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Effective number of accessed nodes in complex networks

Matheus P. Viana, João L. B. Batista, and Luciano da F. Costa*

Institute of Physics at São Carlos, University of São Paulo, P.O. Box 369, São Carlos, São Paulo 13560-970, Brazil
(Received 4 October 2011; revised manuscript received 11 January 2012; published 12 March 2012)

The measurement called accessibility has been proposed as a means to quantify the efficiency of the
communication between nodes in complex networks. This article reports results regarding the properties of
accessibility, including its relationship with the average minimal time to visit all nodes reachable after h steps
along a random walk starting from a source, as well as the number of nodes that are visited after a finite period of
time. We characterize the relationship between accessibility and the average number of walks required in order
to visit all reachable nodes (the exploration time), conjecture that the maximum accessibility implies the minimal
exploration time, and confirm the relationship between the accessibility values and the number of nodes visited
after a basic time unit. The latter relationship is investigated with respect to three types of dynamics: traditional
random walks, self-avoiding random walks, and preferential random walks.

DOI: 10.1103/PhysRevE.85.036105 PACS number(s): 89.75.Hc

I. INTRODUCTION

A critical issue in the study of complex systems regards the
interdependency between connectivity and dynamics [1–3].
For instance, given a specific network topology, it would be
interesting to be able to predict how it would behave with
respect to several types of dynamics. It has been shown,
for example, that reaction-diffusion dynamics spreads more
quickly in scale-free complex networks [4] than in uniformly
random networks. Also, consensus dynamics tends to converge
faster in small-world topologies [5]. A possible way to address
this problem is to obtain meaningful measurements of the
network topology and then try to correlate them with relevant
properties of the dynamics. This analysis can be performed
at local or global levels, which provide a complementary
characterization of the studied relationship between structure
and dynamics.

Particularly important types of dynamics include communi-
cations, flow, and diffusion [6–9]. Several real-world complex
systems are underlaid by this type of dynamics, including
accesses to WWW pages [10], disease spread [11], power
distribution collapse [12], and underground and highway
systems [13,14]. Frequently the activation of these systems
starts at a specific node, or set of nodes, henceforth called
sources, and unfolds into the remainder of the network in
ways that are intrinsically dependent on the network topology
[15]. More specifically, it would be desirable to quantify how
effectively a given source can influence the overall network
dynamics. By “effectively” is meant the time that is required
for the activation to reach specific levels at a given set of
nodes, or the total activation at such a set after a given period
of time. These concepts are closely related to the so-called
coupon-collector problem [16,17]: Given a number of coupons
(i.e., nodes), each with a respective probability of occurrence,
how many attempts will be required, on average, until all
coupons are obtained? Alternatively, it is also important to
identify how many nodes will be accessed after a given period
of time. The current work addresses these problems through
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the concept of accessibility [18], which quantifies, for a given
source node, the number of effectively accessible nodes at a
given distance and with respect to a specific dynamics. In this
sense, this measure complements the traditional hierarchical
degree [19], providing valuable information about the network
structure. Note that accessibility takes into account not only
the number of nodes at a given distance, but also the transition
probabilities between the source and these nodes.

The potential of accessibility to provide valuable insights
about the structure and dynamics of complex networks has
been confirmed with respect to many applications (Sec. II),
including the definition and identification of the borders of
complex networks [20]. However, some important aspects
of this measurement remain to be formalized in a more
comprehensive fashion. For instance, how is accessibility
related to the minimum average time required for accessing all
reachable nodes? Or in which sense does accessibility quantify
the number of effectively accessed nodes? To answer these
important questions in a satisfying way constitutes the main
objective of the present article, as this paves the way not only
to more complete interpretations of the obtained results but
also to different types of applications and interpretations. In
particular, we show that accessibility can be interpreted in
conceptually meaningful way as being related to the number
of nodes that can be visited along a given period of time.

This work starts by revising the several applications of
accessibility already reported in the literature. Then we
define and illustrate the accessibility concept, following by
establishing the relationship with the coupon collector problem
and showing that accessibility is related to the number of nodes
effectively accessed after a period of time.

