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Abstract

Several phylogeographic studies of seabirds have documented low genetic diversity that has been attributed to bot-
tleneck events or individual capacity for dispersal. Few studies have been done in seabirds on the Brazilian coast
and all have shown low genetic differentiation on a wide geographic scale. The Kelp Gull is a common species with a
wide distribution in the Southern Hemisphere. In this study, we used mitochondrial and nuclear markers to examine
the genetic variability of Kelp Gull populations on the Brazilian coast and compared this variability with that of
sub-Antarctic island populations of this species. Kelp Gulls showed extremely low genetic variability for mitochon-
drial markers (cytb and ATPase) and high diversity for a nuclear locus (intron 7 of the �-fibrinogen). The intraspecific
evolutionary history of Kelp Gulls showed that the variability found in intron 7 of the �-fibrinogen gene was compatible
with the variability expected under neutral evolution but suggested an increase in population size during the last
10,000 years. However, none of the markers revealed evidence of a bottleneck population. These findings indicate
that the recent origin of Kelp Gulls is the main explanation for their nuclear diversity, although selective pressure on
the mtDNA of this species cannot be discarded.
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Introduction

The gull genus Larus, which consists of 25 species

worldwide, has a complex evolutionary history. Twenty-

one species of Larus occur in the Northern Hemisphere and

hybridization among several species in areas of secondary

contact has been documented (Liebers et al., 2001; Crochet

et al., 2003; Pons et al., 2004). Most studies of the genus

Larus have addressed the systematics of this group and

have reported recent divergence among various species

(Crochet et al., 2003; Pons et al., 2005). Some studies have

concluded that the last glaciations had a strong influence on

the evolutionary pressures acting on this group (Liebers et

al., 2001, 2004; Crochet et al., 2003). In contrast to North-

ern Hemisphere species, little is known about the four spe-

cies of Larus that occur in the Southern Hemisphere.

Indeed, the work described in here is the first study to ex-

amine the population genetics of this group.

Larus dominicanus (Kelp Gull) (Charadriiformes:

Laridae) is a common species that is widely distributed in

the Southern Hemisphere, including South America, south-

ern Africa, Australia, New Zealand, sub-Antarctic islands

and the Antarctic Peninsula (Burguer and Gochfeld, 1996).

Several studies have documented a large increase in the

size of Kelp Gull populations in recent decades (Quintana

and Yorio, 1998; Steele and Hockey, 1990). For example,

the Kelp Gull population of the Valdez Peninsula, Argen-

tina, reportedly increased from 3,200 to 6,500 breeding

pairs in 10 years (Quintana and Yorio, 1998). These in-

creases in population size may reflect the fact that the Kelp

Gull is a competitive species that preys on several seabird

species and displaces many species from their breeding

sites (Quintana and Yorio, 1998). However, the effects of

Kelp Gulls on coastal wildlife are not confined to other sea-

birds. Thomas (1988) and Rowntree et al. (1998) observed

Kelp Gulls injuring Right Whales (Eubalaena australis) by

picking off skin and fat when the whales surfaced to brea-

the. These authors argued that intense harassment by gulls

caused Right Whales to abandon breeding areas before

their young are sufficiently strong for the open sea.
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For several species of seabirds, there are few or no

vicariant processes and extrinsic barriers to dispersion

(Congdon et al., 2000), leading to the expectation that low

levels of population structure should be observed. On the

other hand, strong philopatry, a wide geographic distribu-

tion or historic separation can create substantial genetic dif-

ferentiation in some species (Genovart et al., 2003).

Several studies had shown low population structure in sea-

birds (Austin et al., 1994; Friesen et al., 1996). On the Bra-

zilian coast, the few studies that have been done have

shown low genetic differentiation on a wide geographic

scale. Faria et al. (2010) observed low genetic structure in

the South American Tern (Sterna hirundinacea) on the

Brazilian coast. Gonçalves et al. (2007) also found low ge-

netic structure in Calidris pusilla on the north coast of

Brazil. A similar pattern was observed for Sula dactylacta

and Sula leucogaster along the Brazilian coast (Baum-

garten MM, 2003, PhD thesis, Universidade de São Paulo,

São Paulo, Brazil). In all three cases, low genetic differenti-

ation was attributed to a high capacity for dispersion that

homogenized the genetic variability among population or

to a population bottleneck that reduced the genetic diversity

through the loss of a large number of individuals.

For many years, phylogeographic studies were based

on the analysis of a single locus for mitochondrial markers

(Austin et al., 1994; Brown et al., 2004; Helbig and Sei-

bold, 1999; Avise et al., 2000). However, more recently,

the use of nuclear markers to infer evolutionary history has

proven to be highly informative; these markers allow infer-

ences on more remote demographic events that have helped

to clarify the evolutionary history of many groups (Hare et

al., 2002; Godinho et al., 2006; Melo-Ferreira et al., 2009).

Mitochondrial and nuclear markers have different effective

population sizes and modes of inheritance such that demo-

graphic events shape the variation in these genetic markers

in distinct ways (Zink and Barrowclough, 2008). In addi-

tion, because mitochondria do not generally undergo re-

combination any selection events on a mitochondrial gene

would tend to decrease the diversity at linked loci through

hitch-hiking or background selection (Bazin et al., 2006).

Since mitochondria show maternal inheritance the pattern

observed for this molecule faithfully represents the history

of the population based on female patterns (Ballard and

Whitlock, 2004). In contrast, nuclear markers reflect both

male and female histories (Zhang and Hewitt, 2003), have

deeper coalescence times and experience recombination,

thus making distinct unlinked markers independent. Conse-

quently, studies that use both markers should provide a

more accurate evolutionary history of the group being in-

vestigated.

