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Université Montpellier II, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France

Guilherme C. P. Innocentini and José Eduardo M. Hornos
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Fluctuation-dissipation theorems can be used to predict characteristics of noise from characteristics of the
macroscopic response of a system. In the case of gene networks, feedback control determines the “network
rigidity,” defined as resistance to slow external changes. We propose an effective Fokker-Planck equation that
relates gene expression noise to topology and to time scales of the gene network. We distinguish between two
situations referred to as normal and inverted time hierarchies. The noise can be buffered by network feedback in
the first situation, whereas it can be topology independent in the latter.
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I. INTRODUCTION

Gene expression exhibits a high degree of stochasticity
when studied at the level of individual cells. Expression
“noise” is a critical, biologically relevant property of genetic
circuits in both microbial and eukaryotic cells [1]. Many
theoretical and experimental works underline the importance
of network architecture and feedback for shaping gene
expression noise [2–4]. It is well established that negative
feedback increases network rigidity, which is defined as
sensitivity of gene expression levels to slow external changes
[5]. Several studies [2,3] suggest by extrapolation that noise
generated by gene networks is buffered by negative feedback.
However, this idea is challenged by recent theoretical [6,7]
and experimental [8] work showing that negative feedback is
not always noise reducing. In this paper, we relate fluctuations
to time scales of the gene expression mechanisms and show
that the independence of expression noise on network rigidity
follows from an inversion between two such time scales.

In nonequilibrium thermodynamics, fluctuation theories are
generally obtained from stochastic equations of motion [9].
The dynamics of gene networks can be described by Markov
jump processes [10]. The master equation for such processes
reads

∂p

∂t
(X,t) =

∑
i∈R

[Vi(X − γi ; μ)p(X − γi,t)

−Vi(X; μ)p(X,t)]. (1)

Here, the components of the state vector X ∈ Nn represent
numbers of molecules of various species. The jump vectors
γi ∈ Zn are stoichiometric vectors of biochemical reactions
and Vi are reaction rates. By μ, we denote a set of kinetic
parameters and external conditions. Since Eq. (1) can be
exactly solved only in some simple cases [11], general
approximate solutions are essential.

II. TIME SCALES AND EFFECTIVE
FOKKER-PLANCK EQUATION

Provided that all species are produced in large numbers, the
ω expansion [4] or, equivalently, the central limit theorem

[12] leads to diffusion (Fokker-Planck) approximations of
the Markov jump process. In multiscale gene networks, this
condition is not satisfied because only some of the species
(typically proteins) are produced in large numbers. We build
on results from [10] to obtain a diffusion approximation in this
case as well. We call the large numbers species continuous
because their trajectories are continuous in the concentration
space, and denote them XC . Other species are present only in
a few copies per cell (the most prominent example is the DNA
molecule). We denote these species XD and call them discrete.
The interactions among discrete and continuous species are
suitably described by a partition of the reactions in four sets,
R = RD ∪ RDC ∪ RCD ∪ RC . The reactions RD act on XD

and have rates depending on XD only. The reactions RC act
on XC and have rates depending on XC only. The reactions
RDC and RCD act on XC and XD , respectively. Their rates
depend on both XD and XC . The sets RDC and RCD can have
a nonempty intersection.

The coupling between discrete and continuous variables
produces switched diffusions [10], i.e., diffusion processes
whose parameters (drift and diffusion coefficients) are com-
manded by discrete variables and change discontinuously at
discrete times. Between successive changes of the discrete
variables, the continuous species undergo simple diffusion in
concentration space (Fig. 1). For slow switching, fluctuations
of continuous species that result from switched diffusions
can be far from Gaussian [10], whereas for fast switching
the switched diffusion can be approximated by a simple
diffusion. We provide an effective Fokker-Planck equation
that includes the effect of switching and provides a reasonable
approximation to switched diffusions in fast and intermediate
fast switching regimes.

The definition of various switching regimes follows from
the comparison of three time scales of the multiscale stochastic
gene networks. The discreteness time τD represents the average
waiting time between two successive reactions acting on
continuous species,

τD =
⎛
⎝ r∑

i∈RC∪RDC

Vi

⎞
⎠

−1

. (2)
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FIG. 1. (a) The partition of species and of the reactions; dotted
lines mean that reaction rates depend on the corresponding species.
(b) Typical trajectories of continuous and discrete variables: switched
diffusions.