II. APPLICATIONS

Several different applications have been reported by using
the accessibility concept. For instance, it has been shown
[18] that, in geographical networks, nodes located close to
the peripheral regions have lower values of accessibility. By
extending this result to nongeographical networks, it has been
possible to define the border of complex networks as the set of
nodes with accessibility smaller than a given threshold value
[20]. Moreover, recent investigations have showed that the
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position of nodes (inside or outside borders) drastically affects
the activity of nodes [21,22]. Other applications unveiled
correlations between accessibility and real-world properties
of nodes. In particular, in Ref. [23] the authors investi-
gated the network obtained from the theorems in Wikipedia
(www.wikipedia.org). In such a network, each theorem is a
node, and two nodes are connected whenever a hyperlink
is found between the respective theorems. Considering the
proof data, the results indicate that the older theorems have
higher accessibility values, while newer theorems exhibit
lower accessibility values. Consequently new theorems are
located at the periphery of the network, defining the frontier
of mathematical knowledge. Accessibility has also been used
to investigate the effects of underground systems on the
transportation properties of large cities. It was shown that
overall transportation can be enhanced by incorporating the
underground networks [24]. These results were obtained for
the London and Paris transportation networks.

III. THE EFFECTIVE NUMBER OF ACCESSIBLE NODES

Given a source node i, suppose it is possible to reach
Ni(h) different nodes by performing walks with length h

departing from i. Then we say that i has Ni reachable
neighbors at distance h. Each neighbor is reached with
a different probability, which is represented by the vector
p(h)

i = {p(h)
1 ,p

(h)
2 , . . . ,p

(h)
Ni (h)}. Given this vector, accessibility

of the node i, at scale h, is defined as

κi(h) = exp

(
−

∑
j

p
(h)
j log p

(h)
j

)
. (1)

Accessibility values are in the range [1,Ni(h)], the max-
imum being obtained for the homogeneous case, when all
probabilities have the same value 1/Ni(h). This measurement,
which is related to the heterogeneity of the vector p, provides
a generalization of the classical concept of hierarchical (or
concentric) degree [19], as explained in Fig. 1. The hierarchical
degree of a source node i, at distance h is defined as ki(h) =
Ni(h); i.e., it is the number of nodes that are at distance h

from node i. It is important to note that the value of ki(h)
does not take into account a dynamical process or respective
edge weights in the case of weighted networks. Accessibility
generalizes the concept of hierarchical degree by considering
that a specific dynamics is unfolding in the network. We show
in this article that accessibility can be understood as kind of
effective hierarchical degree.

In Fig. 1(a) we show the hierarchical levels around the
source node i up to the distance h. The network topology,
as well as a type of random walk adopted, will define the
transition probabilities, i.e., the components of the vector p. In
Figs. 1(b) and 1(c) we represent these probabilities by using
different widths for the edges. Observe that in both cases the
source node is able to reach Ni(h) = 3 nodes. In the first case,
all nodes have the same probability, while in the second case
one of the nodes has higher probability than the others. It means
that, in the first case, the source node accesses its neighbors
in a more uniform manner, which yields an accessibility value
equal to 3, as shown in Fig. 1(d). On the other hand, the
interaction between the source and its neighbors in the second

1
2

...h

h h

(a)

(b)    (c)

(d)    (e)

i

i i

i i

κi(h) = 3 κi(h) = 1.9

FIG. 1. (Color online) (a) Hierarchical (or concentric) organiza-
tion around the source node (node i). (b) Homogeneous case, where
all neighbors are reached with the same probability. (c) Heteroge-
neous case, where one node has higher probability to be reached.
Accessibilities for the (d) homogeneous and (e) heterogeneous case.

case is biased to a given node, which decreases the effective
hierarchical degree to almost 1.9, as shown in Fig. 1(e).

