Retinol binding protein 4 and retinol in steatotic and nonsteatotic rat livers in the setting of partial hepatectomy under ischemia/reperfusion
Retinol Binding Protein 4 and Retinol in Steatotic and Nonsteatotic Rat Livers in the Setting of Partial Hepatectomy Under Ischemia/Reperfusion

Maria Elías-Míro, 1, Marta Massip-Salcedo, 1,2* Jens Rall, 3 Florian Schweigert, 3 Mariana Mendes-Braz, 4 Fernando Ramalho, 4 Mónica B. Jiménez-Castro, 1 Araní Casillas-Ramírez, 1 Raquel Bermudo, 5 Antoni Rimola, 2,6 Juan Rodes, 1,2 and Carmen Peralta 1,2

1 August Pi i Sunyer Institute for Biomedical Research, Barcelona, Spain; 2 Network Center for Biomedical Research in Hepatic and Digestive Diseases, Barcelona, Spain; 3 Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany; 4 Department of Pathology and Forensic Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil; and 6 Tumour Bank; and 6 Liver Unit, Hospital Clinic, Barcelona, Spain

Steatotic livers show increased hepatic damage and impaired regeneration after partial hepatectomy (PH) under ischemia/reperfusion (I/R), which is commonly applied in clinical practice to reduce bleeding. The known function of retinol-binding protein 4 (RBP4) is to transport retinol in the circulation. We examined whether modulating RBP4 and/or retinol could protect steatotic and nonsteatotic livers in the setting of PH under I/R. Steatotic and nonsteatotic livers from Zucker rats were subjected to PH (70%) with 60 minutes of ischemia. RBP4 and retinol levels were measured and altered pharmacologically, and their effects on hepatic damage and regeneration were studied after reperfusion. Decreased RBP4 levels were observed in both liver types, whereas retinol levels were reduced only in steatotic livers. RBP4 administration exacerbated the negative consequences of liver surgery with respect to damage and liver regeneration in both liver types. RBP4 affected the mobilization of retinol from steatotic livers, and this revealed actions of RBP4 independent of simple retinol transport. The injurious effects of RBP4 were not due to changes in retinol levels. Treatment with retinol was effective only for steatotic livers. Indeed, retinol increased hepatic injury and impaired liver regeneration in nonsteatotic livers. In steatotic livers, retinol reduced damage and improved regeneration after surgery. These benefits of retinol were associated with a reduced accumulation of hepatocellular fat. Thus, strategies based on modulating RBP4 could be ineffective and possibly even harmful in both liver types in the setting of PH under I/R. In terms of clinical applications, a retinol pretreatment might open new avenues for liver surgery that specifically benefit the steatotic liver.

Received February 27, 2012; accepted June 3, 2012.

In clinical situations, partial hepatectomy (PH) under ischemia/reperfusion (I/R) is usually performed to control bleeding during parenchymal dissection. Hepatic steatosis, a major risk factor for liver surgery, is associated with an increased complication index and increased postoperative mortality after major liver operations. This research was supported by the Spanish Ministry of Science and Innovation (project grant BFU2009-07410) and the Agency for the Innovation and Internationalization of Catalan Enterprise (project grant VALTEC08-2-0033). Mariana Mendes-Braz received a fellowship from the Agency for the Support and Evaluation of Graduate Education (Brazilian Ministry of Education). Mónica B. Jiménez-Castro received a fellowship from the Spanish Society for Liver Transplantation Foundation.

*These authors contributed equally to this work.

Abbreviations: ALT, alanine aminotransferase; AST, aspartate aminotransferase; BrdU, bromodeoxyuridine; HGF, hepatocyte growth factor; I/R, ischemia/reperfusion; Ln, lean; mRNA, messenger RNA; Ob, obese; PH, partial hepatectomy; RBP4, retinol-binding protein 4; TGF-β, transforming growth factor β; TTR, transthyretin; I/R(5h), ischemia/reperfusion at different reperfusion times.

DOI 10.1002/lt.23489
View this article online at wileyonlinelibrary.com.
LIVER TRANSPLANTATION. DOI 10.1002/lt. Published on behalf of the American Association for the Study of Liver Diseases
MATERIALS AND METHODS

Experimental Animals

Male, homozygous, obese (Ob) Zucker rats (400-450 g) and male, heterozygous, lean (Ln) Zucker rats (350-400 g; Iffa Credo, France) that were 14 to 16 weeks old were used in these experiments. The Ob Zucker rats showed severe macrovesicular and microvesicular fatty infiltration in hepatocytes (60%-70% steatosis), whereas the Ln Zucker rats showed no evidence of steatosis. This study complied with European Union regulations on animal experiments (directive 86/609/EEC).