For each state of the discrete variable XD ∈ {1,2, . . . ,M}, we
define τ (k) as the average lifetime of the state XD = k, i.e.,
the average time during which the system remains in this state
before transiting to any other, different state. We define the
switching time τS as the sum of these lifetimes,

τS =
M∑

k=1

τ (k). (3)

The switching time sums the time scales of the reactions
RD and RCD . Finally, let us consider that the averaged
(coarse-grained) drift dynamics of the continuous variable has
an attractor. The macroscopic time τM is the relaxation time of
the averaged system toward this attractor. For simplicity, we
consider that there is only one such time scale, or in the case
of many time scales, choose the fastest one.

A simple example of degradation reaction X
k→ ∅ shows

that a single reaction introduces two time scales. The dis-
creteness time τD = (kX)−1 is always much smaller than
the macroscopic time τM = k−1. Without discrete species,
the normal two-time hierarchy condition τD � τM allows
obtention of hydrodynamic equations for the macroscopic,
continuous variables by coarse graining [13]. Discrete species
introduce switching. Contrary to τD , the switching time τS can
be independent from τM because it depends on reactions acting
on discrete species, whereas τM depends on reactions acting
on continuous species. This property of τS can lead to inverted
time hierarchies when τD � τS � τM or τD � τM � τS .

Let us introduce two scale parameters η = τD/τM and
ε = τS/τM and rescale the rates and species numbers xc =
ηXc, vi(XD) = εVi(XD,xc), i ∈ RCD ∪ RD , vi(XD,XC) =

ηVi(XD,xc), and i ∈ RDC ∪ RC . Next, we obtain a diffusion
approximation for xc. As mentioned, η is always small and
represents the inverse of a characteristic copy number of
continuous species. We consider that ε is also small, meaning
that τM � τS . This is enough to cover the crossover between
discreteness and switching effects that we study in this paper,
including the inverted hierarchy τD � τS . The case τM � τS

leading to non-Gaussian processes is covered by techniques
in [10].

There are two contributions to the diffusion of continuous
variables xc. The discreteness term acts at constant XD and
results from the rapid succession of reactions RC ∪ RDC .
The discreteness term can be easily obtained by ω expansion
[4,10,12]. The switching term results from changes of XD

by reactions RD ∪ RCD . The system remains an average
time τ (XD; xc) in the state XD , then jumps to another
state. Between jumps, the discreteness drift pushes xc a
distance in concentration space proportional to τ (XD; xc), in a
direction that changes randomly each time the state changes.
The corresponding diffusion term cannot be obtained by ω

expansion and needs special treatment. In the Appendix, we
obtain the following effective Fokker-Planck equation for xc,
by averaging the drift and by summing the discreteness and
switching contributions to diffusion:

∂p

∂t
(xc,t) = −∇xc

[b̄(xc)p(xc,t)] (4)

+ 1

2
∇2

xc

{[
σ 2

d (xc) + σ 2
s (xc)

]
p(xc,t)

}
,

where
(
σ 2

d

)
kl

(xc) = η
∑

i∈RC∪RDC

(
γ C

i

)
k

(
γ C

i

)
l
v̄i(xc),

(
σ 2

s

)
kl

(xc) = ετM

∑
XD

⎧⎨
⎩

∑
i∈RDC

(γi)k[vi(XD,xc) − v̄i(xc)]

⎫⎬
⎭

×
⎧⎨
⎩

∑
i∈RDC

(γi)l[vi(XD,xc) − v̄i(xc)]

⎫⎬
⎭

× ρ(XD; xc)τ̂ (XD; xc),

b̄(xc) =
∑

i∈RC∪RDC

γi v̄i(xc),v̄i =
∑
XD

viρ(XD), (5)

where ρ(XD; xc) and τ̂ (XD; xc) = τ (XD; xc)/
∑

XD
τ (XD; xc)

are the steady-state probability and normalized lifetime of
the state XD , respectively (these can be computed from the
reactions RCD and RD). The discreteness term σ 2

d accounts
for the finite size of the jumps induced by reactions acting
directly on xc. It is well known that σ 2

d vanishes like η in
the thermodynamic limit [4,10,12]. The switching term σ 2

s

accounts for fluctuations transmitted from discrete variables
to continuous variables, covering situations described as the
bursting or the telegraph scenario [1]. The ω expansion [4]
overlooks or underestimates this term because this expansion
is valid only when all the species are in large numbers.