It is important to note that the idea of measuring the het-
erogeneity among first-neighbors nodes in weighted networks
was previously proposed in Refs. [25,26], with the so-called
disparity. More recently, in Ref. [27] the authors showed a
generalization of this measure, namely, the Rényi disparity,
which is based on the Rényi entropy. In a particular case, the
Rényi disparity uses the Shannon entropy in order to quantify
the heterogeneity of weights attached to the edges of a node.
This particular case has a similar equation to Eq. (1). However,
in our case we consider not only the first neighbors, but all
nodes that can be reached at distance h by a specific dynamic.
In this sense our approach can be also applied to nonweighted
networks, since we consider the transition probabilities instead
of the edge weights.

Another way to think about the interaction between a source
node and its neighbors is by considering the coupon collector
problem. This problem [16,17] deals with the following
question: On average, how many walks with length h departing
from i are required in order to visit all neighboring nodes of
i after h steps at least one time? We will call this quantity the
exploration time of the node i and denote it by τi(h), since we
can consider the displacement velocity through the network
constant. Then the number of walks is proportional to the time
needed to visit all Ni(h) nodes. This problem can be mapped
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into a Poisson problem [28] with independent variables, which
yields

τi(h) =
∫ ∞

0

[
1 −

Ni (h)∏
j=1

(
1 − e−xp

(h)
j

)]
dx. (2)

A conjecture has been proposed [17,29] that τi reaches
its minimum value for the homogeneous case, where all
neighboring nodes are reached with the same probability, i.e.,
p

(h)
j = 1/Ni(h) for any j . In this case, it is not difficult to show

that Eq. (2) can be rewritten as

τ hom
i (h) = Ni(h)

Ni (h)∑
m=1

1

m
. (3)

Therefore, by using the conjecture cited above, we can
say that accessibility is maximum whenever the exploration
time is minimum. This characteristic is illustrated in Fig. 2(a),
which shows a scatter plot between accessibility κ and the
exploration time τ (h) for 105 randomly generated vectors
p with length N = 6 (each component is chosen from the
uniform distribution and then normalization is imposed). A
set of important curves is also shown in the scatter plot,
which provides a more comprehensive characterization of
the probability configuration. They correspond to the specific
cases where exactly n (��N/2�) probabilities of p have a
value ε, while all the other (N − n) probabilities are also
identical among each other (so that the sum of all these
probabilities becomes equal to one). Therefore, the straight
line is related to the case where n = 1, so that the other N − 1
probabilities have the same value. Also, this line corresponds
to the bounding value of accessibility given τ (h), meaning
that all the possible configurations of p are enclosed by this
curve. The dashed line corresponds to the configurations where
n = 2. Similarly, the dotted line corresponds to the situations
where n = 3; in this case, half of each of the probabilities are
equal between themselves. One can use the parametrization
ε in Eqs. (1) and (2) in order to obtain a general equation
(indexed C) characterizing these curves:

τC(ε) = 1

ε

n∑
m=1

1

m
+ 1

p

N−n∑
m=1

1

m

−
d∑

m=1

N−n∑
m′=1

(−1)m+m′
(

n

m

)(
N − n

m′

)
1

mε + m′p
(4)

and

κC(ε) = 1

p

(
p

ε

)εn

, (5)

where p = (1 − nε)/(N − n). Importantly, observe that ε lies
in the interval [0,1/n]. When ε < 1/N , the upper part of
the curves is obtained. In this case we have κC → N − n

and τC → ∞ for ε → 0. For ε > 1/N , we have the bottom
part of the curves, for which κC → n and τC → ∞, when
ε → 1/n. When ε = 1/N , we reach the homogeneous case,
where accessibility is maximum and the exploration time is
minimum. The arrows in the figure indicate the direction in
which ε grows. Note also that, for the specific case of n = 3,
there is no difference between the lower and upper part of

(b)

(a)

(c)

(d)

τ
κ

FIG. 2. (a) Scatter plot between accessibility and the exploration
time for 105 random vectors with length N = 6. The lines correspond
to the cases where the probabilities are divided in two groups having
the same values among themselves as described by Eqs. (4) and (5)
with parametrization ε. (b–d) Conditional distribution of τ for three
different values of κ .

the curve, since exactly half of the probabilities have a value
equal to ε. Figure 2(b) complements the results providing the
conditional density of the generated vectors for three different
values of κ .

