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Abstract

T-cell based vaccine approaches have emerged to counteract HIV-1/AIDS. Broad, polyfunctional and cytotoxic CD4+ T-cell
responses have been associated with control of HIV-1 replication, which supports the inclusion of CD4+ T-cell epitopes in
vaccines. A successful HIV-1 vaccine should also be designed to overcome viral genetic diversity and be able to confer
immunity in a high proportion of immunized individuals from a diverse HLA-bearing population. In this study, we rationally
designed a multiepitopic DNA vaccine in order to elicit broad and cross-clade CD4+ T-cell responses against highly
conserved and promiscuous peptides from the HIV-1 M-group consensus sequence. We identified 27 conserved, multiple
HLA-DR-binding peptides in the HIV-1 M-group consensus sequences of Gag, Pol, Nef, Vif, Vpr, Rev and Vpu using the
TEPITOPE algorithm. The peptides bound in vitro to an average of 12 out of the 17 tested HLA-DR molecules and also to
several molecules such as HLA-DP, -DQ and murine IAb and IAd. Sixteen out of the 27 peptides were recognized by PBMC
from patients infected with different HIV-1 variants and 72% of such patients recognized at least 1 peptide. Immunization
with a DNA vaccine (HIVBr27) encoding the identified peptides elicited IFN-c secretion against 11 out of the 27 peptides in
BALB/c mice; CD4+ and CD8+ T-cell proliferation was observed against 8 and 6 peptides, respectively. HIVBr27 immunization
elicited cross-clade T-cell responses against several HIV-1 peptide variants. Polyfunctional CD4+ and CD8+ T cells, able to
simultaneously proliferate and produce IFN-c and TNF-a, were also observed. This vaccine concept may cope with HIV-1
genetic diversity as well as provide increased population coverage, which are desirable features for an efficacious strategy
against HIV-1/AIDS.
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Introduction

The development of an efficacious vaccine against human

immunodeficiency virus 1 (HIV-1) still remains as the best long-

term approach to control the acquired immunodeficiency

syndrome (AIDS) pandemic since resource-poor endemic regions

are not able to afford sustained antiretroviral therapy (ART).

Clinically tested HIV-1 vaccines have shown no or modest efficacy

so far [1,2]. No vaccine strategy was able to induce broadly

neutralizing antibodies and T-cell based vaccines have thus

emerged as an alternative to counteract AIDS by limiting both

viral transmission and disease progression [3]. Indeed, a recent

study using non-human primates (NHP) has demonstrated that

vaccine-induced virus-specific effector memory T-cell (TEM)

responses can exert a profound early control on highly pathogenic

simian immunodeficiency virus (SIV) infection after mucosal

challenge, which has given more hope for the development of new

T-cell based vaccines against HIV-1 [4].

The breadth of T-cell responses induced against HIV-1 has

become a central goal in AIDS vaccine development after the

STEP trial failure [1,5]. In fact, different groups have shown that

protection against SIV challenge is strongly associated with

induction of either CD4+ or CD8+ T cells against multiple targets

[6–9]. Thus, it is important to design novel vaccine platforms in

order to broaden T-cell responses against HIV-1.

T-cell based vaccines against HIV-1 are frequently focused on

the induction of CD8+ T-cell responses, which are known to be

responsible for killing virus-infected targets [6,10–12]. However,

mounting evidence suggests that CD4+ T-cell responses may be

important for controlling HIV-1 replication [13]. Although HIV-

specific CD4+ T cells are preferentially targeted by the virus, the

vast majority of these cells remains virus-free at any time in vivo
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[14], which may allow for their antiviral function. In fact, strong

virus-specific CD4+ T-cell responses have been associated with

natural control of HIV-1 infection [15,16] and cytotoxic CD4+ T

cells were shown to suppress viral replication in both SIV and

HIV-1-infected cells [17,18]. While the clinical associations of

CD4+ T-cell responses with HIV-1 control must be carefully

interpreted, due to a possible cause-effect issue, the finding that

CD4+ T-cell depletion reduced vaccine-mediated protection [19]

supports a direct role of such cells in HIV-1 immunity. Moreover,

some groups have observed the association of vaccine-induced

virus-specific CD4+ T-cell responses with protection against SIV

challenge [7,20], which further supports a protective role of CD4+

T cells. Therefore, it is important to explore the anti-viral

immunity exerted by CD4+ T cells in order to develop novel

vaccines against HIV-1/AIDS. It is possible that the induction of

CD4+ T cells will be beneficent both due to the help provided to B

cells and CD8+ T cells as well as due to direct effects on HIV-1-

infected targets.

An important concern regarding AIDS vaccine development is

how to elicit cellular immune responses to cover multiple HIV-1

circulating variants, which can differ by up to 20% within a

subtype and show up to 35% of amino acid divergences between

subtypes [21]. Artificially designed M-group consensus sequences

display average distances to HIV-1 variants similar to those found

intra-subtype and have been considered a potential alternative to

circumvent the barrier posed by viral genetic diversity [22].

