] ∂xδ(x− y)

+ f3(x)∂2
xδ(x− y)

}
, (5.9)

where the fi(x) are the same functions appearing in (5.7). Here the plus sign corresponds

to the case where both fields are odd and the minus sign to the case where at least one of

the fields is even. Hence, even though there is no simple equation that relates {A(x), B(y)}
to {B(x), A(y)}, we have showed that by knowing the former one can readily obtain the

expression for the latter.

By using the properties described by the equations (5.5) and (5.6), and by the rela-

tions (5.7) and (5.9), we can drastically reduce the amount of calculations necessary to

derive the algebra of the Lax operators. Namely, out of the sixteen brackets in equa-

tion (5.2), only seven are actually independent. Besides that, these properties are also

extremely useful for computing each of these independent brackets.

Before proceeding with the calculation, it is worth noting that both (5.7) and (5.9)

already display a severe non-ultralocality, as both of them, not only contain the first deriva-

tive of the delta function, but also its second derivative. Given the structure of (5.2), one

could still hope that some non-trivial cancelations would still render the algebra ultralocal,

or at least diminish its non-ultralocality. However, this is not the case for the AAF model,

and, as we will show bellow, they remain even after all the terms are added together.

Computing all the independent brackets in (5.2) is still a very lengthy and tedious task.

We sketch here only the main steps of this computation for one of the independent brackets.

For the sake of clarity, let us consider the first brackets in (5.2). We first decompose it in a

sum of Dirac brackets such that each entry of the Dirac brackets contains only monomials

of the fields at some given order. For instance,

{
ξ(σ)0 (x, µ1), ξ(σ)0 (y, µ2)

}
=

1

16

[
1

J2
{A1(x;µ1), A1(y;µ2)}+

1

J3
{A1(x;µ1), A2(y;µ2)}

+
1

J3
{A2(x;µ1), A1(y;µ2)}+

1

J4
{A2(x;µ1), A2(y;µ2)}

]
,

(5.10)

where A1 contains only quadratic terms in the fields and its derivatives, and A2 only

quartic:

A1 = −χ3χ
′
1 + χ4χ

′
2 − χ1χ

′
3 + χ2χ

′
4, (5.11)

A2 = −χ2χ3χ4χ
′
1 + χ1χ3χ4χ

′
2 + χ1χ2χ4χ

′
3 − χ1χ2χ3χ

′
4 . (5.12)
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It is easy, though tiresome, to compute a complete set of all the Dirac brackets between

all possible combinations of monomials of the fields and its derivatives. For example, the

one needed to compute {A1(x;µ1), A1(y;µ2)} is:{
χi(x)χ′j(x), χk(y)χ′l(y)

}
=
{
∂x

[
χiχ

′
kΩ
−1

jl − χiχ
′
lΩ
−1

jk

]
− χ′iχ′kΩ−1

jl − χ
′
iχ
′
lΩ
−1

jk − χ
′
jχ
′
kΩ
−1

il − χ
′
jχ
′
lΩ
−1

ik

}
δ(x− y)

+
{
∂x

[
χiχkΩ

−1

jl

]
+
[
χkχ

′
i + χiχ

′
k

]
Ω−1

jl + χiχ
′
lΩ
−1

jk + χkχ
′
jΩ
−1

il

}
∂xδ(x− y)

+ χiχkΩ
−1

jl ∂
2
xδ(x− y). (5.13)

After multiple substitutions and summations one obtains the expressions of the type:

{A1(x;µ1), A1(y;µ2)} =
1

16
[2∂xΓ11δ(x− y) + 4Γ11∂xδ(x− y)] , (5.14)

{A1(x;µ1), A2(y;µ2)} =
1

2

[
Γ

(1)
12 δ(x− y) + Γ

(2)
12 ∂xδ(x− y)

]
, (5.15)

where the explicit expressions for Γ11, Γ
(1)
12 and Γ

(2)
12 are presented in appendix G.

Deriving the expression for {A2(x;µ1), A1(y;µ2)} becomes a straightforward task by

employing the property displayed by equations (5.7) and (5.9), since we can read off the

concrete formulas for the fi(x) by comparing (5.7) to (5.15) and then simply substitute

them into (5.9) to obtain:

{A2(x;µ1), A1(y;µ2)} =
1

2

{[
−Γ

(1)
12 + ∂xΓ

(2)
12

]
δ(x− y) + Γ

(2)
12 ∂xδ(x− y)

}
. (5.16)

Finally, we consider the last brackets in (5.10). This calculation becomes rather simple, by

realizing that the relevant Dirac brackets have the form:{
χi(x)χj(x)χl(x)χ′m(x), χn(y)χp(y)χq(y)χ′r(y)

}
= f1(x)δ(x− y). (5.17)

Thus,

{A2(x;µ1), A2(y;µ2)} = F (x)δ(x− y), (5.18)

where both f1(x) and F (x) are some polynomials in the fields and their spacial derivatives.

Since A2 is an even function of the fermionic fields, we can use the property outlined by

the equations (5.7) and (5.9) to write:

{A2(y;µ1), A2(x;µ1)} = −F (x)δ(x− y). (5.19)

On the other hand, we can use the fact that A2 does not depend on the spectral parameter,

and one can simply exchange x↔ y in the equation (5.18) to conclude that:

{A2(x;µ1), A2(y;µ2)} = 0. (5.20)

It is interesting to stress that the explicit form of the matrix elements Ω−1

ij was not

used in the derivation of (5.14), (5.15), (5.16) nor (5.20), that is, Γ11, Γ
(1)
12 and Γ

(2)
12 are
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still written in terms of Ω−1

ij . This means that the non-ultralocal form of the decomposi-

tions (5.14), (5.15) and (5.16) are not a direct consequence of the Dirac structure of the

model, but, up to this point, only of the form of the Lax connection. Thus, were Γ11

and Γ
(2)
12 to vanish identically upon the substitutions of the expressions for Ω−1

ij , the equa-

tions (5.14), (5.15) and (5.16) would be ultralocal. However, this is not the case. In fact,

after careful substitution of the expressions for Ω−1

ij , given in appendix F, we conclude that:

{
ξ(σ)0 (x, µ1), ξ(σ)0 (y, µ2)

}
=

1

16J2

{
∂x

[
2Γ11+

Γ
(2)
12

J

]
δ(x− y)+2

[
2Γ11+

Γ
(2)
12

J

]
∂xδ(x− y)

}
.

(5.21)

where the sum 2Γ11 + 1
JΓ

(2)
12 extends up to the sixth order in the fermion and its spacial

derivatives. We relegate this lengthy expression to appendix G.

The remaining Dirac brackets in (5.2) can be computed in exactly the same vein. In

fact, the brackets which we have just computed are one of the simplest. Some of them are

even plagued by more severe non-ultralocality, which extends up to the second derivative of

the delta function, in full consonance with what one would expect from (5.7). It turns out

that even after summing all the brackets according to (5.2), this severe non-ultralocality

survives. In particular, this prevents one from using the standard methods in the context

of integrable models, as it is not possible, in general, to introduce a well-defined r-matrix

formulation starting from a non-ultralocal algebra.14 Nevertheless, there exists a general

framework to deal with such non-ultralocal systems, which was introduced by Maillet

in [22–25],15 generalization of which, suitable for the AAF -model, we consider in section 6.

5.1 Fermionic Wadati model

Although the AAF model provides a very representative and interesting example of highly

non-ultralocal models, its algebra is by far too complicated for an initial analysis. Therefore,

it is more illuminating to consider first a simpler model. One such model can be obtained

by considering the field independent truncation of the AAF Dirac algebra, which, as we

show below, corresponds to the fermionic version of the Wadati model [41, 42]. In this

case, the intricate Dirac structure Ω−1

ij presented in appendix F simplifies considerably, and

the resulting Dirac brackets are the canonical ones:

{χ1(x), χ3(y)} = iδ(x− y),

{χ2(x), χ4(y)} = iδ(x− y).
(5.22)

However, despite the simplicity of the Dirac brackets, the algebra between the Lax

operators (5.2) is still quite complicated, as a result of the form of the Lax connection

itself.16 Substitution of the canonical Dirac structure (5.22) into the independent brackets

14There are, however, some exceptions for which the non-ultralocal algebra for L-operators still leads to

a well-defined algebra for the monodromy matrices. See the footnote 2.
15See also the earlier attempts by Tsyplaev [41].
16See the discussion bellow (5.20).
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in (5.2) corresponds to their truncation to the first order in the fermion:{
ξ(σ)0 (x;µ1),Λ(+)

σ (y;µ2)
}

=
1

4J
3
2

[
−il3(µ2)χ′4 + l4(µ2)χ′3

]
∂xδ(x− y) (5.23)

+
1

4J
3
2

[il3(µ2)χ4 − l4(µ2)χ3] ∂2
xδ(x− y),

{
ξ(σ)1 (x;µ1),Λ(+)

σ (y;µ2)
}

=
1

8J
3
2

(
2J√
λ

[il2(µ1)l4(µ2)χ3 + l2(µ1)l3(µ2)χ4] (5.24)

− [l1(µ1)l4(µ2) + l2(µ1)l3(µ2)]χ′3 − i [l1(µ1)l3(µ2) + l2(µ1)l4(µ2)]χ′4

)
∂xδ(x− y)

+
1

8J
3
2

(
[l1(µ1)l4(µ2) + l2(µ1)l3(µ2)]χ3 + i [l1(µ1)l3(µ2) + l2(µ1)l4(µ2)]χ4

)
∂2
xδ(x− y),

{
Λ(−)
σ (x;µ1),Λ(+)

σ (y;µ2)
}

= − i

J2
[l3(µ1)l3(µ2) + il4(µ1)l4(µ2)] ∂2

xδ(x− y). (5.25)

The remaining brackets from (5.2) are either identically zero at this order, or can be trivially

derived through the use of properties (5.5), (5.6), (5.7) and (5.9).