Let us consider that the averaged drift has a point attractor
x∗

c [stable solution of b̄(xc; μ) = 0]. Then, for small ε,η and
for initial data close to x∗

c , we can linearize b̄ and obtain an
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Ornstein-Uhlenbeck approximation:

∂p

∂t
(xc,t) = −∇xc

[J (x∗
c )(xc − x∗

c )p(xc,t)]

+ 1

2
∇2

xc
[σ 2(x∗

c )p(xc,t)], (6)

where J is the Jacobian matrix of elements Jij (x∗
c ) =

∂xc,j
b̄i(x∗

c ) and σ 2 = σ 2
s + σ 2

d .
The covariance matrix 
 [
i,j = cov(xc

i ,x
c
j )] giving the

steady-state fluctuations of xc results from (6) by standard
methods [14] as the unique symmetric solution of the equation


(−J T ) + (−J )
 = σ 2
d + σ 2

s . (7)

Several authors [4,15] interpreted (7) as a fluctuation-
dissipation theorem. Indeed, (7) relates steady-state fluctua-
tions to the Jacobian J . J is a measure of network rigidity
and allows one to compute the sensitivity of the steady state to
external forces (changes of the parameters μ) [5]. However, (7)
contains also the diffusion matrix σ 2, sometimes interpreted
as nonequilibrium “temperature” [9,15]. The nonequilibrium
temperature can have unusual properties. It can depend on
which species are observed [15] or change with the steady
state [9]. In our Markovian approach, the discreteness and
the switching terms have contrasting behavior with respect
to changes of the steady state and of J . This means that a
crossover of the two terms, resulting from an inversion in the
time scale hierarchy, changes the dependence of fluctuations
on rigidity. Using (5) and (7), one can find, for a particular
model, the dependence of discreteness and switching terms
on the network rigidity, and analyze the consequences of
the time scale inversion. Next we study a simple two-state
self-repressed promoter. We use this exactly solvable model to
test our general approach.

III. SELF-REPRESSED BACTERIUM PROMOTER

This is the simplest, though nontrivial, model of a gene
network with negative feedback for which we have a full
analytic solution [11]. The discrete variable has two states
XD = 0,1 corresponding to the repressed and unrepressed
promoter, respectively. The continuous variable is the number
of proteins XC and can take any positive integer value n. When
XD = 1, proteins are produced with rate g and degraded with
rate kn. When XD = 0, production falls to χg, χ < 1. The
transition between active and inactive states is commanded
by the protein itself with a rate hn; the opposite transition
is spontaneous with a constant unbinding rate f . The master
equation is

∂p1
n

∂t
= g

[
p1

n−1 − p1
n

] + k
[
(n + 1)p1

n+1 − np1
n

]
− nhp1

n + fp0
n,

∂p0
n

∂t
= χg

[
p0

n−1 − p0
n

] + k
[
(n + 1)p0

n+1 − np0
n

]
+ nhp1

n − fp0
n. (8)

Equations (8) can be reshaped in the form (1). The five
reactions of the model can be partitioned as follows. RCD

and RD include reactions of rates V1 = XDhn and V2 =
(1 − XD)f and jump vectors γ1 = (−1,0) and γ2 = (1,0),

respectively. RDC includes reactions of rates V3 = XDg

and V4 = (1 − XD)χg and jump vectors γ3 = (0,1) and
γ4 = (0,1). RC contains only the degradation reaction V5 =
kn, γ5 = (0, − 1). We rescale time and protein numbers
τ = t/τM = tk, x = n/N0, N0 = g/k. The rescaled model
depends on four parameters: nr = f/(hN0), χ , η = 1/N0, and
ε = k/f (1 + nr/x). The first two are feedback parameters
quantifying the affinity of the repressor to DNA, and the
residual transcription activity of the promoter, respectively.
nr has been used in other studies relating noise and feedback
(it is the inverse of the parameter α from [7]). The remaining
parameters are time scale ratios. In these variables, (4) reads

∂p

∂τ
(x,t) = −∇x[b(x)p(x,t)]

+ 1

2
∇2

x

{[
σ 2

s (x) + σ 2
d (x)

]
p(x,t)

}
, (9)

where

b(x) = ρ(x) + χ [1 − ρ(x)] − x is the averaged drift,

ρ(x) = nr

nr + x
is the probability that XD = 1,

(10)
σ 2

d (x) = η{x + ρ(x) + [1 − ρ(x)]χ},
σ 2

s (x) = 2ε{ρ(x)[1 − ρ(x)](1 − χ )}2.

