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ABSTRACT

This paper presents a performance analysis of a baseband multiple-input single-output ultra-wideband system over
scenarios CM1 and CM3 of the IEEE 802.15.3a channel model, incorporating four different schemes of pre-distortion:
time reversal, zero-forcing pre-equaliser, constrained least squares pre-equaliser, and minimum mean square error
pre-equaliser. For the third case, a simple solution based on the steepest-descent (gradient) algorithm is adopted and com-
pared with theoretical results. The channel estimations at the transmitter are assumed to be truncated and noisy. Results
show that the constrained least squares algorithm has a good trade-off between intersymbol interference reduction and
signal-to-noise ratio preservation, providing a performance comparable to the minimum mean square error method but
with lower computational complexity. Copyright © 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Ultra-wideband (UWB) is an emerging technology that
employs ultra-short pulses to transmit information, result-
ing in a very large bandwidth. Because of its attractive
characteristics, such as very high data rates, low prob-
ability of interception and good time domain resolution
allowing location and tracking applications at centimetre
level, UWB has been considered as a promising solution
for short-distance high-data-rate communications, such as
wireless personal area networks.

Ultra-wideband channel is characterised by a dense
multipath environment. For the energy spread over the mul-
tipath components to be effectively captured, the transmit-
based time reversal (TR) technique (sometimes called
pre-Rake) has been investigated [1–6]. In baseband TR,
the channel impulse response (CIR) is estimated from a
probe signal, and the data are convolved with the com-
plex conjugate time-reversed version of the estimated CIR
(namely, TR coefficients) prior to transmission. This tech-
nique is based on the channel reciprocity, which was

experimentally verified in [1] for a particular UWB envi-
ronment. TR-based UWB transmission can provide inter-
symbol interference (ISI) mitigation by reducing the delay
spread of the channel and also co-channel interference
rejection by focusing the signal on the point of interest.

However, for high transmission rates, the residual ISI
will still degrade the system performance because the
equivalent CIR after TR* is not a delta function. In order to
handle such impairments, we can employ a receiver-based
channel equalisation scheme with fewer taps than that used
without TR [7–9].

In wireless communications, it is sometimes desired
to keep portable devices as simple and as power effi-
cient as possible. From this standpoint, a receiver-based
equaliser may aggregate an undesired complexity to the

*The term equivalent CIR refers to the convolution between the TR

coefficients and the original CIR. In a multiple-input single-output

(MISO) system, it is the summation of the resultant convolutions from

each transmit antenna element.
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receiver in a downlink scenario. Hence, some transmitter-
based equalisation can be applied to mitigate ISI, with-
out adding complexity to the receiver. In [10], the authors
compared the performance of pure TR with a zero-forcing
(ZF) pre-equalised system, for fixed wireless access chan-
nels, and also proposed a new joint ZF and TR scheme.
In [11], the authors proposed additional spatial and fre-
quency filters to the ZF and TR pre-filters over an
IEEE 802.11n channel model. In [12], two novel mini-
mum mean square error (MMSE)-based symbol-level pre-
equalisation for MISO direct-sequence UWB (DS-UWB)
systems in cascade with pre-Rake combining are pro-
posed and shown to achieve a good bit error rate (BER)
performance.

In this work, a performance comparison of a down-
link MISO UWB system with four different schemes of
pre-distortion is presented. An objective function modeled
as a constrained least squares (CLS) problem is consid-
ered. Imperfect channel estimation, no coding and perfect
data synchronisation are considered. The transmission is
assumed to be from an access point with relatively good
computational capacity to a lower complexity device with
hardware constraints. When the number of transmit anten-
nas is Nt > 1, it is assumed that the small-scale fad-
ing components across antennas are independent, but the
shadowing factors are correlated, according to the method
in [13].

Overall, despite many papers in the field of impulse
UWB considering a carrier-free pulse, the IEEE 802.15.3a
DS-UWB [14] standard, as well as the IEEE 802.15.4a
UWB standard [15], assumes a square-root raised-cosine
(RRC) pulse that requires a carrier. All the schemes pre-
sented in this paper are performed in baseband considering
an RRC pulse shape.

The rest of the paper has the following organisation.
Section 2 describes the UWB channel and system model.
Section 3 considers the derivation of pre-filter coefficients,
whereas Section 4 presents a complexity analysis, and
Section 5 considers the signal-to-interference-plus-noise
rate (SINR) analysis. Section 6 shows the simulation
parameters and results, whereas Section 7 points out the
main conclusions.