Collecting everything together, we can write the algebra between the Lax operators as

follows:{
L1(x;µ1) ⊗, L1(y;µ2)

}
= N0(x, y;µ1, µ2)δ(x− y) +N1(x, y;µ1, µ2)∂xδ(x− y)

+N2(x, y;µ1, µ2)∂2
xδ(x− y), (5.26)

with the matrices:

N0(x, y;µ1, µ2) =
1

8


0 0 −N (1)

0
∗
(µ∗1, µ

∗
2) 0

0 0 0 −N (2)

0
∗
(µ∗1, µ

∗
2)

N (1)

0 (µ1, µ2) 0 0 0

0 N (2)

0 (µ1, µ2) 0 0

 , (5.27)

N1(x, y;µ1, µ2) =
1

8


0 −N (1)

1
∗
(µ∗1, µ

∗
2) −N (2)

1
∗
(µ∗1, µ

∗
2) 0

N (1)

1 (µ1, µ2) 0 0 −N (3)

1
∗
(µ∗1, µ

∗
2)

N (2)

1 (µ1, µ2) 0 0 −N (4)

1
∗
(µ∗1, µ

∗
2)

0 N (3)

1 (µ1, µ2) N (4)

1 (µ1, µ2) 0

 ,

(5.28)

N2(x, y;µ1, µ2) =
1

8


0 −N (1)

2
∗
(µ∗1, µ

∗
2) −N (2)

2
∗
(µ∗1, µ

∗
2) 0

N (1)

2 (µ1, µ2) 0 N (5)

2 (µ1, µ2) −N (3)

2
∗
(µ∗1, µ

∗
2)

N (2)

2 (µ1, µ2) N (5)

2 (µ1, µ2) 0 −N (4)

2
∗
(µ∗1, µ

∗
2)

0 N (3)

2 (µ1, µ2) N (4)

2 (µ1, µ2) 0

 .

(5.29)

The functions N
(j)
i (µ1, µ2) are defined in appendix H.

Thus, restricting to the field-independent part in the algebra (5.26), we find:{
L1(x;β1) ⊗, L1(y;β2)

}
= − i

J
cosh (β1 + β2)

[
σ+ ⊗ σ− + σ− ⊗ σ+

]
∂2
xδ(x− y), (5.30)
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where we have used the parametrization (A.5) for the li functions. The algebra (5.30)

has, curiously, the same structure as the Wadati model, and therefore, can be considered

its fermionic counterpart. We refer to the original literature [41, 42] for more details and

discussions of the Wadati model. We only mention here, that despite the highly non-

ultralocal algebra, the classical r-matrix in the infinite space limit, nevertheless, can be

found. It is given, for example, in [41]. Although the full algebra for the AAF -model is

considerably more complicated than the truncated algebra (5.30), it is still an interesting

example to consider, as it demonstrates the necessity of new methods without technical

complications.

6 Generalized Maillet algebra

In this section we will briefly explain the Maillet’s formalism of the r- and s-matrices,

and the symmetric limit prescription to deal with the non-ultralocalities in the algebra.

Afterwards we shall develop its generalization suitable for the AAF -model. The latter is

needed, since, as we have seen in the previous section, the algebra for the AAF model

contains terms up to the second derivative of the delta function. The more complete

account of such generalized Maillet algebras will be given in the separate publication [43].

The starting point of the formalism considered by Maillet is the non-ultralocal algebra

of the form:17

{L(z;λ)⊗,L(z′;µ)} = A(z, z′;λ)δ(z − z′) +B(z, z′;λ)∂z′δ(z − z′)
+ C(z, z′;λ)∂zδ(z − z′), (6.1)

which can be recast in the following more convenient form:

{L(z;λ)⊗,L(z′;µ)} = (∂zr(z;λ, µ) + [r(z;λ, µ),L(z;λ)⊗ 1 + 1⊗ L(z;µ)]

+ [s(z;λ, µ),1⊗ L(z;µ)− L(z;λ)⊗ 1]) δ(z − z′)
+ s(z;λ, µ)∂z′δ(z − z′) + s(z′;λ, µ)∂zδ(z − z′). (6.2)

The r- and the new s-matrices are defined as follows:

s(z;λ, µ) =
1

2
[B(z, z;λ, µ)− C(z, z;λ, µ)] , (6.3)

r(z;λ, µ) =
1

2
[B(z, z;λ, µ) + C(z, z;λ, µ)] + r0(z;λ, µ), (6.4)

with the function r0(z;λ, µ) in (6.4) being determined from the equation:

∂zr0(z;λ, µ) + [r0(z;λ, µ),L(z;λ)⊗ 1 + 1⊗ L(z, µ)] = Ω(z;λ, µ), (6.5)

17The splitting into B(z, z′;λ, µ) and C(z, z′;λ, µ) functions is introduced for the sake of convenience. One

may choose these functions (as it was done for example in the original paper [22]), so that PB(z, z′;λ, µ)P =

−C(z′, z;µ, λ), where P is the permutation operator. This, however, is not necessary, and the choice can

be a different one.
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where the function Ω(z;λ, µ) has the form:

Ω(z;λ, µ) = A(z;λ, µ)− ∂v [B(z, v;λ, µ) + C(v, z;λ, µ)]v=z

+ [1⊗ L(x;µ), B(z, z;λ, µ)] + [L(x;λ)⊗ 1, C(z, z;λ, µ)] . (6.6)

Thus, the algebra (6.2) is defined now by the two matrices r(z;λ, µ) and s(z;λ, µ), which

can now, in general, depend on the coordinates.

Using these definitions, it is easy to derive the algebra for the transition matrices

T (x, x′;λ):

{T (x, y;λ)⊗, T (x′, y′;µ)}
= T (x, x0;λ)⊗ T (x′, x0;µ) r(x0;λ, µ) T (x0, y;λ)⊗ T (x0, y

′;µ)

− T (x, y0;λ)⊗ T (x′, y0;µ) r(y0;λ, µ) T (y0, y;λ)⊗ T (y0, y
′;µ)

+ ε(x− x′)T (x, x0;λ)⊗ T (x′, x0;µ) s(x0;λ, µ) T (x0, y;λ)⊗ T (x0, y
′;µ)

− ε(y′ − y)T (x, y0;λ)⊗ T (x′, y0;µ) s(y0;λ, µ) T (y0, y;λ)⊗ T (y0, y
′;µ), (6.7)

where all the x, x′, y, y′ are distinct, x0 ≡ min(x, x′); y0 ≡ max(y, y′), and the ordering

is chosen such that x, x′ > y, y′. The crucial point in this formula is the appearance of

the functions ε(x− x′) and ε(y − y′), which make the algebra (6.7) ill-defined. Indeed, the

discontinuity in the algebra (6.7) at coinciding points x = x′ (or y = y′) is proportional to

the value of the s-matrix at this point. Furthermore, as shown in [22], it is not possible to

define the Poisson brackets at the coinciding points, such that the Jacobi identity is satis-

fied. However, it is possible to define weak Poisson brackets, via the Maillet’s symmetric

limit procedure, such that the Jacobi identity, as well as all the standard properties hold.

The symmetrization procedure and the weak Poisson brackets are defined for each

n-nested brackets of the type:

∆n(xi, yi;λi) :=
{
T (x1, y1;λ1)⊗,

{
. . .⊗,

{
T (xn, yn;λn)⊗, T (xn+1, yn+1;λn)

}
. . .
}}

. (6.8)

This quantity is only well-defined if all the points xi and yi are distinct. For coinciding

points, one introduces the weak Maillet brackets by a point-splitting and symmetrization

procedure. For example, for xi = x, one defines:

∆n(x, yi;λi) := lim
ε→0

1

(n+ 1)!

∑
σ ∈P

∆n (x+ εσ(1), . . . , x+ εσ(n+ 1), yi;λi) , (6.9)

where P stands for all possible permutations of (1, . . . , n+ 1). In particular, for n = 2, this

definition leads to the Maillet brackets between the transition matrices:

{T (x, y;λ)⊗, T (x, y′;µ)}M

:=
1

2
lim
ε→0

(
{T (x− ε, y;λ)⊗, T (x+ ε, y′;µ)}+ {T (x+ ε, y;λ)⊗, T (x− ε, y′;µ)}

)
. (6.10)

With such well-defined weak brackets, one can show that the algebras for the transition

matrices for the equal and adjacent intervals have the form:

{T (x, y;λ)⊗, T (x, y;µ)}M = r(x;λ, µ) T (x, y;λ)⊗ T (x, y;µ) (6.11)

− T (x, y;λ)⊗ T (x, y;µ) r(y;λ, µ),

{T (x, y;λ)⊗, T (y, z;µ)}M = (T (x, y;λ)⊗ 1) s(y;λ, µ) (1⊗ T (y, z;λ)). (6.12)
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We refer the reader to the original papers [22–25] for detailed discussion and several im-

pressive examples, which can be solved with this prescription. Moreover, it is possible to

formulate these relations on the lattice, which makes it possible, in principle, to proceed

with quantization [44].