Into this context, Kelp Gulls are an interesting group

in which to study phylogeography patterns because of their

wide distribution, fast-growing populations and intense

interaction with other species. The use of nuclear and mito-

chondrial markers should allow us to reconstruct the evolu-

tionary history of this species on the Brazilian coast. The

aim of the present study was to estimate the divergence of

the Kelp Gull from its sister groups and to describe the ge-

netic variability of this species in populations on the Brazil-

ian coast in comparison with sub-Antarctic islands popula-

tions of this species. Two major questions were addressed:

1) Are Brazilian populations genetically different from

each other and from non-Brazilian populations? and 2) Is

there genetic evidence for a population bottleneck or ex-

pansion in the recent evolutionary history of Kelp Gulls?

Materials and Methods

Phylogenetic analysis

The phylogenetic analyses of the Larus group re-

ported by Liebers et al. (2004) and Pons et al. (2005) lo-

cated the Kelp Gull in a group consisting of large white-

headed gulls. Based on these analyses, we sought to esti-

mate the divergence of the Kelp Gull from its sister groups.

For this, we used 105 specimens, i.e., five specimens of L.

dominicanus and 98 individuals from other taxa of the ge-

nus Larus; the phylogeny was rooted with the two individu-

als from genus Rissa with 405 bp of cytochrome b, obtained

from GenBank (Supplementary material Table S1). The se-

quences were aligned by eye using Bioedit v. 7.0 (Hall,

2001). The most appropriate model of DNA evolution for

the sequences was inferred with MODELTEST (Posada

and Cradall, 1998) implemented in PAUP v. 4.0 (Swofford,

2000). Bayesian inferences were done using BEAST

v.1.4.8 software (Drummond and Rambaut, 2007). This

analysis was based on the following assumptions: a re-

stricted molecular clock, a 2% per million years substitu-

tion rate and a 3.3 Mya (Million years ago) divergence be-

tween the genera Rissa and Larus (Paton et al., 2003). We

then used a portioned Bayesian Inference search in a

Markov-Chain Monte Carlo analysis to run four independ-

ent chains, each with 10,000,000 steps and sampled every

1000 steps, excluding a burn-in of 1,000,000 trees. The pa-

rameter analysis was visualized by means of Tracer v. 1.4.1

software and the trees were connected in TreeAnotator and

visualized in FigTree (Drummond and Rambaut, 2007).

Intraspecific analysis

Population sampling

This study was based on samples from seven islands

on the Brazilian coast and two sub-Antarctic islands (Fig-

ure 1). Individuals were captured using a hand net and

marked with a metal ring provided by CEMAVE/IBAMA

(license no. 1060) during the breeding seasons from 2002 to

2005. Blood samples were collected from the brachial vein

of all captured individuals and stored in 100% ethanol at

room temperature. This blood collection technique did not

injure the gulls or result in any deaths. The samples were

stored in the Laboratório de Biologia Evolutiva e Conser-

vação de Vertebrados (LABEC/IB-USP). Total genomic
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DNA was isolated from blood samples by a standard phe-

nol/chloroform technique, precipitated with ethanol and re-

suspended in Tris-EDTA (TE) buffer (Sambrook et al.,

2001). In addition, sequences available in GenBank from

Kerguelen Island and New Zealand were included in the

analysis to compare genetic diversity.

Molecular methods

Two regions of mitochondrial DNA (ATPase 8 and 6

of ~750 bp and cytochrome b (cytb) of ~350 bp) and one nu-

clear (intron 7 of �-fibrinogen, ~900 bp) were used in this

study. ATPase 8 is the second most variable region of the

mitochondrial genome in birds, but it is short (165-168 pb).

The cytb gene is a well-conserved region with an estimated

substitution rate of ~2%/Myr for the entire avian mitochon-

drial genome (Shields and Wilson, 1987; Bridge et al.,

2005). Intron 7 of �-fibrinogen is located on chromosome 4

in chicken (Gallus gallus) and has been used in other

phylogeographic studies (Bridge et al., 2005; Godinho et

al., 2006; Gonçalves et al., 2007); this intron has an evolu-

tionary rate of 0.53%/Myr in the pigeon (Johnson and Clay-

ton, 2000). The ATPase 8 and 6 fragments were amplified

using primers Lys (Sorenson et al., 1999) and int-H (Faria

et al., 2007), cytb was amplified using primers L15008 and

H1532b (Desjardin and Morais, 1990) and intron 7 of

�-fibrinogen was amplified using primers FIB7U and

Fib7L (Prychitko and Moore, 2000). The reactions for

ATPase 8 and 6 and cytb were run in a final volume of 10

�L containing 1X Taq platinum polymerase buffer (10 mM

Tris-HCl, pH 8.3, 50 mM KCl), 2.5 mM MgCl2, 2 mM of

each dNTP, 10 pmol of primer, 0.5 units of Taq polymerase

and approximately 20 ng of DNA. The PCR cycling se-

quence consisted of 94 °C for 5 min, followed by 35 cycles

of 94 °C for 45 s, 58 °C for 35 s and 72 °C for 45 s, with a fi-

nal extension at 72 °C for 10 min. The PCR for �-fibri-

nogen PCR was done in a final volume of 10 �L containing

1X PCR buffer (50 mM Tris-HCl, 50 mM NaCl, pH 8.5),

200 uM of each dNTP, 0.5 units of GoTaq DNA polymer-

ase (Promega), 5 pmol of each primer and approximately

50 ng of DNA. The PCR began with an initial denaturation

of 5 min at 95 °C followed by 38 cycles of 30 s at 95 °C, 45 s

at 60 °C, 1 min at 72 °C and a final extension of 7 min at

72 °C.