2. CHANNEL AND SYSTEM MODEL

2.1. Channel model

A discrete-time complex baseband version of the IEEE
802.15.3a model is used [16, 17], where multipath com-
ponents arrive in clusters. Cluster and ray arrivals within
each cluster are Poisson distributed with rateƒ and � > ƒ,
respectively. The arrival times of the `1th cluster and the
`2th ray within the `1th cluster are denoted by �`1 and
�`1;`2 . The multipath gain ˇ`1;`2 is described by a log-
normal distribution, and its phase assumes only 0 or �
with equal probability. A channel realisation at kth antenna

Table I. Channel parameters for CM1 and CM3 of IEEE
802.15.3a model.

Parameters CM1 CM3

ƒ (1/ns) 0.0233 0.0667
� (1/ns) 2.5 2.1
�1 (dB) 3.39 3.39
�2 (dB) 3.39 3.39
�x (dB) 3 3

consists of

h
0

k .t/D �k

L1�1X
`1D0

L2�1X
`2D0

ˇk`1;`2
ı
�
t � �k`1

� �k`1;`2

�
(1)

where ı .�/ is the Dirac delta function and �k D

10.��=20/wk is the log-normal shadowing associated with
the Gaussian random variable (r.v.) wk , with �� D 3 dB
being the standard deviation of �k [16]. Two scenarios
are considered: CM1 and CM3. Table I summarises the
channel parameters [16].

The terms �1 and �2 are respectively the standard devi-
ation of cluster log-normal fading (ˇk

`1;`2
for a fixed `2)

and ray log-normal fading (ˇk
`1;`2

for a fixed `1).
The kth discrete-time complex baseband CIR with sam-

pling interval T and length L is obtained by [12]

hk Œm�D gT .t/ � h
00

k .t/ � gR .t/
ˇ̌̌
mT

(2)

where T is the reciprocal of the symbol rate, � denotes
convolution, gR .t/ is matched to the pulse gT .t/, which
has an RRC shape, and h

00

k
.t/ is a baseband version of

h
0

k
.t/. Here, parameter T is used for the pulse generation,

but the effective symbol rate is controlled by the interval
between consecutive symbols, Ts D �T , where � is an
integer.† According to [13], the multipath components are
independent across antennas, but the shadowing terms �k
are correlated. Therefore, the CIRs are normalised before
inserting the shadowing effect, which for the three antenna
cases has the following correlation matrix [13]

R� D

2
4 1 0:86 0:54

0:86 1 0:86

0:54 0:86 1

3
5 (3)

For two transmitter antennas, R� is a 2 � 2 matrix with
0:86 in the secondary diagonal. Considering 	�k ;�j , the
correlation coefficient between the log-normal variables
�k , �j , and 	wk ;wj , the correlation coefficient between

†In fact, if there was no time interval (multiple of T ) between

consecutive symbols, 1=T would be the effective symbol rate.
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the Gaussian variables wk , wj , related to �k , �j , it was
shown in [13] that

	wk ;wj D
1


2�2�
ln

��
e
�2�

�2 � 1

�
	�k ;�j C 1

�
(4)

with 
 D ln .10/ =2.
Hence, from 	wk ;wj , a Gaussian correlated vector of

size Nt is obtained. Finally, a log-normal correlated vector
of size Nt is obtained according to �k D 10.��=20/wk .

The discrete-time CIR with resolution T , length L and
correlated shadowing is given by

hk Œm�D

L�1X
`D0

˛k` ı Œm� `� (5)

2.2. Channel estimation

Because of the large number of resolvable paths, the CIR
on each antenna is truncated to obtain the TR coefficients.
The criterion for this truncation is illustrated in Figure 1.
The normalised power delay profile does not take into
account the interval (zero samples) before the first signif-
icant path. Mainly in the scenario CM3, there might exist
a relative delay between the first significant path on each
antenna element. However, such a delay must be reinserted
in the estimated channels in order to properly combine the
components from each antenna. As the original channel
model does not consider multiple antennas, the maximum
relative delay among CIRs was fixed at 2:505 ns, which
corresponds to five times the channel resolution.