6.1 Operator regularization method and the classical limit

Before considering the generalization of these ideas for the AAF model, we address the

validity of using such weakly defined Poisson brackets in the classical theory. Indeed, the

construction of the Maillet brackets via the symmetric limit prescription is not intuitively

plausible, and seems somewhat artificial. We claim, however, that Maillet’s prescription is

the natural consequence of the regularized quantum theory, using the split-point regular-

ization introduced in [19, 20]. Although it was demonstrated on the particular example of

the Landau-Lifshitz model, the method itself is general enough to be applicable to other

singular systems, and, therefore, we consider here only the general ideas, and leave the

complete proof for the future publication [43].

The central concept in the operator regularization method is the introduction of the

regularized operators SaF (x):

SaF (x) :=

ˆ
dξ Fε(x, ξ)Sa(ξ), (6.13)

where Fε(x, ξ) is some symmetric and smooth function, which depends on some param-

eter ε. The function Fε(x, ξ) should also satisfy some additional conditions depending

on the algebraic structure of the model, such that the singular expressions (for example,

the Yang-Baxter equation) due to the operators product at the same point, become well-

defined. Moreover, in the ε → 0 one should restore the original expressions. The theory

can then be reformulated in terms of the regularized operators SaF (x), and only in the end

one should remove the regularization ε → 0. This program has been completed for the

Landau-Lifshitz model, and it was shown that the spectrum and the higher order charges

can be obtained by using this method [19, 20]. In addition, all the quantum charges were

shown to be self-adjoint, and the necessary self-adjoint extensions were constructed. We

also established a connection between the self-adointness of the quantum charges and the

S-matrix factorization. It is clear, that the function Fε(x, ξ) in (6.13) is essentially equiv-

alent to the split-point procedure in the quantum theory, so that the algebra, and other

constraints become well-defined. One should consider the quantum theory as fundamental,

and the classical theory should follow from the quasi-classical limit: ~ → 0. Therefore,

such split-point operator regularization in the quantum theory, which makes all the sin-

gular expressions well defined, should also appear in the quasi-classical limit. The Maillet

symmetric limit prescription (6.9) is exactly such split-point regularization, and we con-

clude that the Maillet’s definition of the Poisson brackets is simply the consequence of the

regularized operators of the quantum theory. The full proof and details of this argument

will be presented in a future publication.

– 25 –



J
H
E
P
1
1
(
2
0
1
2
)
1
6
5

6.2 Maillet algebra for the AAF model

We turn now to the algebra for the L-operators for the AAF model. As we have seen in

the previous section, the algebra has a more general form, and contains terms up to the

second derivative of the delta function. Namely, the algebra has the following form:

{L(z;λ)⊗,L(z′;µ)} = A(z, z′;λ)δ(z − z′) +

2∑
i,j=0

Bij(z, z
′;λ)∂iz∂

j
z′δ(z − z

′). (6.14)

Although we have found the A and Bij functions, we will not present here their explicit

expressions, due to their lengthy form. Instead, we will focus on some of the preliminary

essential consequences of the algebraic structure (6.14) for the bosonic case with arbitrary

functions A and Bij , leaving the full details and explicit expressions to a separate publica-

tion.

One can recast the algebra (6.14) in a more convenient form, similar to the one in (6.2):

{L(z;λ)⊗,L(z′;µ)} = (∂zr(z;λ, µ) + [r(z;λ, µ),L(z;λ)⊗ 1 + 1⊗ L(z;µ)]

+ [s1(z;λ, µ),1⊗ L(z;µ)− L(z;λ)⊗ 1]

+ [∂zs2(z;λ, µ),L(z;λ)⊗ 1 + 1⊗ L(z;µ)]

+ [[s2(z;λ, µ),L(z;λ)⊗ 1] ,1⊗ L(z;µ)]

+ [[s2(z;λ, µ), 1⊗ L(z;µ)] ,L(z;λ)⊗ 1]) δ(z − z′)
+ s1(z;λ, µ)∂z′δ(z − z′) + s1(z′;λ, µ)∂zδ(z − z′)
+ s2(z;λ, µ)∂2

z′δ(z − z′) + s2(z′;λ, µ)∂2
zδ(z − z′), (6.15)

where the r, s1 and s2 matrices are defined using the functions A,Bij , similar to (6.3)–(6.6).

The essential difference is the introduction of the additional matrix s2, due to the second

derivative term in the algebra (6.14). It is easy to show that the algebra for the transition

matrices, that follows from (6.15) has the form:

{T (x, y;λ)⊗, T (x′, y′;µ)}
= T (x, x0;λ)⊗ T (x′, x0;µ) u(x0;λ, µ) T (x0, y;λ)⊗ T (x0, y

′;µ)

− T (x, y0;λ)⊗ T (x′, y0;µ) u(y0;λ, µ) T (y0, y;λ)⊗ T (y0, y
′;µ)

+ ε(x− x′)T (x, x0;λ)⊗ T (x′, x0;µ) v(x0;λ, µ) T (x0, y;λ)⊗ T (x0, y
′;µ)

− ε(y′ − y)T (x, y0;λ)⊗ T (x′, y0;µ) v(y0;λ, µ) T (y0, y;λ)⊗ T (y0, y
′;µ), (6.16)

where we have defined:

u(x;λ, µ) = r(x;λ, µ) + ∂xs2(x;λ, µ) + [s2(x;λ, µ),L(x;λ)⊗ 1 + 1⊗ L(x;µ)] (6.17)

v(x;λ, µ) = s1(x;λ, µ) + [s2(x;λ, µ),L(x;λ)⊗ 1− 1⊗ L(x;µ)] (6.18)

This algebra has exactly the same form as the algebra (6.7), where the r(x;λ, µ)

and s(x;λ, µ) functions are replaced by the u(x;λ, µ) and v(x;λ, µ) functions. Hence,

one can immediately write the algebra for transition matrices for the equal and adjacent

intervals from (6.16) by replacing r → u and s → v in (6.11) and (6.12), as well as use
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the general results of the previous sections, including the construction of the symmetric

limit prescription for nested brackets. Thus, we conclude that even though the algebra for

L-operators (6.15) is modified by the additional terms depending on the s2(x;λ, µ) matrix,

the resulting algebra for the transition matrices (6.16) is the same, and the complication

introduced by the second derivative term is only technical. The essential steps of the

Maillet prescription can be repeated without any conceptual complications for the graded

algebra as well, which is the case of the AAF model, the generalization is straightforward.

Finally, we note that the lattice version of the algebra (6.16) is known as well [44], and may

in principle be used to construct the lattice version of the AAF model. The full details of

this analysis will be presented in the future publication [43].

7 Conclusion

We have considered in this paper the classical integrability of the AAF model, starting from

the first principles of the inverse scattering method. The necessity of this consideration was

stimulated by the fact that the perturbative calculation still do not provide the complete

information about the integrable properties of the AAF model. For example, the perturba-

tive approach was not sensitive to the rather complicated structure of the Dirac brackets,

which, therefore, was not taken into account. In the process of our consideration, we have

proved that the Lax operator surprisingly admits a simpler 2 × 2 representation. This is

especially curious, since the much simpler Thirring model has a more complex 3×3 known

representation. We have also found that the constraint on the coupling constants g2
2 = g3,

which was derived in [14] from the S-matrix factorization condition, must also be satisfied

in the classical theory, and that for no extension of the Lax connections integrability holds

without this constraint.

The algebraic structure of the AAF model, however, is rather complicated and has

a highly non-ultralocal form, which contains terms up to the second derivative in delta

function in the algebra of the Lax operators. This led us to the generalization of the

regularization technique due to Maillet. Here, it was necessary to introduce three matrices

r, s1 and s2 to properly encode the algebraic structure. We have also derived the algebra for

transition matrices for the AAF model, and have shown it to have exactly the same form

as it is the case of the usual non-ultralocality, with modified r- and s-matrices. Strictly

speaking, although we have obtained all the general expressions, further progress depends

on the analysis of the equation defining the r-matrix, and finding its local solutions. This

will allow one to proceed in the manner similar to, for example, the complex sine-Gordon

model, where the r-matrix has indeed a local, coordinate independent form, and the model

can be solved exactly in the infinite space limit [22].

We also obtained in the process the fermionic counterpart of the Wadati model, which

introduces an interesting toy-model for testing the generalized Maillet algebra, as it seems

possible to explicitly compute some relevant quantities, such as the transition matrix and

its infinite line limit.

We have also proposed that the symmetric limit prescription of Maillet has its origin

in the regularized quantum theory. Indeed, based on the method proposed in [20], the
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quantum theory is made well-defined via operator regularization. Maillet algebra is then

obtained in the quasi-classical limit. This is an interesting direction which will be explored

in more details in the future.

