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CASE REPORT
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Abstract

Background: Hypomethylation of the paternal imprinting center region 1 (ICR1) is the most frequent
molecular cause of Silver–Russell syndrome (SRS). Clinical evidence suggests that patients with this
epimutation have mild IGF1 insensitivity.
Objective: To assess in vitro IGF1 action in fibroblast culture from a patient with SRS and IGF1
insensitivity.
Methods: Fibroblast cultures from one patient with SRS due to ICR1 demethylation and controls were
established. The SRS patient has severe growth failure, elevated IGF1 level, and poor growth rate
during human recombinant GH treatment. IGF1 action was assessed by cell proliferation, AKT, and
p42/44-MAPK phosphorylation. Gene expression was determined by real-time PCR.
Results: Despite normal IGF1R sequence and expression, fibroblast proliferation induced by IGF1 was
50% lower in SRS fibroblasts in comparison with controls. IGF1 and insulin promoted a p42/44-
MAPK activation in SRS fibroblasts 40 and 36%, respectively, lower than that in control fibroblasts. On
the other hand, p42/44-MAPK activation induced by EGF stimulation was only slightly reduced (75%
in SRS fibroblasts in comparison with control), suggesting a general impairment in MAPK pathway
with a greater impairment of the stimulation induced by insulin and IGF1 than by EGF. A PCR array
analysis disclosed a defect in MAPK pathway characterized by an increase in DUSP4 and MEF2C gene
expressions in patient fibroblasts.
Conclusion: A post-receptor IGF1 insensitivity was characterized in one patient with SRS and ICR1
hypomethylation. Although based on one unique severely affected patient, these results raise an
intriguing mechanism to explain the postnatal growth impairment observed in SRS patients that needs
confirmation in larger cohorts.

European Journal of Endocrinology 166 543–550

Introduction

Silver–Russell syndrome (SRS, OMIM 180860) is a
clinically and genetically heterogeneous disorder
characterized by pre- and postnatal growth retardation,
feeding difficulties in infancy, dysmorphic facial features
(triangular shape face with normal head circumference,
prominent forehead, small chin, and downturned
corners of the month), fifth finger clinodactyly, and
body asymmetry (1). The first molecular defect reported
in patients with SRS was maternal uniparental disomy
of chromosome 7 (mUPD7), identified in 5–11% of
affected patients (1, 2, 3). The growth impairment
caused by mUPD7 might be related to unidentified
imprinted gene(s) located on this chromosome. In
2005, demethylation of the paternal imprinting center

region 1 (ICR1) located on chromosome 11 (11p15)
was associated with SRS phenotype (4). The ICR1 is
paternally methylated and controls the expression of
insulin-like growth factor 2 (IGF2, OMIM 147470) and
the noncoding H19 gene. IGF2 has a critical role in fetal
growth and has a predominantly monoallelic
expression from the methylated paternal allele during
this period (4). Patients with SRS had a loss of
methylation at ICR1, causing a reduction in IGF2
expression. This epimutation was confirmed as the
main molecular defect in SRS patients, being present in
43–64% of cases (2, 5).

Phenotypic characterization of children with SRS by
hypomethylation at ICR1 revealed normal serum IGF2
levels, probably reflecting hepatic production of IGF2,
which is the main source of postnatal circulating IGF2
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and biallelically expressed (5). Despite normal circulat-
ing IGF2 levels, these children failed to present catch-up
growth in postnatal life. SRS children with hypomethy-
lation at ICR1 have higher IGF1 levels than children
with SRS caused by other molecular defects or non-SRS
children born small for gestational age (SGA) (2).
Normal or mildly elevated IGF1 levels with the absence
of catch-up growth suggested that a mild form of
insensitivity to IGF1 might explain the postnatal growth
impairment observed in these children. Interestingly,
higher levels of serum IGF-binding protein 3 (IGFBP3)
were observed in these patients and could potentially be
involved in the etiology of IGF insensitivity (2). Besides
being the major carrier for circulating IGFs, IGFBP3
can act as a modulator of IGF bioactivity and has
IGF1-independent actions on growth regulation at the
tissue level (6). Animal models have indicated that
overexpression of IGFBP3 is associated with intra-
uterine and postnatal growth retardation despite
elevated circulating IGF1 levels (7).