Moreover, the TR coefficients are obtained, considering
estimate errors. The method for generating CIR estimation
errors is based on [4]. Assuming a time duplex division
system, a sequence of NP probe pulses with a repetition
period longer than the maximum effective delay spread
of the channel, �ef, is transmitted from the receiver to the
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Figure 1. Normalised power delay profile (PDP) for CM1 and
CM3, not considering the zero samples before the first signifi-
cant path. A �20-dB criterion is chosen for the CIR truncation

on each antenna.

transmitter side. Assuming perfect synchronisation, theNP
CIR realisations estimated on each antenna are coherently
averaged. If the additive white Gaussian noise (AWGN)
double-sided power spectral density per antenna is given
by N0=2, the signal-to-noise ratio (SNR) per antenna is
defined as

SNRD
Ek
b

N0
(6)

where Ek
b
D Eb=Nt is the mean bit energy per antenna,

considering Nt antennas. Assuming a static channel dur-
ing the frame period, the estimated coefficients on the kth

antenna,
n
Q̨k
`

oL�1
`D0

, are represented as

Q̨k` D
1

NP

NPX
nD1

Q̨k` .n/D ˛
k
` C e

k
` ; (7)

with ek
`

being a complex Gaussian r.v. that represents the
noise of the imperfect channel estimation on the `th resolv-
able path, with variance of the in-phase and quadrature
components given byN0=2NP [4]. The estimated discrete-
time CIR after truncation is defined as Qhk Œm�, with length
LC. It is important to note that channel estimation errors
are not explicitly shown in the results. However, in all
cases, the pre-filter coefficients are obtained, taking into
account the estimated CIR, which is noisy and truncated.

2.3. System model

The discrete-time model considered is shown in Figure 2.
�k represents the sequence of pre-filter coefficients on the
kth antenna, and zŒm� is the sampled AWGN. Signals
and systems are represented by their complex baseband
equivalents. For antipodal binary signalling with symbols
bi 2 f˙1g and Nt antennas, the signal to be transmitted
on the kth antenna element is represented as

sk Œm�D

q
Ek
b

1X
iD�1

bi �k Œm� i�� (8)

with �k Œm� representing the pre-filter on the kth antenna.
Considering perfect synchronisation, the output of the
receive matched filter (MF), resampled at the rate 1=Ts , is

y Œn�D

1X
iD�1

bi x Œn� i �C z Œn� (9)

where z Œn� is the discrete-time AWGN at the output of
the MF and x Œn� denotes the equivalent CIR, which is
obtained from

x Œm�D

q
Ek
b

NtX
kD1

.�k � hk/ Œm� (10)
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Sync.

Signal

Output

Input

Data

Data

Downsampling
Symbol rate

Figure 2. Equivalent discrete-time model. ISI represents the intersymbol interference, yn D y.nTs/ and zn D z.nTs/.

downsampling it by a factor of � D Ts=T . Assuming
Ek
b
D 1, the variance of the AWGN per antenna, zk Œm�,

k D 1; � � � ; Nt , is given by �2
k
D 1=SNR (the same for

each antenna).

3. PRE-FILTER COEFFICIENTS

In all the schemes considered, the length of the pre-filter
on each antenna is set as LPF 6 LC. An estimate of
x Œm� from Equation (10) in a matrix-vector notation can
be obtained as

QxD QH” (11)

where ” D

�	
”0

>
� � �
�
”LPF�1

�>�>
is a .Nt LPF/ � 1

vector with ”` D
�
�1Œ`� � � � �Nt Œ`�

>, with f�g> meaning
transposition; QH is a p � q block Toeplitz matrix, where
p D LCCLPF � 1 and q DNtLPF, given by

QHD

2
66666666666666666664

�
Qh0
�>

0> � � � 0>�
Qh1
�> �

Qh0
�> : : :

:::

:::
�
Qh1
�> : : : 0>�

QhLC�1
�> :::

: : :
�
Qh0
�>

0>
�
QhLC�1

�> �
Qh1
�>

:::
: : :

: : :
:::

0> � � � 0>
�
QhLC�1

�>

3
77777777777777777775

(12)
whose first Nt columns are padded with LPF � 1 null vec-

tors, 0>, with length Nt and Qh` D
h
Qh1Œ`� � � � QhNt Œ`�

i>
.

After obtaining ”, we reshaped it into a matrix of Nt
rows and LPF columns, whose kth row represents the
pre-filter coefficients on the kth antenna element, ”k D
Œ�k Œ0�; � � � ; �k ŒLPF � 1��.