The PCR products were purified using EXOI-SAP

(1:1). Sequences were obtained using BigDye terminator

(version 3.1) (Applied Biosystems) according to the manu-

facturer’s recommendations and the primers used for PCR;

the sequences were analyzed on an Applied Biosystems

3100 genetic analyzer. Electropherograms were checked

by eye in ChromasLite (www.technelysium.com.au). The

alignments were adjusted by eye in Bioedit v.5.06 software

(Hall, 2001). A Bayesian approach run with the program

PHASE (Stephens et al., 2001) was used to identify haplo-

types of heterozygotes in the nuclear intron; this program

reconstructs the haplotype as implemented in DNAsp

v. 5.10.01 software (Librado and Rozas, 2009). The RDP

(Recombination Detection Program) v.3 (Martin et al.,

2005) was used to detect recombination in the set of aligned

DNA sequences, based on the following methods: the origi-

nal RDP, bootscanning, GENECONV, Maximum Chi

Square, Chimaera, Sister Scanning and 3SEQ. All of these

non-parametric recombination detection methods provided

a detailed breakdown of the recombination breakpoint loca-

tions and of the identities of recombinant and parental se-

quences.

Comparison of mtDNA versus nDNA diversity

For intraspecific analyses, a fragment of cytb (312 bp)

was sequenced in 83 individuals from the Brazilian coast,

seven individuals from the Antarctic Peninsula, and five in-

dividuals from Marion Island. These sequences were com-

pared with those available in GenBank from New Zealand

(NC006007, AY293619 and AF268497) and Kerguelen Is-

land (AF444259). The coding region of ATPase 6 and 8

was sequenced for 58 L. dominicanus individuals from the

Brazilian coast. Intron 7 of the �-fibrinogen gene (858 bp)

was sequenced in 66 individuals from the Brazilian coast,

seven individuals from the Antarctic Peninsula and three

individuals from Marion Island.

Descriptive analyses including haplotype diversity

(h), nucleotide diversity (�) and Theta per gene (�) were

calculated for all loci using DNAsp v.5.10.01 (Librado and

Rozas, 2009). Tajima’s D value (Tajima, 1989) and Fu and

Li’s D* and F* values (Fu and Li, 1993) and the signifi-

cance of these neutrality test statistics were calculated us-

ing DNAsp v.5.10.01 (Librado and Rozas, 2009). DNAsp

v.5.10.01 was also used to calculate parameters for the de-

mographic history of the population based on mismatch

distributions; unimodal curves are expected in populations
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Figure 1 - Locations of the breeding colonies of L. dominicanus sampled

in the Southern Hemisphere: São Paulo (Laje Conceição, Guararitama and

Queimadinha), Santa Catarina (Tambores, Itacolomis, Deserta, Moleques

and Lobos), Antarctic Peninsula, Marion Island and Kerguelen Island.



that have undergone rapid population expansion (Rogers

and Harpending, 1992). The Raggedness statistic and Ra-

mos-Onsins and Rozas R2 statistics (Ramos-Onsins and

Rozas, 2002) were used to test for deviations between the

observed and expected on mismatch distribution. Haplo-

type networks were constructed using the median-joining

method (MJN) (Bandelt et al., 1999) as implemented in the

NETWORK v.4.1.0.8 software

We used coalescent simulations to generate the pre-

dicted levels of genetic diversity based on a priori specified

demography history, thus allowing us to contrast nuclear

and mitochondrial markers based on the following assump-

tions or hypothesis: 1) If a demographic event affected the

gull populations it would leave signatures in the entire mi-

tochondrial and nuclear genomes; on the other hand, selec-

tive events would leave signatures only at individual loci

and unlinked loci, 2) Liebers et al. (2001) stated that the last

glaciation affected the distribution of these gulls; conse-

quently, if the last glaciation reduced the population size

then the ecological expansion observed today is a conse-

quence of expansion after this period, and 3) if this species

has a recent origin, as described for other seabirds (Crochet

et al., 2003; Pons et al. (2005), then the diversity observed

in mitochondrial DNA and nuclear DNA is the result of an-

cestral polymorphism, with or without expansion of the

species.

The simulations based on these three scenarios were

run in SIMCOAL2 (Laval and Excoffier, 2004): Scenario 1

– the L. dominicanus population has experienced continu-

ous expansion from the time of its divergence from other

Larus species to the present, Scenario 2 – the population

passed through a bottleneck that reduced 90% its original

population size 10,000 years ago followed by subsequent

expansion and Scenario 3 – the population has a recent ori-

gin with regard to the time of divergence from Larus fuscus

complex to form L. dominicanus as estimated here and has

not experienced expansion or a bottleneck. This approach

allowed us to compare the results for all Brazilian popula-

tions with simulated data generated under each model, with

the following additional assumptions: a substitution rate of

2%/Myr for cytochrome b (Shields and Wilson, 1986) and

0.53%/Myr for �-fibrinogen (Johnson and Clayton, 2000).

The initial population sizes were calculated for each popu-

lation on the Brazilian coast based on the variability of the

�-fibrinogen locus (Table 1). The generation time used in

this simulation for L. dominicanus was 10 years based on

that estimated for L. michaelis from field data (Crochet et

al., 2003). The estimated divergence time between L.

dominicanus and the L. fuscus complex in this work was

used to calculate the number of generations from the diver-

gence up to the present day. For each scenario, 10,000 sim-

ulations were run and the SIMCOAL2 results were then

analyzed using ARLEQUIN v.3.01 (Excoffier et al., 1992)

to estimate Tajima’s D values for each simulation. The val-

ues obtained during each run were used to construct the dis-

tribution of Tajima’s D values for each L. dominicanus

population on the Brazilian coast. Finally, the observed

Tajima’s D values for each Brazilian population were com-

pared with the distribution generated by the simulations.