A. Probabilities in uniformly random networks

Now we investigate the coupon collector problem in
uniformly random networks. More specifically, we used 5000
strongly connected realizations of the Erdős-Rényi model with
200 nodes and average degree 4, and then derived the transition
probabilities from these respective networks. We performed
random walks originating from each of the nodes in the
networks so as to obtain the respective transition probabilities
(the set of p) by using the powers of the transition matrix [30].
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(b)

(c)

(d)

(a)

τ

κ

FIG. 3. (a) Distribution of the probability configurations in the
κ × τ space obtained for 5000 Erdős-Rényi networks. We considered
the cases where 10 nodes are accessible after h steps (2 � h � 15)
along random walks originating from each of the nodes of the
networks. (b–d) Conditional distribution of τ for three different values
of κ .

Figure 3(a) presents the distribution of the cases in the
κ × τ space. This result takes into account all cases where the
number of accessible nodes Ni(h) is equal to 10 for values
of h in the interval [2,15]. The gray levels correspond to the
density of cases, although the conditional distribution of τ is
also provided for some values of κ [Fig. 3(b)]. Remarkably, the
density is highly skewed toward the lower bound of the ε curve,
and virtually no cases are obtained for the upper half of the
probability region. This means that it is extremely unlikely to
obtain probability configurations having the majority of nodes
with higher probability, as illustrated in Fig. 2.

However, it is possible to obtain configurations that occupy
the upper boundary region in the κ × τ space, where the
minority of the probabilities have smaller values. Figure 4(a)
presents a particular situation exemplifying this case consider-
ing an artificial network with N nodes consisted of two groups:
(1) a highly connected ER component with (N − n) nodes and
average degree 〈k〉c; and (2) n loosely connected nodes with nc

(nc 	 〈k〉c) links to the previous subgraph. This topological
division implies that the nodes in the ER component will be
much more accessed than the others when considering random
walks in this network, irrespective of the starting node and
the length h. Thus, in the case of n 	 N , the probability

(b)

(a)

FIG. 4. (a) Example of a possible configuration where the upper
region of the κ × τ space is occupied. (b) Results obtained for random
walks in the considered network for n = 2 (empty symbols) and
n = 20 (filled symbols) and different number of connections nc.

vectors p will have the majority of their components with
higher values, thus occupying the upper region of the κ × τ

space. This property is verified for the simulations presented
in Fig. 4(b) through random walks departing from each node
for values of h (varied from 2 to 15) where all nodes are
reachable. We considered a single realization of the network
with N = 100 and ER component with 〈k〉c equal to 50. It was
assumed n = 2 (empty symbols) and n = 20 (filled symbols)
with nc links, varying from 1 to 30, as indicated in the figure.
Observe that, as the value of nc decreases, the n nodes become
less accessible, and the points move away from the origin (the
homogeneous case), as expected. Although we assumed that
the single nodes are directly connected to the ER component,
this example can be immediately extended considering the
presence of tails of nodes with different sizes. While this
network can be artificially created, obtaining similar results
for the occupation of the κ × τ space, it has been shown [31]
that tails are unlikely to occur in great variety of real networks,
even for tails with short size. Results for real networks will be
shown in the next section.
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FIG. 5. Local average measurements for the probability configurations obtained for 5000 Erdős-Rényi networks. (a) Number of steps
necessary to reach 10 nodes after departing from the source node, (b) the degree of the source node, and (c) the eigenvector centrality of the
source node.