3.1. Time reversal pre-filter

Time reversal coefficients on the kth antenna, ”k D ”
TR
k
D�

�TR
k
Œ0� � � � �TR

k
ŒLPF � 1�


, are obtained as

�TR
k Œm�D Ck

�
Qhk Œ�m�

��
(13)

where the constant Ck depends on the power allocation
scheme.‡ In this paper, Ck is set to be equal for all the
antenna elements, that is,

Ck D C D

vuuuut
Nt

NtP
kD1

��� Qhk���2
2

(14)

with Qhk D
h
Qhk Œ0� � � �

Qhk ŒLPF � 1�
i

being the vector of

estimated taps for each antenna element. Note that the total
energy of the normalised coefficients from all Nt antennas
is equal to Nt . It is possible to see that the vector of TR
coefficients for all Nt antennas, ” D ”TR, is given by the
.LPF/th line of the matrix QH in Equation (12), multiplied
by the normalisation factor Ck .

3.2. Zero-forcing pre-equaliser

The ZF pre-equaliser attempts to cancel the ISI. Here, the
ZF coefficients for all Nt antennas, ” D ”ZF, are obtained,
considering that

QH”ZF D  dv (15)

where dv D Œ0; � � � ; 0; 1; 0; � � � ; 0�> has length p, with
1 at the vth position. v and  are specified below. The ZF
solution is given by

” D ”ZF D  QH� dv (16)

‡For a causal representation, hTR
k Œm� D Ck

�
Qhk ŒLPF �m� 1�

�
�

should have been assumed, but it does not change the theoretical results

because we are further considering that the index 0th represents the

information timing.
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with QH� being the pseudo-inverse of QH. If q > p and
rank . QH/ D p, there are many solutions. One partic-

ular solution is QH� D QHH
�
QH QHH

��1
, which min-

imises
��� QH”ZF � dv

���2
2

. In this case, v is selected in

order to maximise  because it determines the power

of the received signal [10]. Assuming
��”ZF

��2
2
D Nt , it

follows that���”ZF
���2 DNt

) j j2 dv
�
QH QHH

��1
QH QHH

�
QH QHH

��1
dv DNt

) j j2
��
QH QHH

��1�
v;v

DNt (17)

Hence, v is chosen so that

��
QH QHH

��1�
v;v

is mini-

mum. Note that the condition Nt > 2 must be satisfied
for a ZF solution. If Nt D 2, LPF cannot be smaller than
LC.

On the other hand, if p > q and rank . QH/D q, a ZF solu-
tion cannot be guaranteed. However, v can be fixed as v D
LPF, for example, and an approximated solution (denoted

by ZF0) that minimises
��� QH” � dv

���2
2

can be obtained as

” D QH� dv , where QH� D
�
QHH QH

��1
QHH . This solu-

tion has to be normalised in order to generate a power-

constrained solution given by ”ZF0 D

q
Nt=k”k

2
2 ”.

3.3. Constrained least squares
pre-equaliser

Because Qhk is available at the transmitter, let Qhk D C Qhk be
a normalised version of Qhk . Thus, a normalised estimation
of xŒm� in a matrix-vector can be obtained as

QxD QH” (18)

where QH is given by Equation (12), substituting Qh
`
D

Ck

h
Qh1Œ`� � � � QhNt Œ`�

i>
for Qh` D

h
Qh1Œ`� � � � QhNt Œ`�

i>
.

Considering a power constraint k”k22 6 Nt , the idea of
the CLS equaliser is to make Qx be as close as possible to
the vector d D Œ0 � � � Nt � � � 0�

> with length p and Nt at
position LPF. Defining JCLS D kQx� dk22, we can obtain
” D ”CLS as

min
”
JCLS

s:t: k”k22 6Nt
(19)

In [18], a solution for the CLS problem using the
singular-value decomposition (SVD) of QH and Lagrange
multipliers is presented and named least squares minimi-
sation over a sphere. The matrix QH is decomposed, such
that UH QHV D † QH, where V D

�
v1 v2 � � � vq


.q � q/

and U D
�
u1 u2 � � � up


.p � p/ are unitary matrices,

whereas † QH is the matrix (not necessarily square) whose

diagonal elements are the singular values of QH. With this
transformation,

���UH
�
QH” � d

����2
2
D
���UH

�
QHVVH” � d

����2
2

D
���UH QHVVH” �UHd

���2
2

D
���† QH Q” � Qd���22 (20)

where QdD UHd, Q” D VH” and f�gH the Hermitian oper-

ator. Note that k Q”k22 D
���VH”