Population analysis

Population analyses were done only for intron 7 of

�-fibrinogen since the mitochondrial locus showed insuffi-

cient variation. Each island was considered as a single pop-

ulation. We estimated the haplotype diversity (h), nucleo-

tide diversity (�) and Theta (�) per gene for each population

using DNAsp v. 5.10.01. In addition, Tajima’s D value, Fu

and Li’s D* and F* values and Ramos-Onsins and Rozas R2

statistics were calculated for all populations and the signifi-
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Table 1 - Analysis of the genetic diversity of intron 7 of �-fibrinogen in various L. dominicanus populations, showing the number of polymorphic sites

(S), haplotype number (NH), haplotype diversity (H), nucleotide diversity (�) and theta (�) per gene. The parameters used in the neutrality test of intron 7

of the �-fibrinogen gene are also shown.

Localities N S NH H � � Tajima’s D Fu and Li’s D* Fu and Li’s F*

Guararitama SP 36 18 23 0.933 0.00528 3.973 0.205 0.545 0.512

Queimadinha SP 24 11 16 0.960 0.00442 3.181 0.287 0.355 0.384

Laje Conceição SP 10 9 7 0.933 0.00433 3.181 1.488 0.904 1.197

Moleques SC 20 16 13 0.905 0.00428 4.408 -0.511 1.518** 1.055

Tambores SC 12 4 5 0.667 0.00150 1.325 -0.016 1.195 1.004

Deserta SC 22 13 15 0.905 0.00526 3.566 1.256 1.038 1.282

Lobos SC 14 13 10 0.945 0.00563 4.088 0.900 1.102 1.998

Antarctica IA 14 6 4 0.571 0.00232 1.887 0.699 0.505 0.634

Marion IA 6 0 1 0 0 0 0 0 0

Total 152 33 66 0.906 0.00478 5.895 -0.628 0.840 0.297

N – number of individuals. SP – islands in São Paulo state, Brazil; SC – islands in Santa Catarina state, Brazil; IA – islands in the Antarctic region.

**p < 0.02.



cance of these test statistics was assessed using DNAsp

v. 5.10.01 (Librado and Rozas, 2009).

The overall differentiation of intron 7 of �-fibrinogen

among the sampled populations was quantified using pair-

wise F-statistics. Empirical FST values were compared with a

null distribution of no difference between the populations to

test for significance. The analyses were implemented in

ARLEQUIN with 10,000 permutations. Molecular distances

were estimated by the method of Tamura (1992) which al-

lows for unequal nucleotide frequencies. The transi-

tion-to-transversion ratios, as well as the overall nucleotide

frequencies, were computed from the original data. The par-

titioning of genetic differences among populations was as-

sessed using hierarchical analysis of molecular variance

(AMOVA; Excoffier et al., 1992), with 10,000 permutations

and estimates of molecular distance (Tamura, 1992).

The Mantel test was used to assess the association be-

tween geographic distance and genetic distance for all pop-

ulation pairs. The test was initially included all islands

(Brazilian and sub-Antarctic ones) and was then run by

considering the Brazilian islands and the Antarctic Penin-

sula without Marion Island since the latter locality had only

one haplotype.

Bayesian Skyline plots were constructed with

BEAST v. 1.4.6 (Drummond and Rambaut, 2007) to esti-

mate historical changes in population size over time. Since

this method for estimating historical demography assumes

that sequences are sampled from a single panmitic popula-

tion the analysis considered all of the populations as a sin-

gle group. This method uses Markov-Chain Monte Carlo

sampling techniques to estimate the posterior distribution

of effective population size given a set of aligned DNA se-

quences and a model of molecular evolution and takes into

consideration uncertainty in the genealogical process

(Drummond et al., 2005). The best-fit model of molecular

evolution selected based on the criteria of Posada and

Cradall (1998) was implemented in PAUP v.4.0 (Swofford,

2000). The skyline plot was run for 20,000,000 steps with

parameters logged every 2,000 steps and a burn-in of

1,000,000 trees, under a strict molecular clock based on a

substitution rate of 0.53%/Myr for �-fibrinogen of G.

gallus (Jonhson and Clayton, 2000). Skyline plots were

constructed using TRACER v.1.4.1 (Drummond and

Rambaut, 2007).

Results

Phylogenetic analyses

Phylogenetic Bayesian analysis based on cytochrome

b was done using the HKY+G model. The inferred topol-

ogy showed short branch lengths within gull species (Fig-

ure 2). Larus dominicanus appeared as a monophyletic

clade and the sister clade consisted of six species from the

fuscus complex: L. taymyrensis, L. glaucoides, L.

glaucescens, L. smithsonianns, L. marinus and L. shiasagus

(Figure 2). The estimated divergence time of L.

dominicanus from the fuscus complex was ~241,200 years

ago. The time to the most recent common ancestor of L.

dominicanus was ~153,184 years ago.