Figure 5 complements the characterization of the κ × τ

space. It shows (a) the local average number of steps necessary
to reach 10 nodes after departing from the source node, (b) the
degree of the source node, and (c) its eigenvector centrality
obtained for the probability configurations. It is clear from
Fig. 5(a) that random walks with larger number of steps (i.e., h)
tend to have smaller accessibility and longer exploration time.
On the other hand, random walks starting from nodes with
larger degree [Fig. 5(b)] tend to have larger accessibility and
shorter exploration times, though in a less definite fashion
than that observed in Fig. 5(a). Furthermore, Fig. 5(c) shows a
remarkable centrality pattern: It tends to increase with κ while
decreasing with τ , apparently following the level set curves in
Fig. 2. It should be observed that these results are specific
for the uniformly random ER networks, in the sense that
different trends may be obtained for other theoretical network
models.

B. Probabilities from real-world networks

We also considered probabilities obtained from real-world
networks, namely, circuits [32], power grids [33], German
highways [34], protein interactions [35], e-mails [36], and
coauthorships in network science [37]. The probability con-
figurations obtained from these networks are shown in Fig. 6.
Again, most of the cases tend to appear near the lower
boundary in the κ × τ space, which is characterized by low
exploration time and varying accessibility. This is particularly
interesting, as it suggests a universal asymmetry in both real
and random uniform networks in which probability vectors
containing a large number of entries with high values are
unlikely. Therefore, the exploration time tends to be minimized
at the expense of varying accessibilities.

Now we proceed to a related problem in which we are
interested to know how many nodes, on the average, are visited
during the time interval t , while performing a specific type
of random walk. This quantity will be denoted by ηi(t,h),
providing information about how the network topology around
the source node affects the interaction with its neighbors.
After a long time, we expect that the source node will be
able to visit all Ni(h) neighbors, i.e., limt→∞ ηi(t,h)) →
Ni(h), independent of the vector p(h)

i . Therefore, we can
consider that the value of ηi(t,h) provides an estimate of the

average number of visited nodes during a finite time. This is
confirmed in Fig. 7 for the US airlines network [38] and two
random counterparts: Erdős-Rényi model and Configuration
model [39,40]. In order to obtain the transition probabili-
ties, we considered three different types of random walks:
(1) traditional random walk (TRW), (2) preferential random
walk (PRW), and (3) self-avoid random walk (SARW). They
were estimated for h = �, where � = 3 is the network diameter.
The TRW and PRW dynamics were calculated by using powers
of the transition matrix, while the SARW was estimated
through agent-based simulation. This calculation was repeated
106 times for each source node. It should be noted that
for the PRW dynamics the probability of transition from a
node i to a node j is proportional to the degree of j , i.e.,
pi→j = kj/

∑
m∈�i

km, where �i denotes the neighbors of
i. In the case of the SARW dynamics, if an agent cannot
proceed further, it remains at the final node contributing to
the probabilities for the next steps [18]. Then the transition
probabilities were used in Eq. (1) to evaluate accessibility of
node i. The values of ηi(t,h) were obtained for each node i

102 103 104

4

6

8

10 Circuit
Power grid
German highways
Protein
Email
Coautorship

 N=10

τ

κ

FIG. 6. Scatter plot between accessibility and the exploration
time for six real networks considering the cases where N = 10 nodes
are reached after h = {2,3, . . . ,20}.
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FIG. 7. Fraction of reached nodes ηi(t,h) as a function of the node accessibility κi for (a) classical random walk, (b) self-avoid random
walk, and (c) preferential random walk. The results are illustrated for the US airlines network and two random counterparts: Erdős-Rényi
model and the respective Configuration model [39,40]. All of them have the same number of nodes (N = 332) and the same average degree
(〈k〉 = 12.81).

as follows: First, we draw t neighbors of node i at distance
h = � according to the obtained probabilities pj (�). Then we
count how many different nodes were drawn. The average
over several realizations gives us an estimate of ηi(t,h). The
behavior of κ versus η is showed in Figs. 7(a)–7(c) for TRW,
SARW, and PRW respectively. The results have been found to
be well fitted by the functional form:

η = a + b log(κ + c). (6)

Observe that, irrespective of the adopted dynamics, the
values obtained for the ER network are higher and more
concentrated than those verified for other networks. This
is a directed consequence of the low topological variability
observed in these model. Indeed, κ(h) and η(t,h) are limited
to the number of reachable nodes at distance h and become
greater with the homogeneity of probability profile. Thus, the
presence of hubs or degree heterogeneity tends to lower both
measurements, as can be observed for the airport network as
well as its configuration model. Comparing the dynamics, no
significant difference was observed between TRW and SARW.
However, for preferential random walk, the walks are biased
to pass through nodes with high connectivity, implying the
results to change significantly. Therefore, the effective number
of reached nodes is smaller, enhancing the differences found
for the airport network and the configuration model.

