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a b s t r a c t

This paper presents a structural damage detection methodology based on genetic algorithms and
dynamic parameters. Three chromosomes are used to codify an individual in the population. The first
and second chromosomes locate and quantify damage, respectively. The third permits the self-adaptation
of the genetic parameters. The natural frequencies and mode shapes are used to formulate the objective
function. A numerical analysis was performed for several truss structures under different damage scenar-
ios. The results have shown that the methodology can reliably identify damage scenarios using noisy
measurements and that it results in only a few misidentified elements.

� 2012 Civil-Comp Ltd and Elsevier Ltd. All rights reserved.

1. Introduction

Different factors, like aging, fatigue or exposure to aggressive
environments, can damage a structure. One of the principal ways
to detect damage is by considering the changes that occur in the
dynamical parameters after damage (e.g., natural frequencies,
mode shapes and modal damping). These changes reflect varia-
tions in the structural properties (stiffness, damping and mass
matrices), permitting an optimisation problem to be formulated.
The idea is to minimise the differences between the dynamic
parameters obtained in an experimental test and those obtained
from a finite element model that represents the damaged struc-
ture. This model is updated from another finite element model that
defines the undamaged state of the structure. A complete review of
damage detection methodologies based on dynamic parameters
can be found in [1–3].

A genetic algorithm is an optimisation technique that can be
used to solve the structural damage detection problem. Moslem
and Nafaspour [4] used a technique based on a residual force vec-
tor to define the probably damaged elements with the advantage of
reducing the effects of noise in the measurements. A steady-state
genetic algorithm was implemented to compute the damage ex-
tent. Ananda Rao et al. [5] proposed a simple genetic algorithm
with binary representation and an objective function that is based
on the residual force vector. This type of function has the disadvan-

tage of requiring complete mode shapes. He and Hwang [6]
combined a real-coded genetic algorithm with a simulated anneal-
ing algorithm to detect damage in beam structures. Natural fre-
quencies and displacements of static response were used to
generate the objective function. Raich and Liszkai [7] used changes
in the frequency response functions and an implicit redundant rep-
resentation. This type of representation permits the dynamic vari-
ation of the variables to be optimised during the evolutionary
process. The above characteristic is important in the solution to
the damage detection problem, as the number and localisation of
the damaged elements are not known a priori. Kouchmeshky
et al. [8] detected damage in an iterative process by applying
two phases: estimation and exploration. In the first phase, they
used an objective function that was based on frequency response
functions and represented a possible solution by using one chro-
mosome to define the location of the damage and another to deter-
mine the damage extent. The second phase was applied to the
candidate solutions found in the first phase. Meruane and Heylen
[9] proposed a parallel real-coded genetic algorithm based on
migration to quantify damage in structures. The objective function
was characterised by permitting the use of operational modes, by
producing a low quantity of misidentified elements and, also, by
taking into account errors in the finite-element model for the ini-
tial condition.

This paper presents an improved version of the damage detec-
tion methodology that is based on genetic algorithms and dynamic
parameters, which was presented by the authors at the Tenth
International Conference on Computational Structures Technology
[10]. The new contributions are related to the generation of a
self-adaptive algorithm and to the formulation of a new objective
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function, which produces more reliable results than the previous
one.

2. Damage representation

The undamaged and damaged conditions are represented by fi-
nite element models with the current model obtained by updating
the undamaged model. In this research, the damage was considered
a reduction in the elasticity modulus of the damaged element [11].
The relationship between the two conditions for the jth element can
be given by

Edj ¼ ð1� bjÞ � Ej; ð1Þ

where Edj and Ej are the elasticity moduli of element j for the dam-
aged and undamaged conditions, respectively. bj is an elasticity
modulus reduction factor with a value equal to 0 if the element is
not damaged, and a value equal to 1 for the completely damaged
state. This factor must be computed for each element in the struc-
ture and corresponds to the variable to be optimised by the genetic
algorithm.