The drift b(x) has a global attractor x∗ which is the unique
solution of the nonlinear equation x = ρ(x) + χ [1 − ρ(x)].
We define the rigidity of the system as minus the Jacobian
of the drift, R = −db(x)/dx for x = x∗. Using (7) with J =
db(x)/dx, we get the steady-state noise variance,

Var(x) = σ 2
d (η,nr,χ,x∗) + σ 2

s (ε,nr ,χ,x∗)

2R(nr,χ,x∗)
, (11)

where the rigidity is

R(nr,χ,x) = 1 + nr (1 − χ )

(nr + x)2
. (12)

We check the validity of our approximations by direct
comparison of the variance and the average obtained from
relations (10) and (12) with the exact solution presented in [11].
As shown in Figs. 2(a) and 2(b), the agreement is excellent
when ε,η < 1, and less good for ε > 1 when the diffusion
approximation fails. Using (10) and (12), and straightforward
algebra, we find the dependence of discreteness and switching
terms on the rigidity,

σ 2
d = 2ηx, σ 2

s = 2ε(R − 1)2x2. (13)

We note from (13) that the two “temperature” terms σ 2
d and σ 2

s

have contrasting behavior. Further insight into this difference
is obtained by investigating families of parameters. Two cases
are particularly interesting.

Fixed average expression. We impose the average expres-
sion x. The free parameter is χ (0 � χ � x) or, equivalently,
nr or R. This parametrization can be used to compare different
promoters that have the same average expression, but different
residual activities and repressor affinities. We decide to com-
pare the promoters by the value of their rigidity. To this aim,
we use (10) and (12) to express ρ, nr , and χ as functions of R.
Given x, a more “rigid” promoter will have a smaller residual
activity and a more affine repressor. According to (13), at fixed
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FIG. 2. (Color online) Comparison of
exact and approximate (a) average and (b)
variance of noise for χ = 0.001,0.01,0.1,
χ < x < 1, η = 0.01, when 0.02 < ε <

0.2 (approximation applies, black dots)
and when 1 < ε < 2 [approximation fails,
red (grey) dots]. Comparison of (c) Fano
factor and (d) rigidity dependence on
x and ε, for χ = 0.01, 0.02 < ε < 0.2.
The Fano factor is maximum close to
maximum rigidity in a region in parameter
space where switching is dominant,
η/ε < x(1 − x)2.

x, the discreteness term is constant, whereas the switching term
increases quadratically with the rigidity. The corresponding
contributions to the variance follow from (11) and behave
like 1/R and (R − 1)2/R, respectively. The discreteness and
switching terms become equal for a critical rigidity R∗ that
satisfies η/ε = x(R∗ − 1)2. However, the values of rigidity
are bounded. Using (12), we get R = 1 + (x−χ)(1−x)

(1−χ)x from
which 1 � R � 2 − x. This leads to an x-dependent condition
for crossover, namely, η/ε < x(1 − x)2. If this condition is
not fulfilled, i.e., for rapid switching, then no crossover is
possible. The discreteness term is dominant and the variance
scales like 1/R: more rigid promoters are less noisy. If the
condition is fulfilled, inverted hierarchy behavior is possible.
When switching terms become dominant, the variance scales
like (R − 1)2/R: more rigid promoters are more noisy.

Fixed residual activity. Here we impose χ . The free
parameter can be either x (χ � x � 1) or nr (nr is strictly
increasing with x). This parametrization allows one, for the
same promoter, to study the effect of changes of the affinity
of the repressor. In bacteria, such an adaptation process could
result from stress or metabolic changes such as a switch in
carbon source [8]. From (12) and (13), we get

σ 2
d = 2ηx, σ 2

s = 2ε

[
(x − χ )(1 − x)

(1 − χ )

]2

. (14)

In this case, the variance is no longer appropriate to quantify
noise amplitudes because the average is not constant. We can
use instead the coefficient of variation, CV = √

Var(x)/x,

and the Fano factor, F = N0Var(x)/x. From (14), having a
crossover between discreteness and switching terms for some
x boils down to having at least one positive root of the
polynomial equation σ 2

d (x; η) = σ 2
s (x; χ,ε). A necessary and

sufficient condition for this reads η/ε < ψ∗(χ ), where ψ∗(χ )
is a polynomial in χ satisfying ψ∗(χ ) ≈ 4/27 for small χ . This
condition places the inverted hierarchy behavior in a domain
where ε is large. Indeed, Figs. 2(c) and 2(d) show that in
this domain, the Fano factor has a maximum close to a place
where also the rigidity is maximum. Far outside this domain,
the Fano factor has small variation and CV scales roughly like
1/

√
x. For bacterial promoters, N0 ∼ 104 and k = 10−4 s−1 for

proteins, and N0 ∼ 102 and k = 10−2 s−1 for mRNA; normal
time hierarchies correspond to switching times of less than
10 s.