Intraspecific analyses

Comparison of mtDNA and nDNA diversity

Larus dominicanus from the Brazilian coast showed

only one haplotype for cytochrome b while the sequences

from the Antarctic Peninsula, Marion Island, Kerguelen Is-

land and New Zealand represented another haplotype that

differed by a single substitution (Table 2). The coding re-

gion of ATPase 6 and 8 contained three haplotypes with

two polymorphic sites (Table 2). The most common haplo-

type found on the Brazilian coast (HBRA01) was identical

to the sequences found in New Zealand (NC006007,

AY293619) (Figure 3). On the other hand, intron 7 of

878 Genetic diversity of the Kelp Gull

Figure 2 - Bayesian tree based on mtDNA (a fragment of cytochrome b)

depicting the phylogenetic relationships of gull species. The numbers indi-

cate the date of the corresponding clade (1 = 153,184 years ago,

2 = 241,202 years ago, 3= 3,300,00 years ago) and the light grey shading

indicates the dominicanus clade.



�-fibrinogen had a comparatively higher genetic diversity

with 55 haplotypes, 28 polymorphic sites, three singletons

and 25 parsimonius sites (Figure 3 and Table 2). All of

these sequences are available through GenBank accession

numbers FJ668863-FJ668936. None of the methods imple-

mented in RDP3 software provided any evidence of recom-

bination in intron 7 of �-fibrinogen, a finding that allowed

the use of all haplotypes in subsequent analyses.

Tajima’s D value and Fu and Li’s D* and F* values

for cytochrome b, ATPase 6 and 8 and intron 7 of �-fibri-

nogen revealed no significant deviation from neutrality and

the expected equilibrium (Table 2), except for Fu and Li’s

D* value for intron 7 of �-fibrinogen. The mismatch distri-

bution of intron 7 of �-fibrinogen showed a wave signal

(multiple peaks) consistent with a stable population (Rag-

gedness index = 0.0110 and Ramos-Onsins and Rozas

r2 = 0.0723, p = 0.60; intial theta = 1.89 and tau = 2.19)

(Figure 4). However, the mismatch distribution for loci

from mtDNA did not show the expected bias for cyto-

chrome b (Raggedness statistic r = 0.280 and Ramos-On-

sins and Rozas r2 = 0.1367; estimated initial theta = 0.00

and tau = 0.273) and ATPase 6 and 8 (Raggedness statistic

r = 0.199 and Ramos-Onsins and Rozas r2 = 0.0925; esti-

mated initial theta = 0.000 and tau = 0.370).

The best scenario from simulations that could explain

the variation found in nuclear intron 7 of �-fibrinogen was

the hypothesis of a recent origin and neutral evolution,

without marked expansion. None of the models used in the

simulations were compatible with the diversity found at the

cytochrome b locus. We therefore chose to show only the

outcomes of the simulations for this scenario (Figure 5) be-

cause other simulations showed distributions that did not

include the values observed in the populations.

Population analysis

When Tajima’s D value and Fu and Li’s D* and F*

values for intron 7 of �-fibrinogen were analyzed for each
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Figure 3 - Median joining networks based on ATPase 6 and 8 mtDNA and

intron 7 of �-fibrinogen (Fib7) nuclear DNA from L. dominicanus in the

Southern Hemisphere. São Paulo (grey), Santa Catarina (black), Antarctic

(white), Marion Island (vertical lines) and outgroup (green).



population separately they revealed no significant devia-

tion from neutrality and the expected equilibrium, except

for the Moleques population in Santa Catarina that deviated

significantly from Fu and Li’s D test (Table 1).

AMOVA of intron 7 of the �-fibrinogen revealed sig-

nificant differentiation among populations, but a large part

of the total variation was found within the population (92%;

Table 3). The Marion Island population was the most dif-

ferentiated population of L. dominicanus because of a sin-

gle exclusive haplotype (Table 4). There was also differen-

tiation between the Antarctic and São Paulo islands

(Guararitama, Queimadinha, Laje da Conceição) but there

was no marked differentiation between Santa Catarina is-

lands (Moleques, Tambores, Itacolomis) and the Antarctic.

This weak structure was corroborated by the locus network

(Figure 3) which detected no exclusive haplotypes for any

region, except for Marion Island.

The Mantel test detected a correlation between dis-

tance and genetic differentiation when all populations were

used in the test (r = 0.826) but this was not significant (test

t = 2.5752; p = 0.9950). The correlation found using that the

Mantel test without Marion Island was r = 0.324 (test

t = 1.2651; p = 0.8971). The Bayesian Skyline analysis in-

dicated rapid growth that started ~10,000 years ago and has

continued up to the present time, with no sign of retraction

during the evolutionary history of these lineages of intron 7

of the �-fibrinogen gene (Figure 6).

Discussion

Phylogenetic analysis

The phylogenetic analysis indicated that the Larus

group has a recent origin: L. dominicanus diverged from the

fuscus complex 241,201 years ago and the time to the most

recent common ancestor was estimated at 153,184 years

ago (Figure 2). Other researchers have also shown that the

Larus group has a recent origin. The argentatus-fuscus

complex diverged between 100,000 and 170,000 years ago

(Crochet and Desmarais, 2000); the species into this com-
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Table 3 - Analysis of molecular variance (AMOVA) for intron 7 of the �-fibrinogen gene of L. dominicanus populations.

Source of variation Degrees of freedom Sum of squares Variance components Percentage of variation

Among population 8 7.903 0.03565 Va 7.8

Within population 139 58.374 0.41996 Vb 92.2

Total 147 66.277 0.45560 100.00

Fst = 0.074, p = 0.00. Va: covariance component due to differences among populations within populations. Vb: covariance component among individuals

within populations.

Table 4 - Pairwise FST values for intron 7 of �-fibrinogen (below diagonal) among populations of L. dominicanus. Significant values (p < 0.05) are indi-

cated in bold.