3. Genetic algorithms

Genetic algorithms are analogous to the natural selection laws
and survival of strongest individual [12]. They are used to derive a
set of possible solutions over the search space and to find an answer
to a specific problem. First, the implementation of an algorithm
requires the definition of two important aspects: a codification
scheme for the possible solutions and the definition of an objective
function. Next, it is necessary to specify the population size to be
used and to determinate if the initial population will be generated
in a random or heuristic way. Selection, crossover and mutation
are applied to the current population. In the selection process, the
best individuals in the population are chosen according to their fit-
ness level. The fitness is computed by using the objective function
defined for the optimisation problem. The crossover process gener-
ates two new solutions from two other solutions chosen in the
selection process. The mutation process consists of introducing ran-
dom variations in the new individuals. The last two operators are
limited by the rates that define their probability of being applied.
Elitism is an extra process that can be applied, and it works by copy-
ing the best individual from the past generation and placing it in the
next generation. The above steps are performed iteratively until
either obtaining convergence or reaching a pre-specified number
of generations. Due to the characteristics of the genetic algorithms,
several executions are often necessary to find a final answer to the
problem. For a complete reference of genetic algorithms, the reader
should see [12] or [13].

The formulation for the classic genetic algorithms can be found
in the above texts; however, many advanced algorithms have been
proposed in the literature. One of them is the multi-chromosome
genetic algorithm, which uses several chromosomes to generate
solutions for complex problems. Hinterding [14] solved the cutting
stock problem by using one chromosome to stand for a possible
solution and another to self-adapt the genetic parameters. Baine
[15] used four chromosomes to represent the input and output fuz-
zy sets of a proportional-plus-derivative fuzzy logic controller.
Király and Abonyi [16] codified the possible solutions to the multi-
ple travelling salesmen problem by assigning one chromosome for
each salesman in the solution.

On the other hand, the setting of genetic parameters can be a
long process because the selection of values for the population size,
mutation and crossover rates should be related directly to the
studied problem. Currently, an important research topic is the
development of strategies to adapt these parameters [17,18].

4. Damage detection methodology

The proposed damage detection methodology consists of solv-
ing an optimisation problem through an objective function based
on dynamic parameters. The solution to the optimisation problem
was performed by applying the steps shown in Fig. 1.

� STEP 1: Define the finite element model for the undamaged
structure.

A finite element model is required to represent the undamaged
condition for the structure and to obtain a new model for the dam-
aged condition, which is performed in an updating process. The
stiffness, Kstr, and mass, Mstr, matrices are computed from the con-
tribution of each element in the structure and are given as

Kstr ¼
Xnelem

i¼1

ki; ð2Þ

Mstr ¼
Xnelem

i¼1

mi; ð3Þ

where ki and mi are the stiffness and mass matrices for the ith ele-
ment, respectively, and nelem is the number of elements in the
structure. In this paper, the structure is considered undamped.
� STEP 2: Assess the experimental dynamic parameters of the

damaged structure.
The dynamic parameters for the current structure (natural fre-

quencies and mode shapes) have to be experimentally determined.
This research was carried out numerically, so the damaged
dynamic parameters were computed by introducing the damage
scenario into the undamaged stiffness matrix and then solving
the eigen-problem, which is expressed by the following equation:

ðKstr;d �x2
dMstrÞ/d ¼ 0; ð4Þ

where x is the natural frequency and / is the mode shape. The sub-
script d refers to the damaged condition.

The damaged stiffness matrix is computed as a function of the
undamaged stiffness matrix, as follows:

Kstr;d ¼ Kest �
Xden

i¼1

kðbiEiÞi; ð5Þ

where den is the number of damaged elements in the analysed
damage scenario.

In a real dynamic test, it is impossible to avoid the presence of
noise; therefore this fact was simulated through the perturbation
of the computed damaged dynamic parameters. The following
equations permit simulating the noise in the measurements:

xdr ¼ xd � ð1þ randomð�1;1Þ � Noisef Þ; ð6Þ

/ijdr ¼ /i;jd � ð1þ randomð�1;1Þ � Noise/Þ; ð7Þ

Begin 

1. Define the finite element model for the undamaged 
structure. 

2. Assess the experimental dynamic parameters of the 
damaged structure.  

3. Formulate the objective function.  
4. Configure the genetic algorithm.  
5. Execute the algorithm and show the damage scenario 

found. 

End 

Fig. 1. Damage detection methodology.
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where dr denotes a noisy value. Noisef = 1% and Noise/ = 3% are the
perturbations of the natural frequencies and mode shapes, respec-
tively [19].
� STEP 3: Formulate the objective function.