Surgical Procedure

The experiments in this study employed a rat model of PH (70%) with 60 minutes of ischemia, as previously described. Briefly, after anesthesia with isoflurane and resection of the left hepatic lobe, a microvascular clamp was placed for 60 minutes across the portal triad supplying the median lobe. Congestion of the bowel was prevented during the clamping period through the preservation of the portal flow through the right and caudate lobes. At the end of ischemia, the right lobe and caudate lobes were resected, and reperfusion of the median lobe was achieved by the release of the clamp.

Protocol 1

The effects of RBP4 and retinol on the parameters of liver regeneration and damage 24 hours after reperfusion were examined:

1. Sham group (Ln and Ob rats). The hepatic hilar vessels of the animals were dissected.
2. PH+I/R group (Ln and Ob rats). The animals underwent PH (70%) with 60 minutes of ischemia.
3. PH+I/R+RBP4 group (Ln and Ob rats). The animals were treated as the animals in group 2 were, but they were also treated with RBP4 (5 µg/kg intravenously) before the surgical procedure.
4. PH+I/R+retinol group (Ln and Ob rats). The animals were treated as the animals in group 2 were, but they were also treated with retinol (10 mg/kg intraperitoneally) before the surgical procedure.
5. PH+I/R+RBP4+retinol group (Ob rats). The animals were treated as the animals in group 2 were, but they were also treated with RBP4 (5 µg/kg intravenously) and retinol (10 mg/kg intraperitoneally) before the surgical procedure. RBP4 and retinol levels, hepatic damage (transaminases and damage scores), liver regeneration parameters [percentages of Ki-67–positive hepatocytes and levels of hepatocyte growth factor (HGF) and transforming growth factor β (TGF-β)], retinyl ester and TTR levels, and RBP4/retinol ratios were determined for the groups corresponding to protocol 1 24 hours after reperfusion.

Protocol 2

This protocol involved the reperfusion time–dependent effects of retinol on hepatic damage, proliferative activity, and the degree of steatosis. To establish a relationship between the effects of retinol and proliferative activity in steatotic and nonsteatotic livers, we subjected animals to interventions similar to those used for groups 2 and 4 (protocol 1), but the samples were obtained 12, 24, and 48 hours after reperfusion.
Bromodeoxyuridine (BrdU) was administered intra-peritoneally at 50 mg/kg 1 hour before the animals were sacrificed at the indicated times, and they were processed to determine the incorporation of BrdU and mitotic indices. Under these conditions, hepatic damage (transaminases and damage scores) and the degree of steatosis were also evaluated.

The interventions and measurements used in protocols 1 and 2 are shown in Fig. 1. The doses and pretreatment times used for RBP4 and retinol were selected on the basis of previous studies and preliminary studies by our group. Control experiments were performed with the corresponding vehicle for each drug (saline and dimethyl sulfoxide for RBP4 and retinol, respectively).

Biochemical Determinations
Aspartate aminotransferase (AST), alanine aminotransferase (ALT), HGF (a potent mitogen), total and active TGF-β (considered the main inhibitor of hepatic proliferation), RBP4, and triglycerides were measured as described elsewhere.

Analytical Determination of Retinol and Retinyl Esters
Retinol and retinyl esters were measured with a reversed-phase high-performance chromatography system (Waters, Eschborn, Germany). Vitamin A was extracted from the plasma and liver and was separated on a C18 column (Repuro-Sil 70, Alltech Grom, Rottenburg-Haßlingen, Germany). Retinol and retinyl esters were quantified by the measurement of the absorption at 325 nm with a photodiode array detector (model 996, Waters). The detection limits for retinol and retinyl palmitate were 2.0 and 2.4 ng, respectively; the coefficient of variation between runs was 4%, and the recovery rate was greater than 95%.

Real-Time Reverse-Transcription Polymerase Chain Reaction
Quantitative real-time reverse-transcription polymerase chain reaction analyses were performed with Assays-on-Demand TaqMan probes (Rn01451317_g1 for RBP4 and Rn00667869_m1 for β-actin, Applied Biosystems, Foster City, CA) according to the manufacturer’s protocol.