In this study, the IGF1 insensitivity observed in one
SRS patient was characterized at clinical and molecular
levels. The results strongly suggest that a post-receptor
defect restricted to the MAPK pathway is responsible
for IGF1 resistance observed in this SRS patient.

Patients and methods

Subject

The patient’s parents provided written informed consent
for clinical and genetic studies, and the study was
approved by the ethics committee of the Hospital das
Clinicas, University of Sao Paulo Medical School. The
patient was born at 35 weeks of gestation by cesarean
section following the diagnosis by prenatal ultrasound
of intrauterine growth restriction. Length at birth was
35.5 cm (K5.2 SDS for gestational age), birth weight
was 1370 g (K3.0 SDS), and the head circumference

was 32.5 cm (K1.5 S.D.). Relative macrocephaly, cleft
palate, clinodactyly, and penoscrotal transposition were
present. The patient had body asymmetry and
dysmorphic facial features compatible with SRS, scoring
13 out of 15 points on the SRS severity score (score R8
is diagnostic for SRS) (8). He is the first child from
nonconsanguineous parents of Japanese descent. The
father’s height is 163 cm and the mother’s height is
150 cm (target height SDS of K1.3). His younger
brother had normal pre- and postnatal growth (height
SDSZ0.1).

At first evaluation at 6.9 years of age, he was 92.5 cm
tall (K5.4 S.D.), weighed 10.1 kg (BMI SDS ZK4.8), his
head circumference was 49 cm (K1.8 S.D.), and
presented normal psychomotor development. Results
of routine laboratory assessments were normal, as were
thyroid function and karyotype. He had an adequate
nutritional status, good socioeconomic condition,
absence of signs of malnutrition, and normal total
blood count, ferritin, and albumin. IGF1 and IGFBP3
levels were in the upper normal range (Table 1),
whereas IGF2 (372 ng/ml) was in normal range. GH
peak in response to oral clonidine stimulation test was
32 ng/ml at 60 min, which is considered an exagger-
ated response in our unit (9).

Human recombinant GH (rhGH) therapy was
initiated (66 mg/kg per day), and only a mild improve-
ment in his growth rate was observed during therapy,
despite elevated IGF1 and IGFBP3 levels (Table 1). At
the beginning of the third year of therapy, the patient
entered puberty at the age of 10 years with a height of
112 cm (K4.2 S.D.) and a bone age of 10 years. Depot
GNRH agonist (GNRHa) was added to suppress puberty
(3.75 mg depot leuprolide acetate subcutaneously every
28 days). After 4 years of treatment, depot GNRHa
therapy was discontinued and he presented normal
pubertal development. At the last clinical visit, he was
16.9 years old, his height velocity was 1.2 cm/year, his
height was 147 cm (K4.0 SDS), and the rhGH

Table 1 Growth velocity, IGF1 and IGFBP3 levels during human recombinant GH (rhGH) therapy (66 mg/kg per day) in the Silver–Russell
syndrome patient.

Age
(years)

rhGH dose
(mg/kg per

day)

Growth
velocity
(cm/year)

IGF1 IGFBP3
Glucose

(mM)
Insulin
(mU/l)mg/l SDS mg/l SDS

Basal 6.9 – – 324 1.9 4.9 1.2
Basal 7.0 – 5.2 450 2.1 4.0 0.5 5.1 7.0
First year of rhGH therapy 8.1 66 6.9 810 4.0 5.6 2.9 4.7 15.0
Second year 9.2 66 6.6 1000 5.6 6.1 2.7 4.6 3.0
Third yeara 10.0 66 5.3 990 7.9 7.1 2.0 4.5 19.0
Fourth yearb 11.0 100 7.3 1200 7.8 7.2 1.7 4.9 20.0
Fifth yearb 12.0 90 6.5 1200 5.7 6.7 1.1 4.4 7.0
Seventh year 13.9 83 5.8 846 2.3 6.2 0.5 NA NA
At the end of rhGH therapyc 16.9 80 1.1 1303 4.0 6.8 0.7 4.9 27.0