The problem of obtaining an alternative Lax connection, for which the algebra becomes

ultralocal is open. In principle there may exist such a connection, which does not follow

from the reduction of the strings on AdS5 × S5 to the su(1, 1) subsector. It would also be

interesting to obtain the equivalent model via bosonization procedure. Indeed, it is easy to

see, by examining the constraints of the gauge fixing procedure in [7], that the additional

higher order non-ultralocality appears in the algebra due to eliminating the bosonic fields

in favor of the fermionic ones. Thus, it is very desirable to obtain the bosonic version of the

AAF model, which should be less non-ultralocal, and may make the integrability analysis

a much simpler task.

A Notations

We use the following representation for the two-dimensional Dirac matrices:

ρ0 =

(
−1 0

0 1

)
, ρ1 =

(
0 i

i 0

)
and ρ5 = ρ0ρ1. (A.1)

Following the notations in [7], we choose here the sign of κ as:

κ =

√
λ

2
. (A.2)

In this case the functions li have the following dependence on the spectral parameter µ

(see the discussion in [7, 12]):

l0 = 1, l1 =
1 + µ2

1− µ2
, l2 = s1

2µ

1− µ2
, l3 = s2

1√
1− µ2

and l4 = s3
µ√

1− µ2
, (A.3)

with the following choice of parameters:

s1 + s2s3 = 0 and (s2)2 = (s3)2 = 1. (A.4)

Alternatively, one could use the parametrization:

l0 = 1, l1 = cosh (2β), l2 = −2 tanh (β), l3 = cosh (β) and l4 = sinh (β). (A.5)

B Equations of Motion in the reduced form

In this appendix we give the equations of motion for the AAF model in the reduced form.

As explained in the main text, they are derived from the original equations of motion (2.3)

and (2.4) by recursively eliminating the time derivatives present in the cubic and higher

order terms, through multiple usage of the equations of motion.
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The reduced equation for ψ1, following from the AAF Lagrangian, has the form:

iJψ̇1 −
√
λψ′2 + Jψ1 −

√
λg2

2J

[√
λ
(
2ψ′1ψ

∗
2ψ
′
2 − ψ′∗1 ψ2ψ

′
2 − ψ′∗1 ψ1ψ

′
1 − ψ′∗2 ψ2ψ

′
1 + ψ′∗2 ψ1ψ

′
2

)
+J

(
ψ1ψ

∗
2ψ
′
1 − ψ2ψ

∗
2ψ
′
2 + ψ∗1ψ2ψ

′
1 − ψ∗1ψ1ψ

′
2

)]
− λ(g2)2

4J2

[√
λ
(
3ψ′∗1 ψ2ψ

′
2ψ
∗
2ψ
′
1

−3ψ′∗2 ψ1ψ
′
2ψ
∗
2ψ
′
1 − 2ψ′∗2 ψ

′∗
1 ψ2ψ1ψ

′
2 − ψ′1ψ′∗1 ψ1ψ

∗
1ψ
′
2 − ψ′∗2 ψ∗1ψ2ψ

′
1ψ
′
2

)
+ J

(
3ψ∗1ψ

′∗
1 ψ2ψ1ψ

′
2

+2ψ∗1ψ1ψ
′
2ψ
∗
2ψ
′
1 − ψ∗2ψ′∗1 ψ1ψ2ψ

′
1 + ψ1ψ

′∗
2 ψ
∗
1ψ2ψ

′
1 − ψ∗2ψ′∗2 ψ2ψ1ψ

′
2

)]
−
√
λg3

8J

[√
λ
(
3ψ′∗1 ψ

∗
2ψ1ψ2ψ

′
1 − 3ψ′∗2 ψ

∗
2ψ1ψ2ψ

′
2 + 2ψ∗1ψ

∗
2ψ1ψ

′
2ψ
′
1 − ψ′∗1 ψ∗1ψ1ψ2ψ

′
2

+ψ∗1ψ
′∗
2 ψ1ψ2ψ

′
1

)
+ 2Jψ∗1ψ

∗
2ψ1ψ2ψ

′
2

]
+

(λ)3/2(g2)3

8J3

[
−8
√
λψ′∗2 ψ

′∗
1 ψ2ψ1ψ

′
2ψ
∗
2ψ
′
1

+4Jψ∗1ψ
′∗
1 ψ2ψ1ψ

′
2ψ
∗
2ψ
′
1

]
+

(λ)3/2g2g3

4J2

[
ψ′1ψ

∗
1ψ
′∗
1 ψ1ψ2ψ

∗
2ψ
′
2

]
= 0, (B.1)

while the reduced equation for ψ2, which follows from the AAF Lagrangian, is:

iJψ̇2 −
√
λψ′1 + Jψ2 −

√
λg2

2J

[√
λ
(
−2ψ′2ψ

∗
1ψ
′
1 + ψ′∗2 ψ2ψ

′
2 + ψ′∗2 ψ1ψ

′
1 − ψ′∗1 ψ2ψ

′
1 + ψ′∗1 ψ1ψ

′
2

)
+J

(
ψ∗2ψ2ψ

′
1 − ψ∗2ψ2ψ

′
2 − ψ2ψ

∗
1ψ
′
2 + ψ1ψ

∗
1ψ
′
1

)]
+
λ(g2)2

4J2

[√
λ
(
−3ψ′∗2 ψ1ψ

∗
1ψ
′
2ψ
′
1

+3ψ′∗1 ψ
∗
1ψ
′
2ψ2ψ

′
1 + 2ψ′∗1 ψ

′∗
2 ψ1ψ2ψ

′
1 + ψ′∗2 ψ2ψ

∗
2ψ
′
1ψ
′
2 + ψ′1ψ

′∗
1 ψ
∗
2ψ1ψ

′
2

)
+ J

(
−3ψ∗2ψ

′∗
2 ψ1ψ2ψ

′
1

−2ψ∗2ψ2ψ
′
1ψ
∗
1ψ
′
2 + ψ′∗2 ψ1ψ

∗
1ψ
′
2ψ2 + ψ∗1ψ

′∗
1 ψ1ψ2ψ

′
1 − ψ2ψ

′∗
1 ψ
∗
2ψ1ψ

′
2

)]
−
√
λg3

8J

[√
λ
(
3ψ′∗1 ψ

∗
1ψ1ψ2ψ

′
1 + 3ψ∗1ψ

′∗
2 ψ1ψ2ψ

′
2 − 2ψ∗1ψ

∗
2ψ2ψ

′
1ψ
′
2 + ψ′∗2 ψ

∗
2ψ1ψ2ψ

′
1

−ψ∗2ψ′∗1 ψ1ψ2ψ
′
2

)
+ 2Jψ∗1ψ

∗
2ψ1ψ2ψ

′
1

]
+

(λ)3/2(g2)3

8J3

[
8
√
λψ′∗1 ψ

∗
1ψ
′
2ψ
′∗
2 ψ1ψ2ψ

′
1

−4Jψ∗2ψ
∗
1ψ
′
2ψ
′∗
2 ψ1ψ2ψ

′
1

]
− (λ)3/2g2g3

4J2

[
ψ′2ψ

∗
2ψ
′∗
2 ψ2ψ1ψ

∗
1ψ
′
1

]
= 0. (B.2)

The dynamical equation for ψ1, following from the zero-curvature condition, has the

form:

iJψ̇1 −
√
λψ′2 + Jψ1 −

i
√
λ

4

[
2ψ∗2ψ̇2ψ

′
2 − ψ̇∗1ψ1ψ

′
2 + 2ψ′∗1 ψ̇1ψ2 − ψ̇∗1ψ′1ψ2 − ψ∗1ψ′1ψ̇2

+ψ′∗1 ψ1ψ̇2 − ψ∗2ψ′1ψ̇1 + ψ′∗2 ψ1ψ̇1

]
+
iJ

4

[
2ψ∗2ψ̇2ψ1 + ψ∗1ψ1ψ̇1 − ψ∗2ψ2ψ̇1

]
− λ

4J

[
ψ∗2ψ

′
2ψ
′
1

−ψ′∗1 ψ1ψ
′
1 − ψ′∗2 ψ2ψ

′
1

]
+

√
λ

4

[
ψ∗2ψ

′
1ψ1 + ψ∗2ψ2ψ

′
2 + ψ′∗1 ψ2ψ1

]
− 3J

4
[ψ∗2ψ2ψ1]

− λ

16J

[
−4ψ∗2ψ̇2ψ

∗
1ψ1ψ

′
2 − ψ̇∗1ψ1ψ

∗
2ψ2ψ

′
2 + ψ̇∗2ψ2ψ

∗
1ψ1ψ

′
2 + ψ∗1ψ

′
1ψ
∗
2ψ2ψ̇2 − ψ′∗1 ψ1ψ

∗
2ψ2ψ̇2

−ψ′∗2 ψ2ψ
∗
1ψ1ψ̇2 + 2ψ∗1ψ

′
1ψ̇
∗
1ψ1ψ2 − ψ∗1ψ̇1ψ

′∗
1 ψ1ψ2 + 2ψ∗1ψ̇1ψ

∗
2ψ
′
2ψ2 + ψ′∗2 ψ1ψ

∗
2ψ2ψ̇1

+ψ∗2ψ
′
1ψ
∗
1ψ1ψ̇1

]
− λ

16J

[
−3ψ∗2ψ

′
2ψ
∗
1ψ1ψ

′
1 − ψ′∗1 ψ1ψ

∗
2ψ2ψ

′
1 +ψ′∗2 ψ2ψ

∗
1ψ1ψ

′
1

−2ψ∗2ψ
′
2ψ
′∗
2 ψ2ψ1

]
= 0, (B.3)
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while the dynamical equation for ψ2, which follows from the zero-curvature condition, is:

− iJψ̇2 −
√
λψ′1 + Jψ2 −

i
√
λ

4

[
2ψ∗1ψ̇1ψ

′
1 − ψ̇∗2ψ2ψ

′
1 + 2ψ′∗2 ψ̇2ψ1 − ψ̇∗2ψ′2ψ1 − ψ∗2ψ′2ψ̇1

+ψ′∗2 ψ2ψ̇1 − ψ∗1ψ′2ψ̇2 + ψ′∗1 ψ2ψ̇2

]
+
iJ

4

[
2ψ∗1ψ̇1ψ2 + ψ∗2ψ2ψ̇2 − ψ∗1ψ1ψ̇2

]
− λ

4J

[
ψ∗1ψ

′
1ψ
′
2

−ψ′∗2 ψ2ψ
′
2 − ψ′∗1 ψ1ψ

′
2

]
−
√
λ

4

[
ψ∗1ψ

′
2ψ2 + ψ′∗2 ψ1ψ2 + ψ∗1ψ1ψ

′
1

]
+

3J

4
[ψ∗1ψ1ψ2]

− λ

16J

[
4ψ∗1ψ̇1ψ

∗
2ψ2ψ

′
1 + 2ψ∗2ψ̇2ψ

∗
1ψ1ψ

′
1 − ψ̇∗1ψ1ψ

∗
2ψ2ψ

′
1 + ψ̇∗2ψ2ψ

∗
1ψ1ψ

′
1 + ψ∗1ψ̇1ψ

∗
2ψ
′
2ψ1

+ψ′∗2 ψ1ψ
∗
1ψ̇1ψ2 + ψ′∗1 ψ1ψ

∗
2ψ2ψ̇1 − 2ψ∗2ψ

′
2ψ̇
∗
2ψ2ψ1 + ψ′∗2 ψ2ψ

∗
2ψ̇2ψ1 − ψ∗1ψ′2ψ∗2ψ2ψ̇2

−ψ′∗1 ψ2ψ
∗
1ψ1ψ̇2

]
− λ

16J

[
−3ψ∗1ψ

′
1ψ
∗
2ψ2ψ

′
2 − ψ′∗2 ψ2ψ

∗
1ψ1ψ

′
2 + ψ′∗1 ψ1ψ

∗
2ψ2ψ

′
2

−2ψ∗1ψ
′
1ψ
′∗
1 ψ1ψ2

]
= 0. (B.4)

C The list of M (ij) functions

Here we give the explicit form of the M
(ij)
3 , M

(ij)
4 , M

(ij)
13 , M

(ij)
14 , M

(ij)
23 and M

(ij)
24 functions

(see (2.26)).

• (i = 1; j = 1):

M
(11)
3 = −2i∂0(α0γσχ21) + 2i∂1(α0γτχ21), (C.1)

M
(11)
4 = 2∂0(α0γσχ̃21)− 2∂1(α0γτ χ̃21), (C.2)

M
(11)
13 = −2iγτ∂1(α0χ21) + 2iγσ∂0(α0χ21), (C.3)

M
(11)
14 = −4γτ∂1(α0χ̃21) + 4γσ∂0(α0χ̃21), (C.4)

M
(11)
23 = −4

√
λ

J
γσα0γσχ11 −

2i
√
λ

J
γσ∂1(α0χ21) +

i√
λ
ζα0γτχ11

− 1

2
√
λ
ζ∂0(α0χ21), (C.5)

M
(11)
24 = −4i

√
λ

J
γσα0γσχ̃11 −

2
√
λ

J
γσ∂1(α0χ̃21)− i√

λ
ζα0γτ χ̃11

+
i

2
√
λ
ζ∂0(α0χ̃21). (C.6)

• (i = 1; j = 2):

M
(12)
3 = −2i∂0(α0γσχ22) + 2i∂1(α0γτχ22), (C.7)

M
(12)
4 = 2∂0(α0γσχ̃22)− 2∂1(α0γτ χ̃22), (C.8)

M
(12)
13 = −2iγτ∂1(α0χ22) + 2iγσ∂0(α0χ22), (C.9)

M
(12)
14 = −4γτ∂1(α0χ̃22) + 4γσ∂0(α0χ̃22), (C.10)

M
(12)
23 = −4

√
λ

J
γσα0γσχ12 −

2i
√
λ

J
γσ∂1(α0χ22) +

i√
λ
ζα0γτχ12

− 1

2
√
λ
ζ∂0(α0χ22), (C.11)
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M
(11)
24 = −4i

√
λ

J
γσα0γσχ̃12 −

2
√
λ

J
γσ∂1(α0χ̃22)− i√

λ
ζα0γτ χ̃12

+
i

2
√
λ
ζ∂0(α0χ̃22). (C.12)

• (i = 2; j = 1):

M
(21)
3 = 2i∂0(α0γσχ11)− 2i∂1(α0γτχ11), (C.13)

M
(21)
4 = −2∂0(α0γσχ̃11) + 2∂1(α0γτ χ̃11), (C.14)

M
(21)
13 = 2iγτ∂1(α0χ11)− 2iγσ∂0(α0χ11), (C.15)

M
(21)
14 = 4γτ∂1(α0χ̃11)− 4γσ∂0(α0χ̃11), (C.16)

M
(21)
23 = −4

√
λ

J
γσα0γσχ21 +

2i
√
λ

J
γσ∂1(α0χ11) +

i√
λ
ζα0γτχ21

+
1

2
√
λ
ζ∂0(α0χ11), (C.17)

M
(21)
24 = −4i

√
λ

J
γσα0γσχ̃21 +

2
√
λ

J
γσ∂1(α0χ̃11)− i√

λ
ζα0γτ χ̃21

− i

2
√
λ
ζ∂0(α0χ̃11). (C.18)

• (i = 2; j = 2):

M
(22)
3 = 2i∂0(α0γσχ12)− 2i∂1(α0γτχ12), (C.19)

M
(22)
4 = −2∂0(α0γσχ̃12) + 2∂1(α0γτ χ̃12), (C.20)

M
(22)
13 = 2iγτ∂1(α0χ12)− 2iγσ∂0(α0χ12), (C.21)

M
(22)
14 = 4γτ∂1(α0χ̃12)− 4γσ∂0(α0χ̃12), (C.22)

M
(22)
23 = −4

√
λ

J
γσα0γσχ22 +

2i
√
λ

J
γσ∂1(α0χ12) +

i√
λ
ζα0γτχ22

+
1

2
√
λ
ζ∂0(α0χ12), (C.23)

M
(22)
24 = −4i

√
λ

J
γσα0γσχ̃22 +

2
√
λ

J
γσ∂1(α0χ̃12)− i√

λ
ζα0γτ χ̃22

− i

2
√
λ
ζ∂0(α0χ̃12). (C.24)

With the choice of the νi, ν̃i fields (2.36), it is easy to show the following equivalence

relations between the equations (2.27)–(2.30):

M
(11)
3 +M

(11)
13 = 0 ⇐⇒ M

(21)
4 −M (21)

14 = 0,

M
(12)
3 +M

(12)
13 = 0 ⇐⇒ M

(22)
4 −M (22)

14 = 0,

M
(21)
3 +M

(21)
13 = 0 ⇐⇒ M

(11)
4 −M (11)

14 = 0,
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M
(22)
3 +M

(22)
13 = 0 ⇐⇒ M

(12)
4 −M (12)

14 = 0,

M
(11)
13 −M (11)

24 = 0 ⇐⇒ M
(21)
14 −M (21)

23 = 0,

M
(12)
13 −M (12)

24 = 0 ⇐⇒ M
(22)
14 −M (22)

23 = 0,

M
(21)
13 −M (21)

24 = 0 ⇐⇒ M
(11)
14 −M (11)

23 = 0,

M
(22)
13 −M (22)

24 = 0 ⇐⇒ M
(12)
14 −M (12)

23 = 0.

These relations show that the independent equations are the ones given in the formu-

las (2.37) and (2.38).

D Useful identities

We collect here some useful identities used throughout the text. These identities can be

proved by direct verification, with the use of the equations of motion in the form (B.1)

and (B.2).