���2
2
D k”k22. Therefore, the

following Lagrange problem is obtained

L . Q”; �/D
�
† QH Q” �

Qd
�H �

† QH Q” �
Qd
�
C �

�
Q”H Q” �Nt

�
(21)

with � being the Lagrange multiplier. With L . Q”; �/ being
differentiated with respect to Q”� and the resulting gradient
being set to zero, it follows that

@L . Q”; �/
@ Q”�

D 0 )†>QH

�
† QH Q” �

Qd
�
C � Q” D 0

)
�
�I C†>QH

† QH

�
Q” D†>QH

Qd (22)

Hence, the CLS filter coefficients are given by

Q” D

"
�1

�C �21

Qd1
�2

�C �22

Qd2 � � �
�r

�C �2r

Qdr

#>
(23)

with the following constraint

rX
iD1

 
�i

�C �2i

!2 ˇ̌̌
Qdi

ˇ̌̌2
DNt (24)

where r is the rank of the matrix QH. Consequently, if
rP
iD1

ˇ̌̌
Qdi

ˇ̌̌2
=�2i >Nt , then

” D ”CLS D

rX
iD1

 
�i Qdi

��C �2i

!
vi

�� 

rX
iD1

 
�i

��C �2i

!2 ˇ̌̌
Qdi

ˇ̌̌2
DNt (25)

else,

” D ”CLS D

rX
iD1

 
Qdi

�i

!
vi (26)

The term �� can be found using, for instance, the bisec-
tion method. In order to find an iterative solution for
the CLS problem, we firstly considered the unconstrained

244 Trans. Emerging Tel. Tech. 23:240–253 (2012) © 2011 John Wiley & Sons, Ltd.
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problem. The gradient of J is rJ D �2 QH
H

e, where
eD .d� QH”CLS/ is the error vector. In the steepest-descent
algorithm, the coefficients on the .i C 1/th iteration are

updated as ”CLS.i C 1/D ”CLS.i/C�
�
QH
H

e.i/
�

, where

� is the convergence factor. This algorithm comes out with
a solution that is unconstrained. Therefore, Algorithm 3.3
is proposed to generate an energy-constrained vector ”CLS.

The coefficients are normalised right after the updating
process within each iteration, and the error and gradient
computations are performed with respect to those nor-
malised coefficients. Figure 3 presents the convergence of
the proposed CLS algorithm. The convergence factor � is
chosen as in the unconstrained gradient algorithm, that is,
0 < � < 2=�R

max, where �R
max represents the maximum

eigenvalue of the matrix R D QH
H QH. Note that 15 to 30

iterations are enough for achieving convergence.

3.4. Minimum mean square error
pre-equaliser

Another possible power-constrained pre-equalisation is
based on [12], where the filter coefficients are obtained by
considering the MMSE criterion applied previously to a TR
filter. In this paper, the MMSE filter will not be used in cas-
cade with a TR filter but directly, like in the CLS scheme.
Considering b D

�
bnCLPF�1 � � � bn � � � bn�LCC1


, a vec-

tor of information bits with LCCLPF�1 components and

bn at the .LPF/th position, the estimated received signal
after MF can be written as

Qyn D bH QxC zn D bH QH”C zn (27)
Equation (27) is a non-causal representation, but this

does not change the results. As considered in [12], the
received signal is multiplied by a constant  in order to help
the minimisation procedure. The design goal of the MMSE

criterion is to minimise JMMSE D E
h
jbn �  Qynj

2
i
, sub-

jected to k”k22 DNt . JMMSE is given by

JMMSE DE
h
jbn �  Qynj

2
i
D E

�
.bn �  Qyn/

� .bn �  Qyn/


DE
h
1� bn Qyn � 

� Qy�nbnC jj
2 j Qynj

2
i

DE
h
1� bn.bH QH”C zn/

��.�H QHHbC z�n/bnC jj
2j Qynj

2
i

(28)

The term E
h
j Qynj

2
i

in Equation (28) is given by

EŒj Qynj
2�DE

h�
�H QHHbC z�n

� �
b> QH”C zn

�i
D”H QHH QH”C �2z (29)

Hence,

JMMSE D 1C jj2 �2z � 
�”Hhn � hHn ”

Cjj2”H QHH QH” (30)

where hn D QHHEŒbnb� D QHHdn and dn is the vector
whose elements are zero, except for the .LPF/th element,
which is equal to 1. Defining N” D ” and noting that
jj2 D .1=Nt / N”