NA, not available.
aPatient entered puberty (LH 1.6 U/l and testosterone 1.66 nmol).
bDepot GNRH agonist (GNRHa) was associated to rhGH.
cGNRHa therapy was suspended.
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treatment was stopped. Glucose and insulin levels
were normal during the follow-up (Table 1). Due to
the pre- and postnatal severe growth impairment and
the poor growth response to rhGH despite high IGF1
levels (Fig. 1), IGF1 insensitivity was established
clinically.

Molecular studies

The coding region and intron boundary regions of IGF1
(10) and IGF receptor type 1 (IGF1R) genes was
amplified (primer sequences and amplification protocols
available on request) and PCR products were directly
sequenced by the dideoxy chain-termination method
using a dye terminator kit and analyzed in an ABI
Prism 3100 automated sequencer (Applied Biosystems,
Foster City, CA, USA). Maternal uniparental disomy
was investigated by genotyping four microsatellite
markers located on 7p12–15. The imprinting center
region 1 (ICR1) contains seven CTCF target sites in the
differentially methylated regions (DMR) 2 kb upstream
of H19. Methylation of the H19DMR in 11p15 was ana-
lyzed by a commercially available methylation-sensitive
multiplex ligation probe-dependent amplification

(MLPA) test (assay ME030BWS/RSS; MRC Holland,
Amsterdam, The Netherlands) (11). Reactions and
analysis were performed according to the manufac-
turer’s instructions (Microsoft Cops.).

Cell cultures

Fibroblast cultures were established from skin biopsies
taken from the forearm of the hypotrophic side of the
patient with SRS at the age of 12 years and from three
control individuals: one 30-year-old adult (C2) with
normal pre- and postnatal growth and two age- and sex-
matched children: one 12-year-old boy with normal
birth weight and length (C1), and a 15-year-old boy
born SGA with normal IGF1R gene and ICR1
methylation profile. Cell cultures were maintained in
DMEM (Invitrogen Life Technologies, Inc.) supple-
mented with 20% fetal bovine serum (12), 50 IU/ml
penicillin, and 50 mg/ml streptomycin at 37 8C in
5% CO2. All studies were performed between passages
3 and 10).

Proliferation assay

The effect of IGF1 on fibroblast proliferation was
analyzed using the commercially available 3-(4,5-
dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-
(4-sulfophenyl)-2H-tetrazolium (MTS) assay according
to the manufacturer’s recommendations (CellTiter 96
Aqueous One Solution; Promega) (13). Briefly, cells
were seeded into 96-well plates (5000 cells/well). Three
wells were used for each treatment condition: serum-
free medium (SFM) (negative control), 5% FCS (positive
control), and increasing IGF1 concentrations (10, 25,
and 50 ng/ml). Twenty microliters of MTS inner salt
and phenazine ethosulfate were added to each well.
MTS was reduced into a colored formazan product by
the living cells. The amount of formazan product was
measured at a wavelength of 490 nm and is directly
proportional to the number of cells in each well.
Experiments were performed in triplicate and results
were confirmed by two independent experiments.