IV. DISCUSSION

Theories ascertaining that network topology is the main
factor that shapes noise in gene networks [2] can be misleading,
even with amendments, such as considering that the extrinsic
rather than the intrinsic noise is feedback dependent [3].
We show that in multiscale biochemical networks with both
discrete and continuous variables, time scales of the molecular
interactions can dictate the behavior of the molecular noise.
In particular, negative feedback fails to buffer fluctuations of
continuous components whose production depends on discrete
slow processes.
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We have obtained an effective Fokker-Planck equation that
applies not only to situations when all chemical species in
the network have large copy numbers, but also to situations
when some of the species have small numbers and generate
switching effects. For such effective diffusions, the Ornstein-
Uhlenbeck result, also known as “fluctuation-dissipation,”
implies that fluctuation amplitudes and network rigidity are
inversely proportional. However, the fluctuation amplitudes
are also proportional to a “temperature” factor. The switching
contribution to this temperature can increase with the network
rigidity, so when it becomes dominant, as in the case of time
hierarchy inversion, statically “rigid” networks can be very
noisy.

Our findings offer mathematical substance to the coun-
terintuitive result [6–8] that self-repression can be a noise
maintaining mechanism, possibly important in bet-hedging
adaptation strategies [16]. We estimate that switching times
of ten seconds or larger should lead to mRNA and protein
expression noise that is not buffered by negative feedback.
Because these time scales are not rare in repressed bacte-
rial or eukaryotic promoters, our results should be testable
by accurate expression quantification experiments on large
collections of promoters with different characteristics. A
recent experimental study of a few carbon catabolic operons
in Bacillus subtilis [8] showed that the noisiest repressed
promoter is self-repressed. This result can be explained by
the inverse proportionality of the switching time and of the
transcriptional bursting amplitude with the concentration of
active repressor, which, for self-repressed promoters, is low in
the repressed state. More generally, our Eqs. (5) and (4) show
the importance of long-lived discrete states for the switching
contribution to noise. Examples of such long-lived states
can be found not only in prokaryote transcription regulation,
but also during formation of transcriptional complexes on
the eukaryote TATA box [16]). Mechanisms that change the
lifetime of such states can serve for effective noise tuning,
with potential applications in synthetic biology.

In subsequent work, the validity of our formulas will be
extended. Several improvements of the approximation are
possible. First, a Stratonovich drift correction, like in [17],
would be appropriate to take into account the “look into
the future” property of diffusion approximations. Second,
higher order approximations are needed to account for large
fluctuations of the continuous variables. Moreover, (5) will
be used to understand fluctuations in molecular systems with
multiple discrete states, such as complex promoters, molecular
motors, and genetic and protein transport networks.
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APPENDIX

In this appendix, we obtain an effective Fokker-Planck
equation (diffusion approximation) for the stochastic dynamics
of the continuous species. Let Xc(t) ∈ Nn be the state of
continuous species at time t . Let us define the rescaled
process xc(t) = ηXc(t). xc(t) is a diffusion process in the high

dimensional space of the concentrations, if and only if the
following properties are satisfied (see, for instance, [18]):

(i) The increments �xc(t ; �t) = xc(t + �t) − xc(t) on
nonoverlapping time intervals are independent and normally
distributed for all t .

(ii) 〈�xc(t ; �t)〉 = b(xc,t)�t + o(�t).
(iii) Cov[�xc(t ; �t)] = σ 2(xc,t)�t + o(�t), where Cov is

the variance-covariance matrix, σ 2 (a symmetric, positive
matrix) is the diffusion matrix, and the vector field b is the
drift.

The probability distribution p(xc,t) of such a diffusion
process will satisfy the Fokker-Planck equation,

∂p

∂t
(xc,t) = −∇xc

[b(xc,t)p(xc,t)] + 1

2
∇2

xc
[σ 2(xc,t)p(xc,t)].