Western Blotting
Western blotting for TTR was performed as described elsewhere. Anti-TTR antibodies were acquired from DakoCytomation (Hamburg, Germany). Immunoreactive protein bands were visualized with chemiluminescence reagents and were quantified densitometrically with Quantity One software.

Histology, Red Oil Staining, and Immunohistochemistry
To appraise the severity of hepatic injury, we graded hematoxylin and eosin–stained sections with a point-counting method on an ordinal scale: (0) minimal or no evidence of injury; (1) mild injury consisting of cytoplasmic vacuolation and focal nuclear pyknosis; (2) moderate to severe injury with extensive nuclear pyknosis, cytoplasmic hypereosinophilia, and a loss of intercellular borders; (3) severe necrosis with
disintegration of hepatic cords, hemorrhaging, and neutrophil infiltration; and (4) very severe necrosis with disintegration of hepatic cords, hemorrhaging, and neutrophil infiltration. Liver steatosis was evaluated via red oil staining on frozen specimens, and the percentage of steatosis was calculated by image analysis according to the standard procedure. Liver steatosis was evaluated via red oil staining on frozen specimens, and the percentage of steatosis was calculated by image analysis according to the standard procedure.18 For liver regeneration, liver samples were immunostained with a rabbit monoclonal antibody against Ki-67 (clone SP6, Abcam, Cambridge, MA), developed with diaminobenzidine, and counterstained with hematoxylin.22 The percentages of proliferating hepatocytes were also estimated through the quantification of hepatocytes that incorporated BrdU. BrdU-positive cells were detected with a mouse anti-BrdU antibody (GE Healthcare, United States).17 The mitotic index was determined in hematoxylin and eosin–stained liver sections.15 At least 30 high-power fields were counted.

Statistics

Data are expressed as means and standard deviations, and they were compared statistically via a 1-way analysis of variance and then a post hoc Student-Newman-Keuls test; a P value < 0.05 was considered significant. The Spearman correlation coefficient was used to investigate correlations between the effects of retinol therapy and the degree of steatosis; P values < 0.05 were considered statistically significant.

RESULTS

Effect of RBP4 24 Hours After Reperfusion

RBP4 Levels in Steatotic and Nonsteatotic Livers

The RBP4 messenger RNA (mRNA) and protein levels in nonsteatotic and steatotic livers from the PH + I/R group were lower than the levels in livers from the sham group (Fig. 2). The plasma RBP4 levels showed a pattern similar to that described for hepatic RPB4 levels (data not shown).

Hepatic Damage and Regeneration

The administration of RBP4 exacerbated hepatic damage in steatotic and nonsteatotic livers from the PH + I/R + RBP4 group and increased damage scores and transaminase levels in comparison with the PH + I/R group (Fig. 3A). The number of Ki-67–positive hepatocytes in both liver types was lower for the PH + I/R + RBP4 group versus the PH + I/R group. This decrease in proliferative cells was associated with low HGF levels and high levels of active TGF-β (Fig. 3A); the total hepatic TGF-β levels were similar for all groups (data not shown). We confirmed that the administration of RBP4 at the used dose raised RBP4 levels in both liver types with respect to the levels in the sham group. The RBP4 (pmol/g of tissue) protein levels in steatotic livers from the sham, PH + I/R, and PH + I/R + RBP4 groups were 242.17 ± 19.55, 82.41 ± 3.91, and 239.18 ± 20.62, respectively (P < 0.05 for the PH + I/R + RBP4 group versus the PH + I/R group; P = not significant for the PH + I/R + RBP4 group versus the sham group).
Effect of Retinol 24 Hours After Reperfusion

Retinol Levels in Steatotic and Nonsteatotic Livers

In nonsteatotic livers, the retinol levels for the PH+I/R group were similar to those for the sham group. The retinol levels in steatotic livers from the sham group were significantly higher than the levels in nonsteatotic livers (Fig. 2), and this indicated that the presence of fatty infiltration in and of itself (without any surgical intervention) induced changes in retinol metabolism, as previously suggested.23 The retinol
levels in steatotic livers from the \(\text{PH} + I/R \) group were reduced in comparison with the sham group.