Laje Gua Quei Mole Tam Des Lob Ant Marion

Laje -

Gua -0.225 -

Quei -0.119 0.000 -

Mole 0.025 0.038 0.112 -

Tam -0.041 -0.015 0.044 0.026 -

Des -0.009 -0.011 0.191 0.037 -0.004 -

Lob 0.161 0.120 0.270 0.033 0.107 0.147 -

Ant 0.114 0.088 0.242 0.003 0.066 0.067 0.082 -

Marion 0.539 0.407 0.434 0.625 0.548 0.424 0.844 0.780 -

Figure 4 - Mismatch distribution of the fragment of intron 7 of

�-fibrinogen nuclear DNA from L. dominicanus in the Southern Hemi-

sphere. Exp – expected, Obs – observed.



plex share several haplotypes and hybridization is observed

in their contact zone in the Northern Hemisphere. Given et

al. (2005) also reported a recent origin for masked gulls

since they estimated that nine species in the Southern He-

misphere diverged from a common ancestor ~0.5 Mya.

Overall, there is a consensus regarding the recent diver-

gence of the genus Larus and the cause of extensive hybrid-

ization among species in the Northern Hemisphere (Liebers

et al., 2001, 2004; Crochet et al., 2003; Given et al., 2005).

Comparison of mtDNA and nDNA diversity

The mtDNA results for Kelp Gulls were lower than

those found in another groups of birds in which the same

cytochrome b region was analyzed. Brooke and Rowe

(1996) reported a haplotype diversity of 0.68 and nucleo-

tide diversity of 0.0013 for Pterodroma magenta whereas

the corresponding values for Brichyranphys perdix were

0.70 and 0.004, respectively (Friesen et al., 1996). Proud-

foot et al. (2006) observed a nucleotide diversity of 0.013

for Glaucidium brasilianum and Mundy et al. (1997) re-

ported a corresponding value of 0.0043 for Lanius

ludovicianus. All of these indicators of diversity in seabirds

or other groups were considerably higher than in Kelp

Gulls, for which the haplotype diversity was 0.273 and the

nucleotide diversity 0.00083. On the other hand, the haplo-

type diversity (0.89) of intron 7 of �-fibrinogen was similar

to that of seabirds such as Calidris pussilla on the northern

coast of Brazil (Gonçalves et al., 2007).

The low genetic diversity observed for cytochrome b

and ATPase 8 and 6 was compatible with both demographic

and selective processes. Demographic factors include bot-

tlenecks and founder effects, both of which reduce popula-
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Figure 5 - Histogram of the simulation for intron 7 of �-fibrinogen from L. dominicanus populations along the Brazilian coast. Recent origin scenario: (a)

Lobos Island – RS, (b) Deserta Island – SC, (c) Tambores Island – SC, (d) Moleques do Sul Island – SC, (e) Queimadinha Island – SP and (f) Guararitama

Island – SP. The arrows indicate the position of our data in the histogram.



tion size temporally and result in an increased rate of

genetic drift (Galtier et al., 2000). On the other hand, the

rapid fixation of a new, favorable allele through directional

selection (selective sweep) can also reduce genetic variabil-

ity at a locus under selection and at linked loci (Galtier et

al., 2000). A reduction in genetic variability can transform

an abundant species into a species with a high probability of

extinction because of stochastic events such as infection by

new pathogens. Nevertheless, the �-fibrinogen gene

showed high diversity, indicating that the genetic variabil-

ity of Kelp Gulls is not at a critical level (Table 2).

The low genetic variability at mtDNA loci and a com-

paratively higher level of variation at intron 7 of �-fibri-

nogen allowed us to formulate three hypotheses:

Hypothesis 1 – demographic events reduced the genetic di-

versity of both mitochondrial and nuclear genes, but the dif-

ference in effective size between these molecules preserved

greater diversity at the nuclear gene, Hypothesis 2 – the re-

cent demographic expansion of L. dominicanus can explain

the low genetic diversity in mtDNA while the high diver-

sity in intron 7 of �-fibrinogen reflects ancestral polymor-

phism; these findings reflect differences in the effective

population size for these markers and the divergence time

of the species, and Hypothesis 3 – mitochondrial DNA

from L. dominicanus experienced a selective sweep that re-

duced its variability.

Hypothesis 1 could be the outcome of founder events

or bottleneck events on the Brazilian coast. Recent coloni-

zation can lead to reduced genetic diversity since all indi-

viduals are descendants of a small founder group (Hartl and

Clarck, 1989). If populations on the Brazilian coast are the

result of recent colonization then this may have involved

specimens from the Pacific coast of South America, the

southeast Atlantic Ocean, South Africa or Australia. Re-

gardless of the origin of these populations, this species

would use the sub-Antarctic islands and Antarctic Penin-

sula as a route to migrate to the Brazilian coast. Considering

this route of migration, the colonies on the Atlantic coast of

South America would be expected to show differentiation

in a south-north direction. However, as shown here, there

was low genetic differentiation in mitochondrial markers

such as cytochrome b when compared with populations

from Australia, New Zealand and Kerguelen Island. Over-

all, the low genetic variability of the Brazilian populations

compared with other colonies in the Southern Hemisphere

was not consistent with the hypothesis that the colonization

of this region involved founder events. On the other hand,

intron 7 of �-fibrinogen showed a cline of differentiation

between the Antarctic and Brazilian coast (Table 4), indi-

cating that this hypothesis cannot be discarded; however,

its acceptance would require an analysis of samples from

the Pacific and other sub-Antarctic islands.