(A1)

Here we will use (ii) and (iii) to find the drift and the diffusion
parameters for an effective (coarse-grained) Fokker-Planck
equation. We discuss the situation when the switching time
τS and the discreteness time τD are much smaller than the
macroscopic time τM (see the main text for the definition of
these times), and coarse grain the process on times �t �
τS,τD . �t is chosen sufficiently small (much smaller than τM )
such that increments �xc(t ; �t) are small.

Additionally, let us consider that given xc, the stochastic
dynamics of XD is described by a discrete Markov process
and that this process is ergodic (i.e., any two discrete states
are connected by at least one path of nonzero probability
transitions). Then, on the time scale τS � �t , XD reaches
the unique steady-state probability distribution ρ(XD; xc). The
probabilities ρ(XD; xc) are found by solving the stationary
master equation satisfied by XD at fixed xc (this is defined by
the reactions RD and RCD). Let us consider a trajectory of
the process at fixed xc and functions f (XD) depending on the
discrete variable. We denote by �tXD=k the total time spent
by the discrete variable in the state k. The Birkhoff-Khinchin
formulation of the ergodic theorem (well known in statistical
physics) says that for an ergodic system, the time average of
an integrable function exists for almost all trajectories and is
equal to the phase space average of the same function with
respect to the unique equilibrium steady-state probability. The
ergodic theorem applied to the Markov process XD (at fixed
xc) reads

∑
k

f (k)�tXD=k

/ ∑
k

�tXD=k =
∑

k

f (k)ρ(k; xc). (A2)

Let us compute the increment �xc(t ; �t) of xc between t and
t + �t . In order to do so, we decompose the interval [t,t +
�t] into a number N (t,�t) of successive, nonoverlapping
subintervals Ii = (ti ,ti + �ti), i ∈ [1,N (t,�t)] along which
the value of XD is constant. To simplify notations, we denote
the possible values of XD by the integers 1,2, . . . ,M .

Let Mli be the number of reactions of type l ∈ RC ∪ RDC

that occur in the interval Ii . Up to small corrections of
order o(�t) (because xc is not strictly constant between t

and t + �t), Mli are independent Poisson variables of mean
η−1vl[XD(ti),xc]�ti , where vl = ηVl (see [12], for instance).
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Then, we have

�xc(t ; �t) = η

N(t,�t)∑
i=1

∑
l∈RC∪RDC

Mliγ
C
l + o(�t), (A3)

where γ C
l is the projection of the stoichiometric vector onto

the continuous species. Straightforward algebra leads to the
mean increment,

〈�xc(t ; �t)〉 =
M∑

k=1

b[xc(t),k]�tXD=k + o(�t), (A4)

where b[xc(t),k] is the drift of the continuous variables when
the discrete variables are in the state k,

b(xc,k) =
∑

l∈RDC

γ C
l vl(xc,k) +

∑
l∈RC

γ C
l vl(xc). (A5)

Applying the ergodic theorem (A2), we find

〈�xc(t ; �t)〉 = b̄[xc(t)]�t + o(�t), (A6)

where b̄(xc) = ∑M
k=1 b(xc,k)ρ(k; xc).

Similarly, we compute the covariance matrix of the incre-
ment. By the law of total covariance, it contains two terms,

Cov[�xc(t ; �t)] = Cov[�xc(t ; �t)]D + Cov[�xc(t ; �t)]S.

(A7)

The discreteness term corresponds to the Poissonian fluctua-
tions of the number of reactions at fixed XD , averaged over
the values of XD ,

Cov[�xc(t ; �t)]Dm,n = η

M∑
k=1

∑
l∈RC∪RDC

(γl)m(γl)nvl[k,xc(t)]

× ρ[k; xc(t)]�t + o(�t). (A8)

The switching term corresponds to random changes of the
drift vector b(xc,XD) induced by changes of XD ,

Cov[�xc(t ; �t)]Sm,n =
M∑

k=1

{b[xc(t),k] − b̄[xc(t)]}m{b[xc(t),k]

− b̄[xc(t)]}n�2tXD=k + o(�t),

(A9)

where �2tk = ∑
XD (ti )=k(�ti)2.

Applying again the ergodic theorem (A2), we find

�2tXD=k = �tρ(k)τ (k), (A10)

where τ (k) = 〈�ti〉XD=k is the average lifetime of the state
XD = k.

Equations (5) and (4) follow directly from (A8) through
(A10).
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