Hepatic Damage and Regeneration

The effects of retinol were dependent on the type of liver. The administration of retinol negatively affected hepatic damage and liver regeneration in nonsteatotic livers from the \(\text{PH} + I/R \) group because the parameters of hepatic injury were higher than those for the \(\text{PH} + I/R \) group. This was associated with reduced percentages of Ki-67–positive hepatocytes, reduced HGF levels, and high TGF-\(\beta \) levels in comparison with the \(\text{PH} + I/R \) group (Fig. 3A). The administration of retinol to Ob animals in the \(\text{PH} + I/R \) group reduced hepatic damage; this was indicated by the reduction in transaminases and damage scores in comparison with the \(\text{PH} + I/R \) group. Retinol administration also increased the percentage of Ki-67–positive hepatocytes in steatotic livers in comparison with the \(\text{PH} + I/R \) group. This improvement was associated with high HGF levels and low TGF-\(\beta \) levels (Fig. 3A).

Effects of RBP4 and Retinol in Combination 24 Hours After Reperfusion

Taken together, the results presented up to this point show that neither the administration of RBP4 nor the administration of retinol protects nonsteatotic livers in the setting of \(\text{PH} \) under \(I/R \). Because of our demonstration of the differential effects of RBP4 and retinol on steatotic livers and data indicating that changes in RBP4 induce changes in retinol levels,\(^{10,11}\) we evaluated whether the injurious effects of RBP4 with respect to damage and regeneration in steatotic livers could be explained by changes in retinol levels.

Hepatic Damage and Regeneration

The combined administration of RBP4 and retinol resulted in injury and regeneration parameters for steatotic livers from the \(\text{PH} + I/R + \text{RBP4} + \text{retinol} \) group that were similar to those for steatotic livers from the \(\text{PH} + I/R + \text{RBP4} \) group (Figs. 3A). The histological analysis revealed severe, extensive, and confluent areas of coagulative necrosis with neutrophil infiltration in steatotic livers from the \(\text{PH} + I/R, \text{PH} + I/R + \text{RBP4}, \) and \(\text{PH} + I/R + \text{RBP4} + \text{retinol} \) groups (Fig. 3B). The liver damage scores for the \(\text{PH} + I/R + \text{RBP4} \) and \(\text{PH} + I/R + \text{RBP4} + \text{retinol} \) groups were significantly higher than those recorded for the \(\text{PH} + I/R \) group. Both the number and extent of necrotic areas in steatotic livers were reduced by retinol. In comparison with the \(\text{PH} + I/R \) group, the \(\text{PH} + I/R + \text{retinol} \) group also exhibited an increased number of Ki-67–positive hepatocytes in steatotic livers. The number of Ki-67–positive hepatocytes in the \(\text{PH} + I/R + \text{RBP4} \) and \(\text{PH} + I/R + \text{RBP4} + \text{retinol} \) groups was lower than the number in the \(\text{PH} + I/R \) group (Fig. 3A,B). Thus, the administration of RBP4, separately or in combination with retinol, negatively affected hepatic damage and regeneration.

Retinyl Esters and Retinol in Liver and Plasma

Vitamin A is stored in the liver as retinyl esters, and they must be hydrolyzed into retinol before vitamin A can be mobilized into the circulation.\(^2\) In line with this, retinyl ester and retinol levels in steatotic livers were reduced for the \(\text{PH} + I/R \) group versus the sham group (Fig. 4A). This decrease was associated with high plasma retinol levels (Fig. 4B). As previously suggested on the basis of studies in cultured cells,\(^{24}\) RBP4 could affect the storage and mobilization of retinol in steatotic livers. In fact, we found that retinyl ester levels (but not retinol levels) were increased in steatotic livers (Fig. 4A) and circulating retinol levels were reduced (Fig. 4B) for the \(\text{PH} + I/R + \text{RBP4} \) group versus the \(\text{PH} + I/R \) group or the sham group. As expected, retinol administration increased both retinyl ester and retinol levels in steatotic livers from the \(\text{PH} + I/R + \text{retinol} \) and \(\text{PH} + I/R + \text{RBP4} + \text{retinol} \) groups versus the \(\text{PH} + I/R \) group and increased retinyl ester levels (but not retinol levels) in plasma (Fig. 4A,B). Our results confirmed that RBP4 administration led to higher RBP4 levels in steatotic livers from the \(\text{PH} + I/R + \text{RBP4} \) and \(\text{PH} + I/R + \text{RBP4} + \text{retinol} \) groups versus the \(\text{PH} + I/R \) group. For instance, the hepatic RBP4 levels for the \(\text{PH} + I/R + \text{RBP4} + \text{retinol} \) and \(\text{PH} + I/R \) groups were 239.6 ± 21.65 and 82.41 ± 3.91 respectively \((P < 0.05) \). The hepatic RBP4 (pmol/g of tissue) levels for the \(\text{PH} + I/R + \text{retinol} \) group (83.45 ± 4.56) were similar to the levels for the \(\text{PH} + I/R \) group (82.41 ± 3.91, \(P = \text{not significant} \)).