Immunoblotting

Confluent fibroblasts were incubated with SFM over-
night and subsequently treated with SFM, IGF1, or
desIGF1 ([Arg3]-IGF1-des(1–3)IGF1) for 20 min. After-
ward, cells were washed with ice-cold PBS (10 mM
sodium phosphate, pH 7.4, 150 mM NaCl) and
resuspended in lysis buffer (100 mM Tris, pH 7.5,
containing 10 mM EDTA, 10 mM sodium fluoride,
100 mM sodium pyrophosphate, 1% Nonidet P-40
(octyl phenoxypolyethoxylethanol), 1% sodium deoxy-
cholate, 2 mM Na3VO4, 10 mM NaF, 1 mM phenyl-
methylsulphonyl fluoride, 1 mg/ml leupeptin, 1 mg/ml
aprotinin, and 1 mg/ml pepstatin). Samples were
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Growth charts were drawn using Growth Analyser 3.5 (Ed. Dutch
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Netherlands). rhGH treatment is shown as solid line, whereas
GNRHa treatment is shown as a dashed line.
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resolved by SDS–PAGE, transferred onto nitrocellulose
membranes, and probed with specific antibodies. Bound
antibodies were detected using the enhanced chemi-
luminescence (ECL) system and read in an optical
scanner (Storm; Molecular Dynamics, Inc., Sunnyvale,
CA, USA). Blots were subsequently stripped (10 mM
Tris–HCl, pH 7.5, 0.5 M b-mercaptoethanol, 8 M urea,
1.5 M BSA at 65 8C for 20 min) and reincubated with
a distinct antibody for normalization. Each experiment
was performed in triplicate.

IGFBP3 secretion was also evaluated. Confluent
fibroblast cultures grown on 6-well plates were
washed with PBS and incubated for 36 h with a SFM.
Conditioned medium was collected and total protein
concentration determined by the micro LOWRY Kit
(Sigma–Aldrich) for normalization. Equivalent volumes
of culture media, containing similar amounts of total
protein, were concentrated using Ultracel YM-30 filters
(Millipore, Billerica, MA, USA). Samples were resolved
by SDS–PAGE, transferred onto nitrocellulose mem-
branes, and probed with a specific IGFBP3 antibody.
Each experiment was performed in triplicate.

Real-time PCR

Total RNA was extracted from confluent fibroblast cell
cultures and peripheral leukocytes using TRIzol reagent
(Invitrogen Life Technologies, Inc.) (14). The extracted
RNA was reverse transcribed using the High-Capacity
cDNA Archive Kit (Applied Biosystems). Subsequently,
cDNA was analyzed by quantitative real-time PCR in
an ABI Prism 7700 sequence detector using TaqMan
gene expression assays for quantification (IGF1R,
Hs00181385_m1 and IGFBP3, Hs00181211_m1;
Applied Biosystems) according to the manufacturer’s
instructions. Furthermore, Human MAP Kinase Signal-
ing Pathway PCR Array (ID assay 4414076; Applied
Biosystems) was performed to assess the expression of
92 genes related to the MAPK signaling pathway
(Supplementary Table 1, see section on supplementary
data given at the end of this article). All target genes
with cycle number of threshold value (Ct) O35 were
considered not detectable and were excluded from the
analysis. Four endogenous control genes were used for
each sample, and the reactions were performed in
triplicate. Relative expression levels were calculated
using the 2KDDCt method (15). Mean expression of target
gene in C1 fibroblast lineage was assigned expression
values of 1.0, and fold increase in expression levels
was determined for each cell culture sample. All results
were confirmed using at least two independent assays.

Materials

Human recombinant IGF1 (hIGF1) and recombinant
[Arg3]-IGF1-des(1–3)IGF1 (desIGF1) were purchased
from Upstate Biotechnology, Inc. (Lake Placid, NY,
USA). Recombinant human EGF was purchased from

BioSource (Camarillo, CA, USA). CellTiter 96 prolifer-
ation assay kit (Promega) was used in proliferation
assays. Micro Lowry kit (Sigma–Aldrich) was used for
determination of protein concentration and Ultracel
YM-30 (Millipore) for protein concentration. The ECL
detection system and antimouse and antirabbit IgG
conjugated to HRP were obtained from Amersham
Pharmacia Biotech. Prestained molecular weight
standards were purchased from Invitrogen (Invitrogen
Life Technologies, Inc.). The following primary
antibodies were used: anti-IGFBP3 from Upstate
Biotechnology (cat. 06-108); anti-IGF1R b-subunit
(cat. sc-713), anti-phospho-AKT1/2 (Ser 473; cat.
sc-7985), and anti-AKT1/2 (cat. sc-8312) from Santa
Cruz Biotechnology, Inc. (Santa Cruz, CA, USA); and
anti-phospho-MAPK (Tyr202/Thr204; cat. 36-8800)
and anti-MAPK (cat. 13-6200) from Invitrogen Life
Technologies, Inc.