In this step, a maximisation problem was solved by using an
objective function that is based on the natural frequencies and
mode shapes. The objective function is given by

G ¼
Xnm

j¼1

c1

c2 þ Fj
; ð8Þ

with

Fj ¼
xga

j �xex
j

xex
j

�����

�����þW �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPndf
i¼1ð/

ga
ij � /ex

ij Þ
2

Pndf
i¼1ð/

ex
ij Þ

2

vuut ; ð9Þ

where nm refers to the number of vibration modes considered and
ndf is the number of degrees of freedom with the available informa-
tion. The superscript ga refers to results from the finite element
model obtained by the genetic algorithm and the superscript ex
indicates the experimental values. xj is the jth natural frequency
and /i,j is the magnitude of the jth mode shape for the ith degree
of freedom. c1 and c2 are constants defined by the user and herein
they take values of 200 and 1, respectively. Constant c1 limits the
value of the objective function, while constant c2 avoids the division
by zero when the data are free of noise. The weight factor W = 2.0
was defined after several trials. This type of definition for the
weight factor can be avoided by using multi-objective formulations
[20]. This formulation will be studied by the authors in future work.
� STEP 4: Configure the genetic algorithm.

One of the principal difficulties in solving the damage detection
problem is that the number and position of the real damaged ele-
ments are unknown at the beginning of the optimisation process.
Therefore, we used a type of representation with multiple chromo-
somes, which allows the number of damaged elements in an indi-
vidual to change throughout the evolutionary process. An
individual with three chromosomes was proposed by following
the ideas presented above in [8,14]. The first chromosome is a
real-type one and represents the damage extent, which can range
between 0 and 1. The second is a binary-type and is used to locate
the damage. A value of one identifies a damaged element. Each
gene corresponds to one element in the structure, so a structure
with N elements will have N genes for the above chromosomes.
The third chromosome is a real-type one and is employed to allow
self-adaptation of the genetic parameters. Fig. 2 shows one of the
possible individuals for a structure with six elements. In this dam-
age scenario, elements 1, 3 and 4 have damage values of 0.25, 0.18
and 0.35, respectively. The third chromosome codifies, from left to
right, the binary and real crossover rates and the binary and real
mutation rates. In this way, the user does not precise determine
an optimal configuration for the genetic parameters. They are con-
sidered optimisation variables and their optimum values will be
determined throughout the evolutionary process. The genetic algo-
rithm configured here was called self-adaptive multi-chromosome
genetic algorithm (SAMGA).

Shown in Fig. 2, two different individuals in the population may
represent damage scenarios with different numbers of damaged
elements. But, at the end of the generations, the best individual
in the population is expected to correspond to the real set of dam-
aged elements and the correct damage level.

The initial population was generated heuristically, considering
that only a few elements could be damaged, the damage extent
was not severe and the genetic parameters could assume a range
of allowed values. Each gene in the first chromosome assumed a ran-
dom value between 0 and 0.5 and a random value of either 0 or 1, for
the genes in the second chromosome. The range for each operator
rate (Table 1) was chosen based on our experience [10,21,22] and
some trials.

Table 2 shows the genetic operators applied to each chromo-
some type, and the way they are applied can be found in [23,24].
In that table n is the number of participants in the tournament
and a is a parameter that influences the crossover between individ-
uals. The value chosen for the latter parameter determines the
balance between the exploration and the exploitation of the search
space [24]. In the crossover process, we used the crossover rates
from the parent individual with the highest fitness. The binary
and real mutation rates that were used to mutate a specific gene
corresponded to the values of the individuals obtained after the
crossover process. The only parameter to be defined is the popula-
tion size, whose criterion of choice will be discussed in the follow-
ing section.

� STEP 5: Execute the algorithm and show the damage scenario
found.

Ten executions are performed and the solution with the best fit-
ness is chosen as the damage scenario found. Satisfying one of the
following criteria is used to stop the execution of the algorithm: (1)
a maximum number of generations equal to 400 or (2) a pre-
defined number of consecutive generations without a significant
change in the fitness of the best individual, which is 50 generations
in this case.

5. Numerical examples

5.1. Analysed structures and damage scenarios

Several truss structures were analysed (Fig. 3). All of the ele-
ments in the analysed structures have an elasticity modulus
E = 200 � 109 N/m2, density q = 7800 kg/m3, and cross-sectional
area A = 0.001 m2. The six first modes were considered to be known
for all of the structures. The maximum number of degree of free-
dom for the analysed structures was 47.

One genetic parameter, i.e. the population size, remains to
undefined. Generally, the value for this parameter is obtained afterFig. 2. Typical chromosomes for representing an individual.

Table 1
The limits of the genetic parameters for the simulation.

Boundary Binary
crossover

Real
crossover

Binary
mutation

Real
mutation

Lower 0.70 0.80 0.005 0.03
Upper 0.90 0.95 0.02 0.06

Table 2
The multi-chromosome genetic algorithm operators.