The following identity is equivalent to the constraint (2.31)

ψ′∗1 ψ̇1 − ψ̇∗1ψ′1 + ψ′∗2 ψ̇2 − ψ̇∗2ψ′2 = −i∂1

(
ψ̄ψ
)
. (D.1)

The identity (2.40) can be derived by utilizing the following identities:

ψ1ψ̇
∗
2 + ψ∗2ψ̇1 − ψ∗1ψ̇2 − ψ2ψ̇

∗
1 = − i

√
λ

J

(
ψ∗2ψ

′
2 − ψ′∗2 ψ2 + ψ∗1ψ

′
1 − ψ′∗1 ψ1

)
, (D.2)

ψ̇2
∗
ψ′1 − ψ′∗2 ψ̇1 − ψ̇1

∗
ψ′2 + ψ′∗1 ψ̇2 = − J√

λ

(
ψ̇∗1ψ1 + ψ∗1ψ̇1 − ψ̇∗2ψ2 − ψ∗2ψ̇2

)
. (D.3)

The constraint (2.41) is obtained by computing explicitly the left and the right hand sides,

and showing that both are equal to:

iλ

J

[
ψ∗1ψ

′
2ψ2ψ

′∗
2 + ψ′2ψ

∗
2ψ
′∗
2 ψ1 − ψ′1ψ′∗1 ψ1ψ

∗
2 − ψ2ψ

∗
1ψ
′
1ψ
′∗
1 + 2ψ′1ψ

′∗
2 ψ
∗
2ψ2 + 2ψ′∗1 ψ2ψ

∗
2ψ
′
2

+2ψ′∗1 ψ
∗
1ψ1ψ

′
2 + 2ψ′∗2 ψ

∗
1ψ1ψ

′
1

]
− 2i
√
λ

J

[
ψ′∗2 ψ

′
1 + ψ′∗1 ψ

′
2

]
+

5i
√
λ

2J

[
ψ∗1ψ

′
2ψ2ψ

′∗
1 ψ1ψ

∗
2

+ψ′∗2 ψ1ψ2ψ
∗
1ψ
′
1ψ
∗
2

]
− 4iλg2

J2

[
ψ′∗2 ψ2ψ

′∗
1 ψ1 + ψ′∗1 ψ

′
1ψ
∗
2ψ
′
2 − ψ′∗2 ψ′2ψ∗1ψ1 − ψ′∗1 ψ1ψ

′∗
2 ψ
′
2

]
+

16i(λ)3/2(g2)2

J3

[
ψ′∗1 ψ2ψ

′∗
2 ψ
∗
1ψ
′
2ψ
′
1 − ψ′∗1 ψ∗2ψ1ψ

′
2ψ
′∗
2 ψ
′
1

]
+

9iλ

4J2

[
ψ′2ψ

∗
1ψ
′
1ψ
∗
2ψ
′∗
1 ψ1

+ψ′2ψ
∗
1ψ
′
1ψ
∗
2ψ
′∗
2 ψ2 + ψ∗2ψ

′
2ψ2ψ

′∗
1 ψ1ψ

′∗
2 + ψ∗1ψ

′
1ψ2ψ

′∗
1 ψ1ψ

′∗
2

]
. (D.4)

The constraint (2.42) corresponding to the zero anomalous term can be proved by first

writing the left hand side as:

φ11 + φ22 = (l23 + l24)C1 + (2il3l4)C2, (D.5)
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where

C1 = ∂1(α0ψ
∗
2)(2α0γτψ2) + (2α0γτψ

∗
2)∂1(α0ψ2) + ∂0(α0ψ2)(2α0γσψ

∗
2)

+ (2α0γσψ2)∂0(α0ψ
∗
2) + ∂1(α0ψ1)(2α0γτψ

∗
1) + (2α0γτψ1)∂1(α0ψ

∗
1)

+ ∂0(α0ψ
∗
1)(2α0γσψ1) + (2α0γσψ

∗
1)∂0(α0ψ1) + ∂0(α0ψ2)∂1(α0ψ

∗
2)

+ ∂0(α0ψ
∗
2)∂1(α0ψ2) + ∂0(α0ψ1)∂1(α0ψ

∗
1) + ∂0(α0ψ

∗
1)∂1(α0ψ1), (D.6)

and

C2 = (2α0γτψ2)∂1(α0ψ
∗
1) + (2α0γτψ

∗
2)∂1(α0ψ1) + ∂0(α0ψ2)(2α0γσψ

∗
1)

+ ∂0(α0ψ
∗
2)(2α0γσψ1) + (2α0γτψ1)∂1(α0ψ

∗
2) + (2α0γτψ

∗
1)∂1(α0ψ2)

+ ∂0(α0ψ1)(2α0γσψ
∗
2) + ∂0(α0ψ

∗
1)(2α0γσψ2) + ∂1(α0ψ

∗
1)∂0(α0ψ2)

+ ∂0(α0ψ
∗
2)∂1(α0ψ1) + ∂0(α0ψ1)∂1(α0ψ

∗
2) + ∂1(α0ψ2)∂0(α0ψ

∗
1). (D.7)

Then, one simply shows that C1 = 0, and C2 = 0.

E Matrix elements of Ωij

In this appendix we give the explicit formulas for the matrix elements of Ω(x). For com-

pleteness, we give the explicit dependence of these functions on the coupling constants g2

and g3 (see footnote 9).

Ω11 =
i
√
λ g2

2J2

(
χ3χ

′
4 − χ4χ

′
3

)
+
i
√
λ g3

4J3
χ2χ3χ4χ

′
4, (E.1)

Ω12 =
i
√
λ g3

8J3

(
χ2χ3χ4χ

′
3 − χ1χ3χ4χ

′
4

)
, (E.2)

Ω13 = −i+
i
√
λ g2

2J2

(
χ2χ

′
3 − χ4χ

′
1

)
+
i
√
λ g3

8J3

(
χ2χ3χ4χ

′
2 + χ1χ2χ4χ

′
4

)
, (E.3)

Ω14 =
i
√
λ g2

2J2

(
χ2χ

′
4 + χ3χ

′
1

)
+
i
√
λ g3

8J3

(
2χ2χ3χ4χ

′
1 − 2χ1χ2χ3χ

′
4 − χ1χ3χ4χ

′
2 + χ1χ2χ4χ

′
3

)
, (E.4)

Ω22 =
i
√
λ g2

2J2

(
χ3χ

′
4 − χ4χ

′
3

)
− i
√
λ g3

4J3
χ1χ3χ4χ

′
3, (E.5)

Ω23 =
i
√
λ g2

2J2

(
−χ1χ

′
3 − χ4χ

′
2

)
+
i
√
λ g3

8J3

(
−2χ1χ3χ4χ

′
2 + 2χ1χ2χ4χ

′
3 + χ2χ3χ4χ

′
1 − χ1χ2χ3χ

′
4

)
, (E.6)

Ω24 = −i+
i
√
λ g2

2J2

(
−χ1χ

′
4 + χ3χ

′
2

)
+
i
√
λ g3

8J3

(
−χ1χ3χ4χ

′
1 − χ1χ2χ3χ

′
3

)
, (E.7)

Ω33 = − i
√
λ g2

2J2

(
χ1χ

′
2 − χ2χ

′
1

)
+
i
√
λ

4J3
χ1χ2χ4χ

′
2, (E.8)

Ω34 =
i
√
λ g3

8J3

(
χ1χ2χ4χ

′
1 − χ1χ2χ3χ

′
2

)
, (E.9)

Ω44 =
i
√
λ g2

2J2

(
χ2χ

′
1 − χ1χ

′
2

)
− i
√
λ g3

4J3
χ1χ2χ3χ

′
1. (E.10)
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We note that Ω(x) is a symmetric matrix,

Ωij = Ωji. (E.11)

Moreover, its elements satisfy the following properties under complex conjugation:

Ω∗11 = −Ω33, Ω∗12 = −Ω34, Ω∗13 = −Ω13,

Ω∗14 = −Ω23, Ω∗22 = −Ω44, Ω∗22 = −Ω44. (E.12)

F The Dirac structure

In this appendix we present the Dirac structure of the AAF model. For completeness, here

we also give the explicit dependence on the coupling constants g2 and g3 (see footnote 9).

(Ω−1)11 =
i
√
λ

2J2
g2

(
−χ1χ

′
2 + χ2χ

′
1

)
+
i
√
λ

4J3
g3χ1χ2χ4χ

′
2 (F.1)

+
iλ

2J4
g2

2

(
χ1χ2χ

′
2χ
′
3 + χ1χ4χ

′
1χ
′
2

)
+
iλ

3
2

4J6
g3

2

(
−χ1χ2χ3χ

′
1χ
′
2χ
′
4 − 3χ1χ2χ4χ

′
1χ
′
2χ
′
3

)
,

(Ω−1)22 =
i
√
λ

2J2
g2

(
−χ1χ

′
2 + χ2χ

′
1

)
− i
√
λ

4J3
g3χ1χ2χ3χ

′
1 (F.2)

+
iλ

2J4
g2

2

(
−χ1χ2χ

′
1χ
′
4 − χ2χ3χ

′
1χ
′
2

)
+
iλ

3
2

4J6
g3

2

(
3χ1χ2χ3χ

′
1χ
′
2χ
′
4 + χ1χ2χ4χ

′
1χ
′
2χ
′
3

)
,

(Ω−1)12 =
i
√
λ

8J3
g3

(
−χ1χ2χ3χ

′
2 + χ1χ2χ4χ

′
1

)
(F.3)

+
iλ

4J4
g2

2

(
−χ1χ3χ

′
1χ
′
2 + χ1χ2χ

′
2χ
′
4 − χ1χ2χ

′
1χ
′
3 + χ2χ4χ

′
1χ
′
2

)
− iλ

2J5
g2g3χ1χ2χ3χ4χ

′
1χ
′
2 +

iλ
3
2

2J6
g3

2

(
χ1χ2χ3χ

′
1χ
′
2χ
′
3 − χ1χ2χ4χ

′
1χ
′
2χ
′
4

)
,

(Ω−1)14 = − i
√
λ

2J2
g2

(
χ1χ

′
3 + χ4χ

′
2

)
(F.4)