Transport of Retinol in Plasma

Reduced plasma RBP4 levels were observed for the \(\text{PH} + I/R \) group versus the sham group (Fig. 4C). The plasma RBP4 levels for the \(\text{PH} + I/R + \text{RBP4} \) and \(\text{PH} + I/R + \text{RBP4} + \text{retinol} \) groups were lower than those for the \(\text{PH} + I/R \) group. The plasma RBP4 levels for the \(\text{PH} + I/R + \text{RBP4} + \text{retinol} \) and \(\text{PH} + I/R \) groups were 239.6 ± 21.65 and 82.41 ± 3.91 respectively \((P < 0.05) \). The hepatic RBP4 (pmol/g of tissue) levels for the \(\text{PH} + I/R + \text{retinol} \) group (83.45 ± 4.56) were similar to the levels for the \(\text{PH} + I/R \) group (82.41 ± 3.91, \(P = \text{not significant} \)).

Reperfusion Time–Dependent Effect of Retinol on Hepatic Damage, Proliferative Activity, and Degree of Steatosis

Hepatic damage and proliferative activity in steatotic and nonsteatotic livers were measured throughout reperfusion (12, 24, and 48 hours: Fig. 5). In Ln animals, the parameters of hepatic injury were higher for the partial hepatectomy under ischemia-reperfusion.
(PH+I/R) at different reperfusion times (RT) treated with retinol (PH+I/R_{RKT}+retinol) group versus the partial hepatectomy under ischemia-reperfusion (PH+I/R) at different reperfusion times (RT) (PH+I/R_{RKT}) group at each time point (Fig. 5A). In Ln animals, the administration of retinol impaired the mitotic index and hepatocellular BrdU incorporation after reperfusion. For instance, the percentages for BrdU-positive hepatocytes were 9.3% ± 1.09% and 19.5% ± 1.67% in the PH+I/R_{RKT}+retinol and PH+I/R_{RKT} groups, respectively, 48 hours after reperfusion. In Ob animals, the hepatic damage parameters were lower for the PH+I/R_{RKT}+retinol group versus the PH+I/R_{RKT} group at each time (Fig. 5B). Our results revealed an improvement of the regenerative process in steatotic livers from the PH+I/R_{RKT}+retinol group versus the PH+I/R_{RKT} group. Thus, 48 hours after reperfusion, the percentage of BrdU-positive hepatocytes was 17.3% ± 0.99% for the PH+I/R_{RKT}+retinol group, whereas only 6.5% ± 0.76% of BrdU-labeled hepatocytes were detected at that reperfusion time in the PH+I/R_{RKT} group (Fig. 5B). Our results suggest a relationship between the effects of retinol therapy and the degree of steatosis in steatotic livers. Forty-eight hours after reperfusion, increased hepatocellular fatty infiltration and triglyceride levels were observed in the PH+I/R_{RKT} group versus the sham group (Fig. 5C,D). This is in line with a previous report of hepatic lipid...
Figure 5. Effects of retinol on hepatic injury (plasma AST and ALT levels) and liver regeneration (percentages of BrdU-positive hepatocytes and mitotic indices) throughout reperfusion (12, 24, and 48 hours) in (A) Ln animals and (B) Ob animals. Eighteen Ln animals and 18 Ob animals (6 Ln and 6 Ob animals for each reperfusion time) were included for each measurement. (C) Triglyceride levels and steatosis percentages and (D) representative photographs of red oil staining 48 hours after reperfusion are shown. Steatotic livers from the retinol group showed reduced fat globules (red) in hepatocytes in comparison with steatotic livers from the sham and PH+I/R groups (scale bar = 1000 µm). Six Ob animals from each group were included for each measurement. *P < 0.05 versus sham animals; †P < 0.05 versus PH+I/R animals.
accumulation during regeneration after PH. The treatment with retinol decreased the accumulation of fatty droplets and triglycerides in steatotic livers from the PH+I/R+iR group versus the PH+I/R group. The steatosis percentages were 35.0% ± 1.78% and 83.13% ± 3.40% for the PH+I/R+iR group and PH+I/R groups, respectively. Figure 6 shows the relationship between the effects of retinol therapy and the degree of steatosis 12, 24, and 48 hours after reperfusion. A significant correlation between the degree of fat infiltration and the plasma AST level (r = 0.9677, P < 0.05) and an inverse correlation between the degree of fat infiltration and the mitotic index (r = -0.9724, P < 0.05) were observed. Treatment with retinol, therefore, attenuated hepatic damage and improved hepatocellular proliferation during liver regeneration. This was associated with a reduced accumulation of hepatocellular fat.