Chromosome Selection Crossover Mutation

Real Tournament, n = 3 BlX-a, a = 0.5 Creep
Binary Two points Jump
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some trials that consist in varying the population size until one ob-
tains a desired performance of the proposed methodology. Ref. [4]
presents one of the few heuristics that have been proposed to com-
pute the size population as a function of the analysed structure. In
that work the population size was defined to be directly propor-
tional to the number of element in the structure. Based on our
experience, we defined the population size as 200 for all of the

simulated examples. This value is adequate for the type and sizes
of the analysed structures, but it may not be enough to guarantee
a good performance of the methodology when larger truss struc-
tures are analysed.

Five damage scenarios are simulated for each structure. These
scenarios can be classified into simple and multiple damage
scenarios as a function of the number of damaged elements (Tables
3 and 4).

6. Results

Tables 5–10 show the results found by the proposed methodol-
ogy for the different damage scenarios. In these tables, only the
damaged elements that were identified by the binary chromosome
and have a damage extent higher than 0.03 are shown. The real
damage scenarios are shown and the misidentified elements found
by the proposed methodology are underlined for a better under-
standing of the results.

Table 5 shows the results for the simulated damages scenarios
in structure T1. All of the damage scenarios were correctly found.
Only one misidentified element was computed for damage sce-
nario S2 with a low damage extent. The maximum error in the
computation of the damage extent was less than 0.009 and a min-
imum error of 0.002 was found for scenario S1. A smaller popula-
tion size could have been used for this structure, but the role of the
population size was not analysed in this paper.

The performance of our methodology to detect the damage
scenarios in structure T2 is shown in Table 6. Nearly all of the

Fig. 3. The structures of the analysed trusses.

Table 3
Simple damage scenarios.

Structure ID scenario Damaged element Damage b

T1 S1 1 0.310
S2 7 0.180
S3 13 0.330

T2 S4 3 0.480
S5 9 0.350
S6 27 0.240

T3 S7 1 0.290
S8 29 0.250
S9 30 0.450

T4 S10 5 0.480
S11 26 0.180
S12 38 0.410

T5 S13 8 0.220
S14 17 0.450
S15 35 0.280

T6 S16 3 0.330
S17 31 0.300
S18 44 0.190
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damage scenarios resulted in at least one misidentified element
with damage less than 0.07. The errors in the computed damage
for the real damaged elements were less than 0.012. Identical dam-
age scenarios were simulated in the absence of noise. The exact dam-
age scenario was found for all of the examples, which indicates that
more reliable results can be obtained if we diminish the noise level
in the measurements. Also, the methodology was tested considering
measurements with high levels of noise, until 2% in natural frequen-
cies and 10% in mode shapes. It was observed that the real damaged
elements were identified and the number of misidentified elements
increased as the noise increased.

Table 7 shows the results for the different damage scenarios that
were applied to structure T3. The error in the computation of the
damage extent was less than 0.015 in all cases. More than one
misidentified element was computed for damage scenarios S7,
M5 and M6. These elements generally had low values of damage,

but element 26 in scenario M6 showed a high damage value. How-
ever, the performance of the proposed methodology can be consid-
ered satisfactory.

The results for structure T4 are shown in Table 8. All of the sim-
ple damage scenarios had some misidentified elements. The meth-
odology did not have a good performance in the case of multiple
damage scenarios, as element 38 in scenario M7 was not identified
as damaged. In a detailed analysis, it was observed that the meth-
odology found the real set of damaged elements in three of the ten
executions. These executions presented solutions with a slightly
lower fitness than that of the best execution. This fact would indi-
cate that the method used to select the final solution might not
work correctly if the values of the objective function for one or
more damage scenarios were similar to that of the correct solution.
This issue could be resolved by one of the following measures: (1)
explore another objective function that more reliably differentiates
between solutions, (2) use a strategy to find multiple optima or (3)
propose a new scheme to better define the final solution.

Table 9 shows the results for the damage scenarios in structure
T5. Damage scenario S14 had four misidentified elements; which is
a small percentage of the total number of elements in the struc-
ture. The damage extent for those elements was not less than
0.08, which is a relatively low damage value. The error associated
with the assessment of damage in the real damaged elements was
less than 0.035.

The damage scenarios analysed for structure T6, simple and
multiple, produced the greatest number of misidentified elements
(Table 10). However, all of the real damaged elements were iden-
tified with differences in the value of the damage less than 0.033.
The best performance was obtained in the identification of damage
scenario S18 in which a horizontal element was damaged. For this
scenario, only one element was misidentified and the damage va-
lue was low.