+
i
√
λ

8J3
g3

(
−χ1χ2χ3χ

′
4 + χ2χ3χ4χ

′
1 + 2χ1χ2χ4χ

′
3 − 2χ1χ3χ4χ

′
2

)
+

iλ

4J4
g2

2

(
−χ1χ3χ

′
2χ
′
3 + χ1χ4χ

′
1χ
′
3 + χ1χ4χ

′
2χ
′
4 − χ2χ4χ

′
2χ
′
3

)
− iλ

3
2

4J6
g3

2

(
χ1χ2χ3χ

′
1χ
′
3χ
′
4 + χ2χ3χ4χ

′
1χ
′
2χ
′
4

)
,
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(Ω−1)23 =
i
√
λ

2J2
g2

(
χ3χ

′
1 + χ2χ

′
4

)
(F.5)

+
i
√
λ

8J3
g3

(
χ1χ2χ4χ

′
3 − χ1χ3χ4χ

′
2 − 2χ1χ2χ3χ

′
4 + 2χ2χ3χ4χ

′
1

)
+

iλ

4J4
g2

2

(
−χ1χ3χ

′
1χ
′
4 + χ2χ3χ

′
1χ
′
3 + χ2χ3χ

′
2χ
′
4 − χ2χ4χ

′
1χ
′
4

)
+
iλ

3
2

4J6
g3

2

(
χ1χ2χ4χ

′
2χ
′
3χ
′
4 + χ1χ3χ4χ

′
1χ
′
2χ
′
3

)
,

(Ω−1)13 = i+
i
√
λ

2J2
g2

(
χ2χ

′
3 − χ4χ

′
1

)
(F.6)

+
i
√
λ

8J3
g3χ2χ4

(
χ1χ

′
4 − χ3χ

′
2

)
+

iλ

4J4
g2

2

(
χ1χ2χ

′
3χ
′
4 − χ1χ3χ

′
1χ
′
3 + χ1χ3χ

′
2χ
′
4 − χ1χ4χ

′
2χ
′
3

− χ2χ3χ
′
1χ
′
4 − χ2χ4χ

′
1χ
′
3 − χ2χ4χ

′
2χ
′
4 + χ3χ4χ

′
1χ
′
2

)
+

iλ

4J5
g2g3χ1χ2χ3χ4

(
−χ′1χ′3 + 2χ′2χ

′
4

)
+
iλ

3
2

4J6
g3

2

(
−χ1χ2χ4χ

′
1χ
′
3χ
′
4+χ2χ3χ4χ

′
1χ
′
2χ
′
3+2χ1χ2χ3χ

′
2χ
′
3χ
′
4−2χ1χ3χ4χ

′
1χ
′
2χ
′
4

)
− 3iλ2g4

2

4J8
χ1χ2χ3χ4χ

′
1χ
′
2χ
′
3χ
′
4,

(Ω−1)24 = i− i
√
λ

2J2
g2

(
χ1χ

′
4 − χ3χ

′
2

)
(F.7)

+
i
√
λ

8J3
g3χ1χ3

(
χ2χ

′
3 − χ4χ

′
1

)
+

iλ

4J4
g2

2

(
χ1χ2χ

′
3χ
′
4 − χ1χ3χ

′
1χ
′
3 − χ1χ3χ

′
2χ
′
4 − χ1χ4χ

′
2χ
′
3

− χ2χ3χ
′
1χ
′
4 + χ2χ4χ

′
1χ
′
3 − χ2χ4χ

′
2χ
′
4 + χ3χ4χ

′
1χ
′
2

)
+

iλ

4J5
g2g3χ1χ2χ3χ4

(
−2χ′1χ

′
3 + χ′2χ

′
4

)
+
iλ

3
2

4J6
g3

2

(
χ1χ2χ3χ

′
2χ
′
3χ
′
4 − χ1χ3χ4χ

′
1χ
′
2χ
′
4 − 2χ1χ2χ4χ

′
1χ
′
3χ
′
4 + 2χ2χ3χ4χ

′
1χ
′
2χ
′
3

)
− 3iλ2g4

2

4J8
χ1χ2χ3χ4χ

′
1χ
′
2χ
′
3χ
′
4,

(Ω−1)33 =
i
√
λ

2J2
g2

(
−χ′4χ3 + χ′3χ4

)
+
i
√
λ

4J3
g3χ
′
4χ2χ4χ3 (F.8)

+
iλ

2J4
g2

2

(
χ′1χ

′
4χ4χ3 + χ′4χ

′
3χ2χ3

)
+
iλ

3
2

4J6
g3

2

(
−χ′2χ′4χ′3χ1χ4χ3 − 3χ′1χ

′
4χ
′
3χ2χ4χ3

)
,
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(Ω−1)44 =
i
√
λ

2J2
g2

(
−χ′4χ3 + χ′3χ4

)
− i
√
λ

4J3
g3χ
′
3χ1χ4χ3 (F.9)

+
iλ

2J4
g2

2

(
−χ′2χ′3χ4χ3 − χ′4χ′3χ1χ4

)
+
iλ

3
2

4J6
g3

2

(
3χ′2χ

′
4χ
′
3χ1χ4χ3 + χ′1χ

′
4χ
′
3χ2χ4χ3

)
,

(Ω−1)34 =
i
√
λ

8J3
g3

(
−χ′4χ1χ4χ3 + χ′3χ2χ4χ3

)
(F.10)

+
iλ

4J4
g2

2

(
−χ′4χ′3χ1χ3 + χ′2χ

′
4χ4χ3 − χ′1χ′3χ4χ3 + χ′4χ

′
3χ2χ4

)
− iλ

2J5
g2g3χ

′
4χ
′
3χ2χ1χ4χ3 +

iλ
3
2

2J6
g3

2

(
χ′1χ

′
4χ
′
3χ1χ4χ3 − χ′2χ′4χ′3χ2χ4χ3

)
,

We note that the matrix Ω−1(x) is also symmetric:

(Ω−1)ij = (Ω−1)ji. (F.11)

Furthermore, its elements satisfy the following properties under involution:

(Ω−1)∗33 = −(Ω−1)11, (Ω−1)∗44 = −(Ω−1)22, (Ω−1)∗34 = −(Ω−1)12,

(Ω−1)∗14 = −(Ω−1)32, (Ω−1)∗13 = −(Ω−1)13, (Ω−1)∗24 = −(Ω−1)24. (F.12)

Finally, we address a subtlety related to the validity of the Jacobi identity. Even when

considering the simplest forms of the Jacobi identity, such as:∑
σ∈Pc

{
χ1

(
xσ(1)

)
,
{
χ1

(
xσ(2)

)
, χ1

(
xσ(3)

)}}
= 0, (F.13)

where Pc stands for all cyclic permutations of (1,2,3), one arrives at meaningless expressions,

since the left hand side fails to vanish. One has to remember, however, that the correct

way to define the Poisson brackets in field theory is done by introducing functionals as

in (4.27):

F (x) =

ˆ
dξ c(x, ξ)χ1(ξ), (F.14)

where c(x, ξ) is some smooth generalized function with some properties on the boundary.

The corresponding Jacobi identity is then satisfied, provided some general conditions on

the functionals (see [3, 45] for more details).

G Computational details for the algebra of Lax operators

In this appendix, we collect some useful formulae necessary for the derivation of the algebra

of Lax operators in section 5. There we also use the following representation for the two-

dimensional Dirac matrices:

σ3 =

(
1 0

0 −1

)
, σ+ =

(
0 1

0 0

)
, σ− =

(
0 0

1 0

)
. (G.1)
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The functions ξ
(σ)
j (x;µ) and Λ

(±)
σ (x;µ) used in the decomposition (5.1) of the spacial

component of the Lax connection are:

ξ(σ)0 =
1

4J

[
−χ3χ

′
1 + χ4χ

′
2 − χ1χ

′
3 + χ2χ

′
4

]
(G.2)

+
1

4J2

[
−χ2χ3χ4χ

′
1 + χ1χ3χ4χ

′
2 + χ1χ2χ4χ

′
3 − χ1χ2χ3χ

′
4

]
,

ξ(σ)1 =
l1
8J

[
χ3χ

′
1 + χ4χ

′
2 + χ1χ

′
3 + χ2χ

′
4

]
(G.3)

+
il2

4
√
λ

[
2J +

√
λ

2J

(
χ4χ

′
1 − χ3χ

′
2 + χ1χ

′
4 − χ2χ

′
3

)
+ (−χ1χ3 + χ2χ4)

]
,

Λ(−)
σ = Λ̄1

σ − iΛ̄2
σ (G.4)

=
l3√
J

[
−χ′2 +

1

2J
χ2χ3χ

′
1 +

1

4J

(
χ2χ4χ

′
2 − χ1χ3χ

′
2

)
− 1

16J2
χ1χ2χ3χ4χ

′
2

]
+

il4√
J

[
−χ′1 −

1

2J
χ1χ2χ

′
3 +

1

4J

(
χ2χ4χ

′
1 − χ1χ3χ

′
1

)
− 1

16J2
χ1χ2χ3χ4χ

′
1

]
,

Λ(+)
σ = Λ̄1

σ + iΛ̄2
σ (G.5)

=
l3√
J

[
−χ′4 +

1

2J
χ1χ4χ

′
3 +

1

4J

(
χ2χ4χ

′
4 − χ1χ3χ

′
4

)
− 1

16J2
χ1χ2χ3χ4χ

′
4

]
+

il4√
J

[
χ′3 +

1

2J
χ2χ3χ

′
4 −

1

4J

(
χ2χ4χ

′
3 − χ1χ3χ

′
3

)
+

1

16J2
χ1χ2χ3χ4χ

′
3

]
,

where we dropped the dependence on x and on the spectral parameter µ to avoid cluttering.