Statistical analysis

Quantitative variables are shown as meanGS.E.M. and
were analyzed by unpaired Student’s t-test or one-way
ANOVA and Tukey post hoc tests. A P value !0.05 was
considered significant. All statistical analyses were
performed using SigmaStat version 3.5 (Systat Soft-
ware, Inc., Chicago, IL, USA).

Results

Molecular genetics

mUPD7 was ruled out by microsatellite analysis.
Hypomethylation of the H19DMR (ICR1) with normal
methylation profile at the IGF2DMR was observed in
genomic DNA from peripheral leukocytes, as well as
from fibroblasts (passages 7–9) of the patient with SRS.
No mutation was detected in IGF1 and IGF1R genes.

In vitro characterization of IGF1 insensitivity

Fibroblasts from the patient with SRS had a signi-
ficantly reduced proliferative response to IGF1 in
comparison with the age-matched control (55G5% of
C1 proliferative response, Fig. 2A) as well as in
comparison with other controls (48G2% of C2 and
56G14% of SGA proliferative response). These results
support the presence of IGF1 insensitivity in the SRS
patient, in agreement with clinical and laboratory
findings. Expression of IGF1R mRNA in SRS fibroblasts
was 1.9-fold higher than in C1 fibroblasts but did not
reach statistical significance (PZ0.07; Fig. 2B).
However, the total content of IGF1R was similar in
controls and SRS fibroblasts (Fig. 2C). These results
indicate that the IGF1 insensitivity observed in
fibroblasts from the SRS patient is not caused by
quantitative alterations in IGF1R.
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Impaired p42/44-MAPK phosphorylation but
normal AKT phosphorylation after IGF1
stimulation in fibroblasts from the patient
with SRS

Fibroblasts from SRS and non-SRS SGA patients
exhibited normal activation of the phosphoinositide
3-kinase (PI3K) pathway, assessed by AKT phosphoryl-
ation, in comparison with controls (Fig. 3A). Despite
similar total contents of p42/44-MAPK, SRS fibroblasts
had lower basal and post-IGF1 stimulation p42/
44-MAPK phosphorylation levels, 52 and 40%, respect-
ively, when compared with C1 (P!0.001; Fig. 3B).
Treatment with increasing doses of IGF1 did not
normalize p42/44-MAPK phosphorylation in SRS
fibroblasts (Fig. 3B). Insulin treatment promoted a
p42/44-MAPK activation in SRS fibroblasts which was
36% lower than in control fibroblasts; on the other
hand, p42/44-MAPK activation induced by EGF
stimulation was only slightly reduced (75% in SRS
fibroblasts in comparison with controls, Fig. 3C).

Increased IGFBP3 expression in fibroblasts
from the patient with SRS results in increased
IGFBP3 secretion

Previous clinical data suggested that increased IGFBP3
levels in patients with SRS could be involved in IGF1
insensitivity (2), and therefore, the expression of
IGFBP3 mRNA in fibroblasts of our patient with SRS
was analyzed by real-time PCR. Expression of IGFBP3
was significantly increased (14-fold increase, P!0.001)
in SRS fibroblasts in comparison with controls (Fig. 4A).
Moreover, IGFBP3 expression in culture medium was
twofold increased in the SRS culture in comparison with
controls (P!0.001), demonstrating increased IGFBP3
secretion by SRS fibroblasts (Fig. 4B).

To investigate the role of elevated IGFBP3 on IGF1
insensitivity in SRS fibroblasts, cell proliferation and
p42/44-MAPK activation were assessed after stimu-
lation with desIGF1, an IGF1 analog with low affinity
for IGFBPs that retains the ability to activate IGF1R
(16). In control fibroblasts, stimulation with desIGF1
induced similar degrees of proliferation and p42/
44-MAPK phosphorylation to those induced by IGF1
(Fig. 4C). However, in SRS fibroblasts, there was no
improvement in proliferation rate or MAPK pathway
activation with desIGF1. This result suggests that
IGF1 insensitivity in SRS cells is not directly mediated
by IGF1 binding to IGFBP3.