DISCUSSION

The decreased RBP4 levels observed in the circulation after PH under I/R might reflect decreased hepatic synthesis of RBP4 due to a loss of functional hepatic tissue. Because the liver is the main site of RBP4 synthesis, hepatocyte damage decreases circulating RBP4 levels. Moreover, the synthesis of negative acute-phase proteins such as RBP4 might be reduced in the liver during inflammation or hepatic resection as part of a compensatory response to the sudden increase in the synthesis of positive acute-phase proteins. The effects of RBP4 could depend on the surgical conditions. Indeed, in contrast to steatotic liver transplantation, RBP4 administration worsens liver damage and regenerative failure in the setting of PH under I/R.

Retinol is decreased in steatotic livers after PH under I/R and is increased in plasma. This is consistent with the increased secretion of retinol from steatotic livers into the circulation. However, other hypotheses proposed for different liver diseases, including increased catabolism of retinol in the liver and decreased liver uptake of retinyl esters formed in peripheral tissues, should not be discounted. Retinol is normally found in plasma in a 1:1 molar ratio with RBP4 (the RBP4/retinol ratio is approximately 1:0). However, in our study and in agreement with the reports of others, the RBP4/retinol ratio for the sham group of Ob (steatotic) animals was approximately 2, and this indicated that the proportion of RBP4 in plasma was higher than the proportion of retinol. In this context, it should be considered that RBP4 is present as a holoform (retinol-bound) and an apoform (retinol-unbound) because RBP4 may transport and deliver other lipophilic molecules in addition to retinol. Reports of others, the RBP4/retinol ratio for the PH+I/R group is approximately 1.0. A question that arises is how the high plasma retinol levels in the PH+I/R group are maintained in light of the low plasma RBP4 and TTR levels. Like RBP4, TTR is a negative acute-phase protein, and the hepatic syntheses of both are also decreased during inflammation. However, because the plasma RBP4/retinol ratio in the PH+I/R group was greater than 1, there was enough RBP4 to bind retinol despite the reduced RBP4 levels. It could be assumed that the reduced plasma TTR levels in the PH+I/R group were also high enough to maintain the retinol-RBP4 complex in plasma, insofar as there is usually a 3- to 5-fold molar excess of circulating TTR with respect to circulating RBP4. The lack of a correlation between RBP4 and TTR levels in plasma under our surgical conditions could be explained, at least in part, by the differential clearance of RBP4 and TTR by the kidneys: TTR has a higher molecular weight and is, therefore, retained to a greater extent than RBP4. Moreover, TTR has additional functions (eg, the transporter for T4).

RBP4 exerted injurious effects on steatotic livers with respect to damage and regeneration independently of retinol. Moreover, the changes in retinol metabolism induced by RBP4 could have occurred simply as a result of disease progression and thus do not explain the injurious effects of RBP4. The mechanism behind this is unclear. Retinyl esters seem to be affected by RBP4 administration, and this also
suggests that RBP4 has actions independent of simple retinol transport. However, the RBP4-induced increase in retinyl esters does not explain the injurious effects of RBP4. Indeed, the loss of retinoid (rather than an increase in retinoid levels) contributes to the development of hepatic diseases.31