H N”, we automatically insert the power
constraint in JMMSE [12], resulting in

JMMSE D 1C
�2z
Nt
N”H N”�N”Hhn�hHn N”CN”

H QHH QH” (31)

0 10 20 30 40 50

10
0

ITER
0 10 20 30 40 50

10
0

ITER

Figure 3. Convergence of the constrained least squares algorithm.
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With JMMSE being differentiated with respect to N”� and
being set to zero,

@JMMSE

@ N”�
D

1

SNR
N” � hnC QHH QH” D 0 (32)

)

�
QHH QHC I

1

SNR

�
N” D hn

Therefore,

N”opt D

�
QHh QHC I

1

SNR

��1
hn (33)

where I is an identity matrix. Finally,

” D ”MMSE D
N”opt

opt
) ”MMSE D

p
Nt

N”opt��� N”opt

���
2

(34)

The term  is just a constant that does not need to be
implemented at the receiver side.

Observing Equation (34), one can conclude that if

SNR!1; N”opt !
�
QHH QH

��1
hn D

�
QHH QH

��1
QHHdn,

and, consequently, after normalising the power, ”MMSE!

”ZF
0

. On the other hand, if SNR ! 0; N”opt ! C Ihn D

C QHHdn, which represents the .LPF/th line of QH in
Equation (12) multiplied by a constant C , and, therefore,

after normalising the power, ”MMSE! ””
TR

.

3.5. Channel impulse response comparison

Figure 4 shows examples of equivalent CIRs, considering
the schemes TR, ZF, MMSE and CLS, with LPF D LC,
but here LC is obtained by considering a truncation crite-
rion of �30 dB (Figure 1); NP is set to NP D 100. The
higher SNR is obtained with TR (it represents an MF), but
the residual ISI is also higher than the other schemes. The
ZF pre-equaliser eliminates the ISI but results in a rela-
tively low power at the receiver, which can be interpreted
as the dual problem of noise amplification when ZF is used
at the receiver side. For the SNR conditions considered, the
peak of the equivalent CIR with MMSE is a little lower
than the case with CLS, but the MMSE scheme results in a
somewhat better ISI mitigation.

4. COMPLEXITY ANALYSIS

Table II presents a comparative analysis of the computa-
tional complexity for ZF, CLS and MMSE schemes, where
p D .LCCLPF � 1/ and q D .NtLPF/. Complex multi-
plication (or division), complex addition (or subtraction),
square root extraction and comparison are considered as
single operations. All multiplications and additions are
assumed to be complex operations. For the CLS solution
based on SVD, only the operations needed for the com-
putation of SVD are taken into account, which is the most
costly part. For a matrix inversion of dimensionN �N , the
Gaussian elimination method is considered, which requires
a total of approximately 2N 3=3 operations.

5. SIGNAL-TO-INTERFERENCE-
PLUS-NOISE RATIO ANALYSIS

Equation (9) can be rewritten as

yn D

1X
iD�1

bn�ixiCzn D bn x0„ƒ‚…
Signal

C

1X
iD�1
i¤0

bn�ixi

„ ƒ‚ …
ISI

C zn„ƒ‚…
Noise

(35)
where yn D y.nTs/; zn D z.nTs/ and xi D x.iTs/.
Note that the discrete-time sequence that represents the
sampled noise after MF, zn, is still AWGN and with vari-
ance (or power) �2z D Nt �

2
k
D Nt=SNR. The decision

variable is V D<fyng, where <f�g represents the real-part
operator. If the information symbols are independent and
identically distributed with bn D ˙1, the instantaneous
SINR conditioned on the j th set of channel realisations can
be obtained as [9]

SINRj D
<fx

j
0 g
2

1P
iD�1
i¤0

<
n
x
j
i

o2
C �2

(36)

where �2 D �2z =2 D Nt=2 SNR represents the variance of
the in-phase and quadrature components of zn.