Analysis of the expression of MAPK pathway-
related genes in patient fibroblast

To identify abnormal expression in genes related to
the MAPK signaling, a PCR array analyzing 92 genes
of this pathway was performed. Expression of dual
specificity phosphatase 4 (DUSP4) and myocyte
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enhancer factor 2C (MEF2C) was significantly
increased (threefold) in fibroblasts from the patient
with SRS in comparison with controls (P!0.001,
Supplementary Table 1).

Discussion

Hypomethylation of ICR1 at 11p15 is the most frequent
molecular cause of SRS. There is evidence that patients
with this epimutation present mild IGF1 insensitivity
characterized by the absence of catch-up growth and
normal or moderately high IGF1 and IGF2 levels in
postnatal life (2). IGFs exert most of their growth effects
through IGF1R, a tyrosine kinase receptor essential for
pre- and postnatal normal growth (17). In this study, we
investigated IGF1 action in a fibroblast culture from a
patient with SRS and severe IGF1 insensitivity. This
patient presented hypomethylation of ICR1, elevated
IGF1 levels, and poor growth response to rhGH therapy.
IGF1 failed to induce normal proliferation of this
patient’s fibroblasts in vitro indicating IGF1 insensitivity
at the cellular level. No mutations in IGF1 or IGF1R
were observed. In addition, SRS fibroblasts expressed
IGF1R normally at mRNA and protein levels; never-
theless, this cell line had impairment of MAPK
activation despite normal AKT activation, suggesting a
post-receptor defect compromising only the MAPK
pathway. Similar results were obtained when patient
fibroblasts were stimulated with insulin and EGF,
suggesting a general impairment in MAPK pathway in
SRS patient’s fibroblasts.

Further molecular studies showed that expression of
IGFBP3 was increased in SRS fibroblasts. These results
are in agreement with previous reports of clinical
findings in SRS patients with epimutations of ICR1 who
presented high IGFBP3 serum levels (2). IGFBP3 can act
as a modulator of IGF1 bioactivity and has IGF1-
independent actions on growth regulation at the tissue
level. SRS fibroblasts were treated with desIGF1, an
IGF1 analog with low affinity for IGFBPs (16). desIGF1
was unable to restore proliferation rates and MAPK
activation in fibroblasts from the patient with SRS.
These results suggest that impairment of IGF1 binding
to its receptor due to IGFBP3 increase does not explain
the observed MAPK pathway defect.

350

300

250

200

150

100

50

0
IGF1

Cell line C1 C2 SRS SGA

– – – –+ + + +

IB
: p

A
K

T
/to

ta
l A

K
T

A
rb

itr
ar

y 
un

its
 o

f o
pt

ic
al

 d
en

si
ty

C1 C2 SRS SGA

IB: pAKT
A

B

C

IB: total AKT

Bas
al

Bas
al

Bas
al

Bas
al

IG
F1

IG
F1

IG
F1

IG
F1

IB
: p

M
A

P
K

/to
ta

l M
A

P
K

A
rb

itr
ar

y 
un

its
 o

f o
pt

ic
al

 d
en

si
ty

0 25 50

0 25 50 0 25 50

0 25 50 0 25 50

SRS

SRS

SGA C1

C1

4000

3500

3000

2500

2000

1500

1000

500

IGF1 (ng/ml)

IGF1 (ng/ml)