Serum RBP4 levels are elevated in insulin-resistant mice and humans with obesity and type 2 diabetes. The transgenic overexpression of human RBP4 or the injection of recombinant RBP4 into normal mice causes insulin resistance. Conversely, the genetic deletion of RBP4 enhances insulin sensitivity.6 Elucidating whether RBP4 also has metabolic effects was not an aim of the present study. Nevertheless, because of our results, this seems to not be the case for our experimental model. The Ob Zucker rats used in the present study have a mutated leptin receptor and, as a result, are hyperphagic, Ob, and hyperinsulinemic. They are insulin-resistant, but they have normal blood glucose levels. Ob Zucker rats do not develop diabetes. Ln Zucker rats maintain an Ln phenotype throughout life, and they show normal blood insulin and glucose levels. RBP4 administration did not alter the plasma insulin or glucose levels in the Ob Zucker rats undergoing PH and I/R (data not shown). Under our conditions, there was no relationship between RBP4 levels and insulin resistance. Indeed, Ln and Ob Zucker rats in the sham group showed similar RBP4 levels in the liver and plasma, and only Ob Zucker rats are insulin-resistant. In contrast, Yang et al.6 have shown that genetically Ob mice and high-fat diet–induced Ob mice with insulin resistance exhibit increased plasma RBP4 in comparison with Ln controls. The differences in plasma RBP4 levels observed in the 2 studies can be explained at least partially by the differences in RBP4 regulation between rats and mice.32 All these data indicate that under our conditions, RBP4 does not affect insulin resistance.

Further studies, which are not part of the objectives of the present study, are required to answer why the pharmacological modulation of RBP4 exerted damaging effects in the setting of PH under I/R. It is possible that the compensatory changes in the protein synthesis of positive and negative acute-phase proteins, which were necessary to restore protein homeostasis after hepatic resection, were disturbed in the remaining liver when RBP4 was administered. From a clinical perspective, strategies based on modulating RBP4 might not be appropriate for hepatic resection or under surgical conditions (including small-for-size liver transplantation). When we administered RBP4 to compensate for the reduced RBP4 levels induced by liver surgery, we observed more injurious effects with respect to damage and liver regeneration.

In contrast, pretreatment with retinol alone may create new possibilities for therapeutic interventions in the resection of steatotic livers. As expected, retinol administration alone increased vitamin A storage in the liver. The increase in retinyl esters (but not retinol or RBP4) in plasma after retinol administration suggests that retinol is incorporated as retinyl esters in hepatocytes and is secreted together with lipoproteins. Thus, retinol administration could supply vitamin A to target tissues. Data indicate that the RBP4 molecule contains 1 binding site for a single molecule of retinol,25 so the fact that the RBP4/retinol ratio after retinol administration was less than 1 might suggest that a fraction of retinol is bound to carriers other than RBP4, just as with other pathologies.33

The results presented here indicate that retinol reduces damage and improves liver regeneration in an experimental model combining PH and I/R. Unpublished results from our group indicate that retinol therapy for steatotic livers affects both I/R injury and PH. Thus, retinol reduces hepatic damage in Ob rats subjected to partial hepatic ischemia (60 minutes) without hepatocytosis. Retinol administration also reduces hepatic damage and improves liver regeneration in Ob rats subjected to 70% resection only (data not shown).

Further studies will be required to explain how retinol reduces lipid accumulation in the regenerating liver after surgery. The effects of retinol on the mobilization of fatty acids from peripheral stores and hepatic lipogenesis, fatty acid oxidation, and triglyceride secretory mechanisms in the liver should be explored as possible answers to this question. Our results show that the benefits of retinol with respect to damage and liver regeneration in steatotic livers are associated with reduced hepatic lipid accumulation. It has been reported that it is crucial to reduce steatosis to prevent the vulnerability of steatotic livers to I/R injury and regenerative failure.34

In conclusion, PH under I/R affects hepatic vitamin A metabolism by reducing hepatic RBP4 expression and increasing the mobilization of retinol into the circulation. The results presented here suggest that under surgical conditions requiring liver regeneration, modulating RBP4 levels worsens the outcome and is, therefore, not advised. This study also points to new possibilities for therapeutic interventions based on retinol pretreatment to protect steatotic livers against damage and regenerative failure after liver surgery.

ACKNOWLEDGMENTS

The authors thank Bioscience Writers for revising the English text. They also thank Mrs. A. Hurtienne and Mrs. U. Ullrich for their expert technical assistance.