IV. CONCLUSIONS

The accessibility concept was introduced recently [18] as
a means to quantify the potential of a node to interact with
other nodes in a complex network. Given the many promising
results obtained so far, it became important to better understand
the accessibility concept, especially regarding optimization
aspects. The present work focused on the investigation
of accessibility regarding the coupon collector problem as
well as its relationship with the average number of nodes
visited along a random walk during a given time interval.

A number of remarkable results were obtained about the
relationship between accessibility and the exploration time.
First, we have that the minimal exploration time is obtained
for maximum accessibility. No relationship between these
two properties has been observed otherwise; i.e., when we

consider all possible probability configurations. However, in
the cases of uniformly random and real-world networks, a
stronger correlation is verified, with the cases tending to lie
near the lower boundary in the κ × τ space. As a matter of
fact, there is a very low probability of having cases occupying
the upper half portion of this space. Although this could
suggest some intrinsic impossibility of having such cases, we
showed at least one type of topology leading to a configuration
lying over the upper boundary. This configuration involves
the coexistence of two rather distinct groups of degrees, one
with very high values (the connected kernel) and another
very low (the surrounding attached nodes). Indeed, real and
model networks are almost invariably characterized by a much
smoother degree distribution, implying their respective nodes
occupy the lower left portion of the accessibility × exploration
time diagram. In other words, most existing networks are
intrinsically optimized. This remarkable result shows that in all
considered networks the transition probability configurations
tend to be characterized by small exploration time at the
expense of varying accessibilities.

Regarding the relationship between accessibility and the
average number of nodes visited along a random walk during a
given time interval, we showed that the concept of accessibility
can be understood as a generalization of the classical degree,
in the sense that accessibility quantifies the effective number
of nodes that can be reached from the source node after a
given number of steps. In order to confirm this statement, we
also showed a strong relationship between accessibility and
the inverse coupon collector problem, which deals with the
number of visited nodes in a finite time interval.

Future work could take into a account activations origi-
nating from multiple nodes as well as how other dynamical
properties can be predicted from the accessibility values. It
would be particularly interesting to identify more general
theoretical models and real networks capable of covering the
κ × τ more uniformly.
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[26] M. Barthélemya, A. Barratb, R. Pastor-Satorras, and
A. Vespignani, Physica A 346, 34 (2005).

[27] S. H. Lee, P. J. Kim, Y. Y. Ahn, and H. Jeong, PloS ONE 5,
e11233 (2010).

[28] P. Berenbrink and T. Sauerwald, in Proceedings of the
15th Annual International Conference on Computing and
Combinatorics, COCOON ’09 (Springer, Berlin, 2009), pp.
449–458.

[29] R. J. Caron, M. Hlynka, and J. F. McDonald, Technical report
WMSR-88-02 (unpublished).

[30] J. D. Noh and H. Rieger, Phys. Rev. Lett. 92, 118701 (2004).
[31] P. R. Villas-Boas, F. A. Rodrigues, G. Travieso, and L. da F.

Costa, Phys. Rev. E 77, 026106 (2008).
[32] R. Milo, S. Itzkovitz, N. Kashtan, R. Levitt, S. Shen-Orr,

I. Ayzenshtat, M. Sheffer, and U. Alon, Science 303, 1538
(2004).

[33] D. J. Watts and S. H. Strogatz, Nature (London) 393, 440
(1998).

[34] M. Kaiser and C. C. Hilgetag, Phys. Rev. E 69, 036103 (2004).
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