In general, it is observed that simple damage scenarios can be
found with more confidence than multiple damage scenarios. The
difference between the real and computed damage values was less
than 0.05, which may have originated from the presence of noise in
the measurements. Most of the cases produced a few misidentified
elements with low values of damage. However, it was possible to
observe some scenarios that had misidentified elements with a
damage values greater than 0.1, such as scenarios M6 and S10.
The performance of the damage detection methodology may
depend on the damage scenario analysed, therefore it is not possi-
ble to guarantee that the methodology works in 100% of the cases.

6.1. Convergence, generations and misidentified elements

The number of correct executions out of ten, the average number
of misidentified elements and the average number of generations for
each damage scenario simulated are shown in Table 11. The
performance of the methodology is excellent at detecting simple
damage scenarios, producing only a few misidentified elements

Table 4
Multiple damage scenarios.

Structure ID scenario Damaged element Damage b

T1 M1 1 0.470
7 0.250

13 0.300
M2 2 0.160

6 0.200
11 0.200

T2 M3 3 0.330
9 0.230

27 0.260
M4 2 0.420

22 0.300
30 0.350

T3 M5 1 0.270
29 0.230
30 0.260

M6 8 0.150
9 0.150

33 0.150

T4 M7 5 0.160
26 0.200
38 0.180

M8 7 0.340
35 0.200
36 0.250

T5 M9 8 0.400
17 0.350
35 0.450

M10 30 0.380
5 0.280

24 0.300

T6 M11 30 0.150
31 0.180
44 0.150

M12 8 0.200
39 0.240
42 0.270

Table 5
The results for structure T1.

ID scenario

S1 S2 S3 M1 M2

Elem. bj Elem. bj Elem. bj Elem. bj Elem. bj

Real 1 0.310 7 0.180 13 0.330 1 0.470 2 0.160
7 0.250 6 0.200

13 0.300 11 0.200

GA 1 0.308 7 0.174 13 0.333 1 0.472 2 0.168

8 0.039 7 0.253 6 0.200

13 0.309 11 0.203
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and reaching the convergence to the solution in a few generations.
For multiple damage scenarios, the methodology may not find the
total of real damaged elements in all the executions, as it can be
observed in the results for the M7 scenario. An average of seven mis-
identified elements was found, but this quantity corresponded to
only 16% of the elements in the structure. Convergence was reached
before completing the maximum number of generations for both
types of damage scenarios. Therefore, it can be concluded that differ-
ent damage scenarios will be found with different reliability levels.

6.2. Evolution of the number of damaged elements

Figs. 4 and 5 show how the Number of Damaged Elements in the
binary chromosome of the best Individual (NDEI) decreases with
the generation number. This is the principal characteristic of the
proposed genetic algorithm because it permits convergence to a

solution with a few damaged elements. The number of elements
may increase between consecutive generations, but the overall
trend is to decrease. For scenario S9, four damaged elements were
found, but Table 3 shows only one element because the other three
elements had damage values of less than 0.03. Damage scenario M5
had three damaged elements and our method detected seven dam-
aged elements. Some of the misidentified elements had damage
values greater than 0.03.

6.3. Evolution in the genetic parameters

Fig. 6 shows the self-adaptation of the average genetic parame-
ters for two damage scenarios in structure T4. These parameters
did not converge to a specific value before the algorithm converges
to the solution of the problem. A similar behaviour was observed
for the other damage scenarios. Therefore, it should be pointed

Table 6
The results for structure T2.

ID scenario

S4 S5 S6 M3 M4

Elem. bj Elem. bj Elem. bj Elem. bj Elem. bj

Real 3 0.480 9 0.350 27 0.240 3 0.330 2 0.420
9 0.230 22 0.300

27 0.260 30 0.350

GA 3 0.475 9 0.346 27 0.239 3 0.331 2 0.386

18 0.068 18 0.041 6 0.046 18 0.075

9 0.229 22 0.312
27 0.258 30 0.344

Table 7
The results for structure T3.

ID Scenario

S7 S8 S9 M5 M6

Elem. bj Elem. bj Elem. bj Elem. bj Elem. bj

Real 1 0.290 29 0.250 30 0.450 1 0.270 8 0.150
29 0.230 9 0.150
30 0.260 33 0.150

GA 1 0.290 26 0.039 30 0.448 1 0.274 8 0.160

9 0.036 29 0.262 12 0.042 9 0.146

30 0.042 29 0.269 10 0.034

37 0.061 30 0.443 26 0.229

42 0.061 34 0.032 33 0.181

Table 8
The results for structure T4.