IB: pMAPK42/44

IB: total MAPK42/44

IB
: p

M
A

P
K

/ β
 tu

bu
lin

A
rb

itr
ar

y 
un

its
 o

f o
pt

ic
al

 d
en

si
ty

IB: pMAPK42/44

IB: total MAPK42/44

IB: β tubulin

Bas
al

Bas
al

IG
F1

IG
F1

In
su

lin

In
su

lin
EGF

EGF

SRS

*
*

3000

C1

Basal IGF1 Insulin EGF Basal IGF1 Insulin EGF

SRS C1

2500

2000

1500

1000

500

0

Figure 3 Evaluation of the PI3K (A) and MAPK (B and C) pathway
activation by IGF1. Serum-starved fibroblasts were incubated with
or without IGF1 (25 ng/ml), insulin (100 nM), or EGF (50 ng/ml) for
20 min, as indicated. Cell lysates were resolved by SDS–PAGE,
transferred onto nitrocellulose, and probed with a specific antibody
recognizing phospho-p42/44-MAPK (Tyr202/Thr204) or phospho-
AKT1/2 (Ser 473). The blot was stripped and reprobed with a
specific antibody recognizing total p42/44-MAPK, total AKT1/2, or
b-tubulin as indicated. Blots shown are representative of at least
three independent experiments with equivalent results. Bands were
quantified by densitometry and normalized by total protein. Vertical
bars represent meanGS.E.M. of three independent experiments
(*P!0.001).
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The RAS–MAPK pathway involves several intra-
cellular proteins that communicate a signal from a
receptor on the surface of the cell to the DNA in the
nucleus, controlling fundamental cellular processes
such as growth, proliferation, differentiation,
migration, and apoptosis. p42/44-MAPK phosphoryl-
ation reflects the adequate capacity of cell membrane
receptors to activate this kinase cascade. In an
attempt to identify the defect in RAS–MAPK signaling
observed in our patient’s fibroblasts, a real-time PCR
array analyzing 92 genes in this pathway was
performed. An increase in DUSP4 and MEF2C
expression was observed in the SRS patient fibroblasts.
MEF2C has a role in myogenesis. The encoded protein,
MEF2 polypeptide C, is activated by IGF1 and
participates in IGF1-induced cardiac hypertrophy
through p38-MAPK phosphorylation (1). However,
the exact role of MEF2C on global IGF1 signaling is
unknown (18). DUSP4 encodes a member of the dual
specificity protein phosphatase subfamily, which
dephosphorylates both phosphothreonine and phos-
photyrosine residues in MAPKs, inactivates MAPK
signaling, and thereby inhibits cellular proliferation
(19). DUSP4 was recently implicated as a novel tumor
suppressor gene and its expression can be modulated
by differential methylation in the promoter region
(20). Patients with SRS and hypomethylation of ICR1
can also have methylation anomalies at other loci
(21). Unfortunately, we were unable to demonstrate
difference in the methylation profile at DUSP4
promoter region in our patient (data not shown).
Further studies are necessary to investigate the
possibility of other methylation abnormalities to
explain the increase in DUSP4 expression.

In summary, a post-IGF1R signaling abnormality
associated with IGF1 insensitivity was characterized
in one severely affected patient with SRS and ICR1
hypomethylation. Our results suggest a defect in the
MAPK pathway in this patient, involving an increase
in DUSP4 expression, a molecule implicated in the
inactivation of MAPK signaling. Although our study
was based on one unique severely affected patient,
the present results raise an intriguing possibility to
explain the postnatal growth impairment observed in
patients with SRS. Analyses of larger cohorts are
needed to explore the role of specific MAPK pathway
defects mediating growth failure in patients with SRS.

Supplementary data

This is linked to the online version of the paper at http://dx.doi.org/10.
1530/EJE-11-0964.
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Figure 4 (A) Expression of IGFBP3 mRNA in SRS, non-SRS SGA,
and control fibroblasts. Results are expressed in relation to IGFBP3
expression levels in C1 fibroblasts. (B) IGFBP3 secretion into cell
culture media by confluent SRS and control fibroblasts. Vertical
bars represent meanGS.E.M. of three independent experiments
(*P!0.001). (C) Evaluation of the MAPK pathways activation by
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three independent experiments. *A significant difference in
expression levels was observed between SRS fibroblasts and
controls (P!0.001).
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