If the residual ISI in Equation (36) is assumed to be
Gaussian distributed, the BER conditioned to the j th set
of channel realisations can be written as

BERj DQ
�p

SINRj
�

(37)

where Q.x/ D 1=
p
2� �

R1
x e�y

2=2 dy. Considering
J sets of channel realisations, the average BER can be
computed as

BERD
1

J

J�1X
jD0

BERj (38)

6. SIMULATION CONFIGURATION
AND RESULTS

Performance results are obtained by considering Monte
Carlo simulation and the semi-analytical approach (THEO)
shown in Section 5. Two and three antenna elements are
adopted. The transmission rate is set to Rb D 499 Mbps
(� D 4) and Rb D 665:3 Mbps (� D 3), and the RRC
pulse is generated by considering ˛ D 0:3 and T D 501 ps.
Pre-filter coefficients, as well as the CIR, are assumed to
be static during the frame duration Tf, which is considered
sufficiently long. The CIRs are randomly chosen among
the 100 realisations proposed in [16]. NP D 100 probe
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Figure 4. Comparison among equivalent channel impulse responses considering time reversal (TR), zero forcing (ZF), minimum mean
square error (MMSE) and constrained least squares (CLS), for CM1 and CM3 and NP D 100. Ppk represents the peak of the equiv-
alent channel impulse response, whereas PR is the ratio between Ppk and the total power. SVD, singular-value decomposition; SNR,

signal-to-noise ratio.

Table II. Computational complexity analysis.

Scheme Operations needed

ZF 2p3=3C .2q� 1/p2C .2p� 1/.pqC q/C 2qC 1
MMSE 2q3=3C .2p� 1/ .q2C q/C .2q� 1/ .1C q/C 3qC 3
CLS (SVD) 9 � q3C 4 � p2qC 8 � pq2

CLS (Algorithm 3.3) ITER � .4 � pqC 4 � q� pC 2/

Note that pD LCC LPF � 1 and qD NtLPF.
ZF, zero forcing; MMSE, minimum mean square error; CLS, constrained least squares; SVD, singular-value decomposition.
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transmissions are considered for testing the channel in
order to obtain the CIR estimations at the transmitter.

Figures 5 and 6 show the TR, CLS and MMSE analyti-
cal BER performances regarding the number of pre-filter
coefficients. The CLS scheme is implemented with the
modified steepest-descent algorithm considering ITER D

15. For Nt D 2, SNR D 15 dB is set, whereas for Nt D 3,
SNR D 12 dB is set. It is possible to see that in all curves
the performances become flat for LPF � 0:7LC with
Nt D 3 and LPF � 0:8LC with Nt D 2.

Bit error rate results as a function of SNR in decibels are
presented in Figures 7 and 8 for rates Rb D 665:3 Mbps
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Figure 5. Bit error rate (BER) as a function of LPF considering CM1. TR, time reversal; MMSE, minimum mean square error; CLS,
constrained least squares; SNR, signal-to-noise ratio.
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Figure 6. Bit error rate (BER) as a function of LPF considering CM3. TR, time reversal; MMSE, minimum mean square error; CLS,
constrained least squares; SNR, signal-to-noise ratio.
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and Rb D 499 Mbps, respectively. In both figures, it
was considered that LPF � 0:7LC with Nt D 3 and
LPF � 0:8LC with Nt D 2 for TR, CLS and MMSE,
whereas for ZF, LPF D LC (ZF0 is not considered). Con-
sidering the criterion of �20 dB for the CIR truncation,
LC D 46 in CM1 and LC D 134 .C0 to 5/ in CM3. Note
that the CLS performance with ITER D 15 is superior to
the other techniques for SNR > 9 dB. For the low-SNR
region, TR and MMSE perform better than CLS. The ZF
scheme, even for LPF D LC, has not a satisfactory per-
formance with Nt D 2 antennas, but with Nt D 3, it is
better than TR for high SNRs. Moreover, ZF, MMSE and
CLS are less sensitive than TR regarding an increase in the
transmission rate from 499 to 665 Mbps.

Table III shows a numerical analysis of the computa-
tional complexity considering the configurations presented
in Figures 7 and 8. For the ZF scheme, LPF D LC, and

for the CLS with SVD, only the SVD complexity was
taken into account. Observe that the method CLS (SVD)
is more complex than the other techniques, and ZF has a
complexity of the same order as that of MMSE. It is also
worth noticing that the CLS method based on the mod-
ified steepest-descent algorithm results in a complexity
substantially lower than that of the other schemes.

Considering a higher CIR estimation error condition,
Figure 9 shows the BER performance for Rb D 499Mbps,
Nt D 2 antennas and NP D 20. It can be seen that CLS
keeps performing better than MMSE. It is possible to see
the superiority of CLS in relation to MMSE, as observed in
the previous lower CIR estimation error case (NP D 100),
specially for higher SNRs.