The functions Γ11, Γ
(1)
12 and Γ

(2)
12 appearing in the expressions (5.14)–(5.15) and (5.16)

are:

Γ11 = χ1

(
χ′3Ω−1

13 − χ
′
4Ω−1

23 + χ′1Ω−1

33 − χ
′
2Ω−1

44

)
+ χ2

(
−χ′3Ω−1

14 + χ′4Ω−1

24 − χ
′
1Ω−1

34 + χ′2Ω−1

44

)
+ χ3

(
χ′3Ω−1

11−χ
′
4Ω−1

12 +χ′1Ω−1

13−χ
′
2Ω−1

14

)
+χ4

(
−χ′3Ω−1

12 +χ′2Ω−1

22−χ
′
1Ω−1

23 +χ′2Ω−1

24

)
,

(G.6)

Γ
(1)
12 = 2∂x

[
χ2χ3χ4χ

′
3Ω−1

11 +
(
−χ1χ3χ4χ

′
3 − χ2χ3χ4χ

′
4

)
Ω−1

12

+
(
χ2χ3χ4χ

′
1 − χ1χ3χ4χ

′
2 − χ1χ2χ4χ

′
3 + χ1χ2χ3χ

′
4

)
Ω−1

13 + χ1χ3χ4χ
′
4Ω−1

22

+
(
−χ2χ3χ4χ

′
1 + χ1χ3χ4χ

′
2 + χ1χ2χ4χ

′
3 − χ1χ2χ3χ

′
4

)
Ω−1

24 − χ1χ2χ4χ
′
1Ω−1

33

+
(
χ1χ2χ3χ

′
1 + χ1χ2χ4χ

′
2

)
Ω−1

34 − χ1χ2χ3χ
′
2Ω−1

44

]
− 4χ2χ3χ

′
3χ
′
4Ω−1

11

+ 4
(
χ1χ3χ

′
3χ
′
4 + χ2χ4χ

′
3χ
′
4

)
Ω−1

12 + 4
(
χ1χ4χ

′
2χ
′
3 − χ2χ3χ

′
1χ
′
4

)
Ω−1

13

+ 4
(
χ2χ3χ

′
1χ
′
3 − χ1χ3χ

′
2χ
′
3 + χ2χ3χ

′
2χ
′
4 − χ2χ4χ

′
2χ
′
3

)
Ω−1

14 − 4χ1χ4χ
′
3χ
′
4Ω−1

22

+ 4
(
χ1χ3χ

′
1χ
′
4 − χ1χ4χ

′
1χ
′
3 + χ2χ4χ

′
1χ
′
4 − χ1χ4χ

′
2χ
′
4

)
Ω−1

23

+ 4
(
χ1χ4χ

′
2χ
′
3 − χ2χ3χ

′
1χ
′
4

)
Ω−1

24 − 4χ1χ4χ
′
1χ
′
2Ω−1

33 + 4
(
χ1χ3χ

′
1χ
′
2 + χ2χ4χ

′
1χ
′
2

)
Ω−1

34

− 4χ2χ3χ
′
1χ
′
2Ω−1

44 , (G.7)
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Γ
(2)
12 = 4χ2χ3χ4χ

′
3Ω−1

11 − 4
(
χ1χ3χ4χ

′
3 + χ2χ3χ4χ

′
4

)
Ω−1

12

+ 2
(
2χ2χ3χ4χ

′
1 − χ1χ3χ4χ

′
2 − 2χ1χ2χ4χ

′
3 + χ1χ2χ3χ

′
4

)
Ω−1

13

+ 2
(
χ1χ2χ3χ

′
3−χ2χ3χ4χ

′
2

)
Ω−1

14 +4χ1χ3χ4χ
′
4Ω−1

22 +2
(
−χ1χ3χ4χ

′
1+χ1χ2χ4χ

′
4

)
Ω−1

23

+ 2
(
−χ2χ3χ4χ

′
1 + 2χ1χ3χ4χ

′
2 + χ1χ2χ4χ

′
3 − 2χ1χ2χ3χ

′
4

)
Ω−1

24 − 4χ1χ2χ4χ
′
1Ω−1

33

+ 4
(
χ1χ2χ3χ

′
1 + χ1χ2χ4χ

′
2

)
Ω−1

34 − 4χ1χ2χ3χ
′
2Ω−1

44 . (G.8)

The expression that appears in (5.21), after taking into account the explicit expressions for

the Dirac structure, has the form:

2Γ11 +
Γ

(2)
12

J
= 2i

(
χ3χ

′
1 + χ4χ

′
2 + χ1χ

′
3 + χ2χ

′
4

)
+

2i

J

(
χ2χ3χ4χ

′
1 + χ1χ3χ4χ

′
2 − χ1χ2χ4χ

′
3 − χ1χ2χ3χ

′
4

)
+

2i
√
λ

J2

(
χ1χ3χ

′
2χ
′
3 − χ1χ3χ

′
1χ
′
4 + χ2χ4χ

′
2χ
′
3 − χ2χ4χ

′
1χ
′
4

)
+
iλ

J4

(
χ1χ2χ4χ

′
2χ
′
3χ
′
4 + χ1χ2χ3χ

′
1χ
′
3χ
′
4 + χ2χ3χ4χ

′
1χ
′
2χ
′
4 + χ1χ3χ4χ

′
1χ
′
2χ
′
3

)
.

(G.9)

H The List of N
(j)
i (µ1, µ2) functions

In this appendix, we collect all the functions N
(j)
i (µ1, µ2) appearing in the matrices

Ni(x, y;µ1, µ2), i = 0, 1, 2, which provide the non-ultralocal decomposition of the Lax

algebra for the fermionic Wadati model (5.26).

N (1)

0 (µ1, µ2) =
2√
λJ

l2(µ2)
[
il4(µ1)χ′3 + l3(µ1)χ′4

]
+

2α1(µ2, µ1)

J
3
2

χ′′3 −
2iβ1(µ2, µ1)

J
3
2

χ′′4,

(H.1)

N (2)

0 (µ1, µ2) =
2√
λJ

l2(µ2)
[
−il4(µ1)χ′3 − l3(µ1)χ′4

]
+

2α2(µ2, µ1)

J
3
2

χ′′3

− 2iβ2(µ2, µ1)

J
3
2

χ′′4, (H.2)

N (1)

1 (µ1, µ2) =
2√
λJ

l2(µ1) [il4(µ2)χ3 + l3(µ2)χ4] +
α1(µ1, µ2)

J
3
2

χ′3 −
iβ1(µ1, µ2)

J
3
2

χ′4, (H.3)

N (2)

1 (µ1, µ2) =
2√
λJ

l2(µ2) [il4(µ1)χ3 + l3(µ1)χ4] +
3α1(µ2, µ1)

J
3
2

χ′3 −
3iβ1(µ2, µ1)

J
3
2

χ′4,

(H.4)

N (3)

1 (µ1, µ2) =
2√
λJ

l2(µ2) [−il4(µ1)χ3 − l3(µ1)χ4] +
3α2(µ2, µ1)

J
3
2

χ′3 −
3iβ2(µ2, µ1)

J
3
2

χ′4,

(H.5)

N (4)

1 (µ1, µ2) =
2√
λJ

l2(µ1) [−il4(µ2)χ3 − l3(µ2)χ4] +
α2(µ1, µ2)

J
3
2

χ′3 −
iβ2(µ1, µ2)

J
3
2

χ′4, (H.6)

N (1)

2 (µ1, µ2) =
1

J
3
2

[−α1(µ1, µ2)χ3 + iβ1(µ1, µ2)χ4] , (H.7)
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N (2)

2 (µ1, µ2) =
1

J
3
2

[α1(µ2, µ1)χ3 − iβ1(µ2, µ1)χ4] , (H.8)

N (3)

2 (µ1, µ2) =
1

J
3
2

[α2(µ2, µ1)χ3 − iβ2(µ2, µ1)χ4] , (H.9)

N (4)

2 (µ1, µ2) =
1

J
3
2

[−α2(µ1, µ2)χ3 + iβ2(µ1, µ2)χ4] , (H.10)

N (5)

2 (µ1, µ2) =
1

J
[−il3(µ1)l3(µ2)− il4(µ1)l4(µ2)] . (H.11)

Here αi(µ1, µ2) and βi(µ1, µ2), i = 1, 2 are the following functions of the spectral parame-

ters:

α1(µ1, µ2) = −l2(µ1)l3(µ2) + [2− l1(µ1)] l4(µ2), (H.12)

α2(µ1, µ2) = l2(µ1)l3(µ2) + [2 + l1(µ1)] l4(µ2), (H.13)

β1(µ1, µ2) = l2(µ1)l4(µ2) + [2 + l1(µ1)] l3(µ2), (H.14)

β2(µ1, µ2) = −l2(µ1)l4(µ2) + [2− l1(µ1)] l3(µ2). (H.15)
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