A second possible demographic event that may have

occurred in L. dominicanus is the loss of genetic diversity

as a result of bottlenecks in the last glaciations. Pleistocene

glaciers promoted changes in sea temperature, currents and

other physiochemical characteristics that may have af-

fected the population history of tropical birds (Peck and

Congdon, 2004). Glacial cycles in the Pleistocene that were

associated with ecological changes affected the dynamics

of gull populations in the Northern Hemisphere (Liebers et

al., 2001). Oscillations in sea levels and changes in ecologi-

cal factors in response to glacial cycles may have reduced

the size of the Kelp Gull population. This reduction may

have led to the loss of genetic variability through succes-

sive reduction and expansion of the population. Sea levels

are known to have oscillated during the Quaternary gla-

ciations (Bigarela, 1965). On the Brazilian coast, the sea

level was up to 10 meters above its current level (Suguio,

2004) and there is evidence that regressions of approxi-

mately 100 meters below the current level occurred in the

Pleistocene (Bigarela, 1965). Such fluctuations may have

altered the breeding sites for this species. However, the in-

fluence of sea level fluctuations on the genetic diversity of

seabirds with a wide distribution and high capacity for dis-

persion remains unclear.

As shown here, Tajima’s D value and Fu and Li’s D*

and F* values and the R2 neutrality tests for intron 7 of

�-fibrinogen showed no signs of the population expansion

that would be expected in the case of a recent bottleneck

followed by expansion. Fu and Li’s D* and F* values and

the R2 statistic are more sensitive indicators of range expan-

sion when compared to Tajima’s D value (Ramos-Onsins

and Rozas, 2002). R2 is more effective when testing small

sample sizes, but these tests did not detect any sign of ex-

pansion in Kelp Gull. These results were corroborated by

mismatch distribution that showed no sign of population

expansion, with a multimodal distribution consistent with a

population in demographic equilibrium (Excoffier et al.,

1992). However, ecological data suggest that Kelp Gulls

have increased at a rate of 50% per year (Dantas and
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Figure 6 - Bayesian skyline plot for intron 7 sequences of �-fibrinogen

with a log-normal restricted clock and a generation time of 10 years. The

y-axis shows the effective number of individuals. The thick solid line is

the estimated median and the gray shaded area shows the 95% highest den-

sity limits. The x-axis is scaled as thousand years ago (Ya).



Morgante, 2010) and the Bayesian Skyline plot clearly

showed the expansion of L. dominicanus from 10,000 years

ago up to the present-day, but no sign of bottleneck events

(Figure 6). The conditions that prevailed after the last

glaciations probably favored the expansion of L.

dominicanus on the Brazilian coast. Although the summary

statistics of the data for intron 7 of �-fibrinogen were con-

sistent with a population in equilibrium, the ecological data

and Bayesian analysis indicated expansion of the popula-

tion. Gonçalves et al. (2007) also observed marked genetic

diversity in C. pusilla on the northern coast of Brazil based

on an analysis of intron 7 of �-fibrinogen; these authors

suggested that this diversity was the result of recent growth

in population size and that the populations had not experi-

enced recent bottleneck events.

Based on a generation time of 10 years for Kelp Gulls

and their recent origin dated at 241,201 years ago (which

correspond to 24,120 generations) it seems reasonable to

question whether this length of time is compatible with the

absence of variation in the mtDNA locus but insufficient

for splitting of the nuclear genome. The simulations

showed that divergence time did not explain the low ge-

netic variability observed in mtDNA whereas a recent ori-

gin explained the genetic diversity seen in �-fibrinogen

(Figure 5). This simple demographic scenario therefore

cannot explain the low genetic diversity in mtDNA and the

hypothesis of a selective sweep in mtDNA cannot be dis-

carded. In addition, Bazin et al. (2006) have shown that nat-

ural selection acting on mtDNA contributes to the homoge-

nization of diversity. These authors affirmed that mtDNA

frequently undergoes adaptive evolution involving direct

selection that targets the respiratory machinery, i.e., a form

of nucleo-cytoplasmic coadaptation. An investigation of

other mtDNA markers is needed to confirm this hypothesis.

Population diversity

Intron 7 of the �-fibrinogen gene of the Kelp Gull

showed similar variation that found in other Charadriiform

seabirds. Gonçalves et al. (2007) reported a nucleotide di-

versity of 0.0048 and haplotype diversity of 0.97 for this

species whereas we estimated the corresponding values to

be 0.0046 and 0.89, respectively. Our results were consis-

tent with previous genetic studies of seabirds on the Brazil-

ian coast (Gonçalves et al., 2007; Faria et al., 2010) in that

we observed a low genetic population structure among

Kelp Gull populations (FST = 0.074) and little differentia-

tion when compared with sub-Antarctic islands (Marion

and King George) (Table 4). This outcome was corrobo-

rated by network analysis that showed identified shared

haplotypes among regions, and by the Mantel test that de-

tected no significant correlation between geographic dis-

tance and genetic diversity.

The low genetic structure in the Kelp Gull could re-

flect the current high levels of dispersal since this species

can fly hundreds of kilometers on foraging trips and the

Brazilian coast has no apparent barriers to seabird dis-

persal. Marine currents are believed to play an important

role in species distribution and dispersion. The Brazilian

coast is influenced by a warm, nutrient-poor current that

flows from north to south. In contrast, the Falklands current

is cold, rich in nutrients and flows from the south up to Rio

de Janeiro in the north. Consequently, all of the Kelp Gull

colonies examined were influenced by the same currents.

The Kelp Gull is a poorly studied species for which impor-

tant ecological data and information on the migratory

routes are still lacking. To understand the population dy-

namics of this species it will be necessary to gather ecologi-

cal and demographic information throughout the species’

distribution.

One important result of this study was that the Baye-

sian skyline plot detected signs of a change in population

size, with a clear expansion after the last glacial maximum

and no retraction during the glacial period. This outcome is

consistent with the population expansion detected based on

ecological data from several sites around the world (Quin-

tana and Yorio, 1998; Steele and Hockey, 1990).