In order to help us understand why CLS performs bet-
ter than MMSE under the conditions considered, Figure 10
presents BER versus SNR results considering CM1, LPF D
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Figure 7. Performance of bit error rate (BER) versus signal-to-noise ratio (SNR) for Rb D 665:3 Mbps and NP D 100 probe pulses for
channel impulse response estimation. MCS, Monte Carlo simulation; TR, time reversal; MMSE, minimum mean square error; CLS,

constrained least squares; ZF, zero forcing.
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Table III. Numerical computational complexity analysis.

Number of operations

Configuration Scheme

ZF MMSE CLS (SVD) CLS (mod. grad.)

CM1, Nt D 2 2:3342� 106 1:1697� 106 9:1030� 106 3:6565� 105

CM1, Nt D 3 2:6112� 106 2:0663� 106 1:6179� 107 4:5326� 105

CM3, Nt D 2 6:1390� 107 3:0111� 107 2:3682� 108 3:1961� 106

CM3, Nt D 3 6:8684� 107 5:3298� 107 4:2041� 108 3:9619� 106

ZF, zero forcing; MMSE, minimum mean square error; CLS, constrained least squares; SVD, singular-value decomposition.
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Figure 9. Performance of bit error rate (BER) versus signal-to-noise ratio (SNR) for Rb D 499 Mbps, Nt D 2 antennas and NP D 20
probe pulses for channel impulse response estimation. MCS, Monte Carlo simulation; TR, time reversal; MMSE, minimum mean

square error; CLS, constrained least squares; ZF, zero forcing.

LC, noiseless CIR estimation at the transmitter and a
CIR truncation criterion of �30 dB (Figure 1), which
corresponds to 40 ns, approximately, rather than 23 ns
(�20-dB criterion). Under these conditions, the perfor-
mance of MMSE is similar to CLS for 12 < SNR < 16 dB

and slightly better than CLS for 0 < SNR < 12 dB. There-
fore, it is possible to conclude that the CLS scheme is more
robust than the MMSE one regarding errors on the CIR
estimation (noise and truncation). This observation sug-
gests that the robustness of CLS and MMSE in relation to
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Figure 10. Bit error rate (BER) as a function of signal-to-noise ratio (SNR) in CM1, with noiseless estimation and truncation of
the channel impulse response in 40 ns. MCS, Monte Carlo simulation; MMSE, minimum mean square error; CLS, constrained

least squares.
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CIR estimation errors depends on how the respective pre-
filter coefficients ”CLS and ”MMSE deviate from their ideal
noiseless values ”0CLS and ”0MMSE, respectively, obtained
considering perfect knowledge of the CIR at the transmit-
ter side. In their turn, these deviations can be measured in

each case by �2
E
D E

h��” � ”0��2i =LPF.

In order to test this dependency, we estimated �2
E

for
CLS and MMSE, considering different values of SNR
(Eb=N0) and the number of probe transmissions NP. A
thousand noisy CIR generations were considered for each
simulated point. The results are presented in Figures 11 and
12. It can be seen that CLS performs better than MMSE
for higher Eb=N0 and/or higher NP. Moreover, for higher
Eb=N0 and lower values of NP, CLS is quite better than
MMSE. These results are consistent with the BER per-
formance in Figures 7 to 9 and therefore corroborate the
dependency of the BER on �2

E
.

7. CONCLUSIONS
This paper presented a performance analysis for a single-
user MISO UWB system incorporating four different pre-
distortion schemes: TR, ZF, MMSE and CLS. Results
showed that CLS has a BER performance comparable to
that of the MMSE and better than that of TR and ZF. For
instance, when Nt D 2 antennas, the performance of ZF
is not satisfactory because of its power inefficiency, and
its performance for Nt D 3 antennas is better than that of
TR, considering high SNRs. Furthermore, when TR is con-
sidered for high transmission rates, there is a residual ISI
degrading the system’s performance, which suggests some
post-equalisation scheme at the receiver side.

Under the conditions considered in this paper, it is pos-
sible to conclude that the CLS scheme is more robust
than the MMSE one regarding errors on the CIR estima-
tion. Besides, the CLS method using the modified gradi-
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Figure 11. Constrained least squares (CLS) and minimum mean square error (MMSE) sensitivity to channel impulse response errors
in CM1, Nt D 2 and Rb D 499 Mbps.
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ent algorithm has a lower complexity compared with ZF
and MMSE. Such a scheme could be a good solution for
the downlink of high-data-rate applications having good
computational capacities at the access point and requiring
low-complexity receivers, in no fast varying channels.
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