ID scenario

S10 S11 S12 M7 M8

Elem. bj Elem. bj Elem. bj Elem. bj Elem. bj

Real 5 0.480 26 0.180 38 0.410 5 0.160 7 0.340
26 0.200 35 0.200
38 0.180 36 0.250

GA 5 0.480 26 0.173 1 0.140 1 0.127 1 0.064

19 0.161 31 0.033 5 0.069 5 0.242 7 0.327

21 0.029 8 0.117 10 0.127 19 0.082

44 0.044 12 0.042 26 0.188 35 0.114

21 0.075 30 0.043 36 0.248

32 0.036 32 0.032 38 0.092

35 0.086

38 0.448

44 0.093
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out that the values of the genetic parameters seem to depend on
each specific run. On the other hand, the principal contribution
of the proposed methodology is that it eliminates the need to

Table 9
The results for structure T5.

ID Scenario

S13 S14 S15 M9 M10

Elem. bj Elem. bj Elem. bj Elem. bj Elem. bj

Real 8 0.220 17 0.450 35 0.280 8 0.400 3 0.380
17 0.350 5 0.280
35 0.450 24 0.300

GA 8 0.185 9 0.072 6 0.065 6 0.110 3 0.378

33 0.037 17 0.446 19 0.046 8 0.377 5 0.273

27 0.047 27 0.037 17 0.358 24 0.320

29 0.063 35 0.256 33 0.049 27 0.032

30 0.034 35 0.438

Table 10
The results for structure T6.

ID Scenario

S16 S17 S18 M11 M12

Elem. bj Elem. bj Elem. bj Elem. bj Elem. bj

Real 3 0.330 31 0.300 44 0.190 3 0.150 8 0.200
31 0.180 39 0.240
44 0.150 42 0.270

GA 3 0.322 3 0.126 25 0.055 3 0.125 7 0.102

11 0.138 7 0.109 44 0.184 8 0.042 8 0.204

12 0.073 8 0.087 11 0.085 21 0.060

20 0.032 11 0.164 25 0.071 39 0.211

22 0.041 31 0.298 26 0.071 42 0.303

25 0.071 47 0.125 31 0.165 50 0.033

31 0.043 48 0.037 44 0.141

39 0.029 49 0.029 56 0.092

53 0.046 57 0.038

Table 11
Performance of the SAMGA for the different damage scenarios.

ID scenarios Correct runs Misidentified elements Generations

S1 10 3 87
S2 10 3 91
S3 10 2 87
S4 10 3 115
S5 10 2 92
S6 10 3 118
S7 10 6 150
S8 10 3 120
S9 10 3 145
S10 10 11 354
S11 9 10 343
S12 10 13 387
S13 10 4 137
S14 10 5 126
S15 10 4 127
S16 10 10 144
S17 10 8 138
S18 10 4 117
M1 10 3 72
M2 10 4 114
M3 10 6 197
M4 10 6 192
M5 9 6 173
M6 10 8 197
M7 3 12 383
M8 3 7 262
M9 10 7 170
M10 10 5 108
M11 9 8 184
M12 10 7 157
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Fig. 4. Scenario S9: one damaged element.
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Fig. 5. Scenario M5: three damaged elements.
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provide initial values for the genetic parameters. More studies
must be performed to propose better self-adaptation techniques.

7. Conclusions

This paper proposes the use of a self-adaptive multi-chromo-
some genetic algorithm (SAMGA) to locate and quantify damage
in structures. This type of algorithm permits representing the dam-
age extent and the position of the damage by using two different
chromosomes. A third chromosome is used for the self-adaptation
of the genetic parameters, but the population size must be defined
by trials. The results show that the proposed methodology can reli-
ably determine the real damaged elements and the damage extent
for different damage scenarios. Among all of the damage scenarios
analysed, only one damaged element was not found and a few ele-
ments were misidentified as damaged elements. These elements
generally presented a low value of damage. The success of this
algorithm can be attributed to the fact that the number of damaged
elements in each individual of the population can change during
the evolutionary process.
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Fig. 6. The evolution of the genetic parameters: (a) binary crossover rate, (b) real crossover rate, (c) binary mutation rate and (d) real mutation rate. Scenario M8: solid line.
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