Conclusions

L. dominicanus has shown population growth in re-

cent decades, with skyline plots showing a rapid increase

during the last 10,000 years. Neutrality tests based on sum-

mary statistics showed no deviation from a neutral equilib-

rium model and there was no sign of bottleneck events. A

simple demographic scenario based on the estimated time

of divergence between L. fuscus and L. dominicanus did not

explain the low genetic diversity found in mtDNA. In addi-

tion, the genetic diversity found in the nuclear gene agreed

with the expected neutrality, especially considering that the

divergence between the L. fuscus complex and L.

dominicanus occurred 241,201 years ago. Based on these

findings, we cannot discard a selective sweep hypothesis

for mtDNA, although a recent origin followed by rapid ex-

pansion of this species after the last glacial period is the

most likely scenario.
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Table  S1 - List of the 105 taxa of the genus Larus used in the phylogenetic analysis. The genus Rissa
was used to root the tree.
The accession numbers are from GenBank.

AB208758.1| Larus canus

AB208757.1| Larus canus

AB208756.1| Larus canus

AB208754.1| Larus crassirostris

AB208753.1| Larus crassirostris

EF513630.1| Larus argentatus

EF513629.1| Larus argentatus

EF513628.1| Larus argentatus

EF513627.1| Larus argentatus

EF513626.1| Larus cachinnans

EF513625.1| Larus argentatus

EF513624.1| Larus cachinnan

EF513623.1| Larus cachinnans

EF373138.1| Larus marinus

AY964952.1| Larus hemprichii

AY964949.1| Larus relictus

AY964948.1| Larus saundersi

AY964947.1| Larus maculipennis

AY964946.1| Larus bulleri

AY964945.1| Larus novaehollandiae

AY964944.1| Larus hartlaubii

AY964943.1| Larus brunnicephalus

AY964942.1| Larus armenicus

AY964941.1| Larus cachinnan

AY964940.1| Larus glaucescens

AY964939.1| Larus leucophthalmus

AY964938.1| Larus modestus

AY964937.1| Larus crassirostris

AY964936.1| Larus atlanticus

AY964935.1| Larus belcheri

AY964934.1| Larus pacificus

AY615706.1| Larus thayeri

AY615705.1| Larus thayeri

AY615704.1| Larus thayeri

AY615703.1| Larus glaucescens

AY615702.1| Larus glaucescens

AY615701.1| Larus glaucescens

AY615700.1| Larus glaucescens



AY615699.1| Larus occidentalis

AY615698.1| Larus occidentalis wymani

AY615697.1| Larus occidentalis wymani

AY615696.1| Larus occidentalis occidentalis

AY615695.1| Larus occidentalis occidentalis

AY615694.1| Larus occidentalis occidentalis

AJ508148.1| Larus schistisagus

AJ508147.1| Larus occidentalis

AJ508145.1| Larus michahellis

AJ508144.1| Larus michahellis

AJ508091.1| Larus argentatus

AJ508092.1| Larus argentatus argenteus

AJ508094.1| Larus argentatus argenteus

AJ508095.1| Larus argentatus argenteus

AJ508096.1| Larus argentatus argenteus

AJ508097.1| Larus argentatus argenteus

AJ508098.1| Larus argentatus argenteus

AJ508099.1| Larus argentatus argenteus

AJ508100.1| Larus argentatus argenteus

AJ508103.1| Larus argentatus smithsonianus

AJ508104.1| Larus argentatus smithsonianus

AJ508122.1| Larus fuscus fuscus

AJ508105.1| Larus argentatus smithsonianus

AJ508106.1| Larus argentatus smithsonianus

AJ508107.1| Larus argentatus smithsonianus

AJ508108.1| Larus argentatus smithsonianus

AJ508109.1| Larus argentatus smithsonianus

AJ508110.1| Larus armenicus

AJ508111.1| Larus cachinnans barabensis

AJ508112.1| Larus cachinnans barabensis

AJ508113.1| Larus cachinnans barabensis

AJ508114.1| Larus cachinnans

AJ508115.1| Larus cachinnans

AJ508116.1| Larus cachinnans

AJ508117.1| Larus cachinnans

AJ508118.1| Larus cachinnans

AJ508119.1| Larus cachinnans

AJ508120.1| Larus cachinnans

AJ508121.1| Larus dominicanus

AJ508143.1| Larus michahellis



AJ508142.1| Larus michahellis

AJ508141.1| Larus michahellis atlantis

AJ508140.1| Larus marinus

AJ508138.1| Larus hyperboreus

AJ508123.1| Larus fuscus fuscus

AJ508124.1| Larus fuscus fuscus

AJ508125.1| Larus fuscus graellsii

AJ508126.1| Larus fuscus graellsii

AJ508128.1| Larus fuscus graellsii

AJ508129.1| Larus fuscus graellsii

AJ508130.1| Larus fuscus heuglini

AJ508131.1| Larus fuscus intermedius

AJ508139.1| Larus hyperboreus

AJ508136.1| Larus hyperboreus

AJ508135.1| Larus hyperboreus

AJ508137.1| Larus hyperboreus

AJ508134.1| Larus glaucoides

AJ508133.1| Larus glaucoide

AJ508132.1| Larus fuscus taimyrensis

AJ508127.1| Larus fuscus graellsii

Nc006007 | Larus dominicanus

AY293619| Larus dominicanus

AJ508121| Larus dominicanus

AF268497| Larus dominicanus

AF 444259| Larus dominicanus

DQ385229| Rissa tridactyla

AF268523| Rissa brevirostris