REFERENCES

4. Tuittock PJ, Ritter SJ, Smith JE, Basu TK. Streptozotocin-induced diabetes lowers retinol-binding protein and tran-

5. Bellinovi D, Apreda M, Gragnoli S, Massimi M, Gaetani S. Vitamin A transport: in vitro models for the study of

6. Yang Q, Graham TE, Mody N, Preitner F, Peroni OD, Zabolotny JM, et al. Serum retinol binding protein 4 con-
tributes to insulin resistance in obesity and type 2 dia-

protein 4 and peroxisome proliferator-activated receptor-
γ in steatotic liver transplantation. J Pharmacol Exp Ther

9. Raial J, Henze A, Spranger J, Mohlig M, Pfeiffer AF, Schweigert FJ. Microalbuminuria is a major determinant
of elevated plasma retinol-binding protein 4 in type 2 di-

10. Gieng SH, Raila J, Rosales FJ. Accumulation of retinol
in the liver after prolonged hyporetinolemia in the vita-

11. Rosales FJ, Ritter SJ, Zolfaghari R, Smith JE, Ross AC. Effects of acute inflammation on plasma retinol, retinol-
binding protein, and its mRNA in the liver and kidneys of

12. Rao J, Zhang C, Wang P, Lu L, Zhang F. All-trans reti-
noic acid alleviates hepatic ischemia-reperfusion injury
by enhancing manganese superoxide dismutase in rats.

13. Kimura M, Watanabe M, Ishibashi N, Yanagida S, Ogi-
hara M. Acyclic retinoid NIK-333 accelerates liver regen-
ersation by enhancing manganese superoxide dismutase in rats. J Pharmacol Exp Ther 2009;329:130-140.

neuroprotection against stroke with vitamin A deriv-

mittent selective clamping accelerates rat liver regenera-
tion through JNK pathway. J Hepatol 2010;52:560-569.

16. Massip-Salcedo M, Zaouali MA, Padriresa-Albés S, Casil-
las-Ramírez A, Rosés J, Roselló-Catalafau J, Peralta C. Activation of peroxisome proliferator-activated receptor-
alpha inhibits the injurious effects of adiponectin in rat
steatotic liver undergoing ischemia-reperfusion. Hepato-
logy 2008;47:461-472.

17. Schweigert FJ. Buchholz J, Bonitz K. Effect of age on the
levels of retinol and retinyl esters in blood plasma, liver
237-241.

18. Henze A, Rohn S, Gericke B, Raiala J, Schweigert FJ. Structural modi-
fications of serum transthyretin in rats during protein-energy malnutrition. Rapid Commun Mass Spec-

19. Serafín A, Roselló-Catalafau J, Prats N, Xaus C, Gelpi E, Peralta C. Ischemic preconditioning increases the toler-
ance of fatty liver to hepatic ischemia-reperfusion injury in

20. Schiffer E, Frossard JL, Rubbia-Brandt L, Mentha G, Pastor CM. Hepatic regeneration is decreased in a rat
model of sinusoidal obstruction syndrome. J Surg Oncol
2009;99:439-446.

21. Takitani K, Miyazaki H, Fukushima S, Takaya R, Yoden A, Higuchi K, Tamai H. Altered expression of both β-car-
totene 15,15’ monoxygenase and lecithin:retinol acyl-

22. Saito M, Lieber CS. Changes in vitamin A status after
acute ethanol administration in the rat. J Nutr 1982;
112:1188-1196.

23. Sopran DR, Smith JE, Goodman DS. Effect of retinol
status on retinol-binding protein biosynthesis rate and translatable messenger RNA level in rat liver. J Biol

24. Berni R, Clerici M, Malpeli G, Cleris L, Formelli F. Reti-
noic acid: in vitro interaction with retinol-binding protein
and influence on plasma retinol. FASEB J 1999;7:
1179-1184.

droplets: a specialized lipid droplet for retinoid storage.
Biochim Biophys Acta 2009;1791:467-473.

26. Lampe D, Dahlöf B, Lindahl C, Ebeling K, Kannert I,

27. Mallia AK, Smith JE, Goodman DW. Metabolism of reti-
noic acid using transgenic and knockout mouse models. Mol Aspects Med
2003;24:421-430.

2010;52:2109-2117.

29. Mody N, Graham TE, Tsuji Y, Yang Q, Kahn BB. Decreased clearance of serum retinol-binding protein
and elevated levels of transthyretin in insulin-resistant
ob/ob mice. Am J Physiol Endocrinol Metab 2008;294:
E785-E793.

30. Sato M, Lieber CS. Changes in vitamin A status after
acute ethanol administration in the rat. J Nutr 1982;
112:1188-1196.