Indeed, studies have demonstrated that immunogens based on

HIV-1 M-group consensus Env were able to provide broad cross-

clade T-cell responses in both mice and macaques [23,24], which

suggests an important role for this strategy in HIV-1 vaccines.

The high polymorphism of human leukocyte antigens (HLA),

which are responsible for determining the onset of T-cell

responses, is also a challenge for vaccine development. It is

expected that different HLA-bearing populations respond differ-

ently to the same immunogen and this may be decisive for the

vaccine success. Vaccines encoding promiscuous peptides, each

binding to multiple HLA molecules, may be a solution to this

problem by allowing that multiple HLA molecules spread among

the population contribute to the induction of broad T-cell

responses in most of the immunized individuals. This would

confer broader population coverage and enhance vaccine efficacy

[25–27]. Thus, novel AIDS vaccines should be rationally designed

to address both viral and host genetic diversity in order to confer

immunity against multiple HIV-1 circulating variants in a

population with diverse HLA alleles.

The inclusion of appropriate proteins in HIV-1 vaccines may be

crucial for eliciting protective responses. While broad Gag- and

Vif-specific responses have been correlated to vaccine-induced

protection in SIV-challenged macaques [28], induction of Env-

specific CD4+ T-cell responses contributed to enhanced SIV

replication and accelerated progression to AIDS [29]. Env-specific

CD8+ T-cell responses were also shown to be a strong predictor for

disease progression in HIV-1-infected patients [30]. Furthermore,

CD4+ T-cell responses targeting Gag and Env-specific epitopes

were associated with spontaneous control of viral replication and

progression to AIDS, respectively [31].

Recently, our group has designed a DNA vaccine encoding 18

conserved, multiple HLA-DR-binding epitopes from HIV-1

subtype B consensus sequence. This vaccine elicited broad,

polyfunctional and long-lasting CD4+ T-cell responses in BALB/

c and HLA class II transgenic mice [32,33]. In this work we sought

to develop a DNA vaccine that would be able to provide broad

CD4+ T-cell immunity in a diverse HLA-bearing population, now

targeting multiple HIV-1 M-group consensus peptides, potentially

cross-reactive to a high proportion of circulating HIV-1 variants.

In addition, we excluded Env peptides from our novel vaccine

based on the evidence that Env-specific T-cell responses are

frequently related to disease progression.

To accomplish our goals, we used the TEPITOPE algorithm

[34], which has been successfully applied for in silico identification

of promiscuous T-cell epitopes in the context of oncology, allergy,

autoimmunity and infectious diseases [35–40], to scan the HIV-1

M-group consensus sequence. We identified 27 peptides from 7

different HIV-1 proteins (Gag, Pol, Nef, Vif, Vpr, Rev and Vpu),

predicted to bind to multiple HLA-DR molecules and conserved

among all M-group subtypes. The identified peptides bound in vitro

to several HLA-DR, -DP and -DQ molecules and also to murine

IAb and IAd molecules. The peptides were antigenic in natural

infection, being recognized by peripheral blood mononuclear cells

(PBMC) from HIV-1-infected patients. Finally, we designed a

DNA vaccine (HIVBr27) encoding the 27 peptides in tandem and

immunized BALB/c mice. HIVBr27 immunization elicited broad,

cross-clade and polyfunctional CD4+ and CD8+ T-cell responses.

Materials and Methods

Ethics Statement
The research involving human participants reported in this

study was approved by the institutional review board of the

University of São Paulo under protocol number 0458/08. Written

informed consent was obtained from all subjects.

Mice were housed and manipulated under SPF conditions in

the animal care facilities of the Institute of Tropical Medicine,

University of São Paulo (IMT/FMUSP). Experiments were

performed in accordance to the guidelines of the Ethics committee

of University of São Paulo (CAPPesq- HCFMUSP). This study

was approved by CAPPesq- HCFMUSP under protocol number

0653/09.

Identification of HIV-1 M-group Consensus Peptides
We scanned the HIV-1 M-group proteome consensus sequence

available at http://www.hiv.lanl.gov/content/sequence/

NEWALIGN/align.html with the TEPITOPE algorithm to identify

multiple HLA-DR-binding peptides [34]. The TEPITOPE algo-

rithm predicts binding of peptides to 25 distinct HLA-DR molecules

based on results from in vitro HLA-peptide binding assays. We

selected the peptides predicted to bind to at least 18 out of the 25

HLA-DR molecules in the TEPITOPE matrix, using a threshold of

5%. The selected peptides were further analyzed regarding the

conservation status when compared to consensus sequences of the

HIV-1 subtypes A, B, C, D, F1, F2, G and H. We ended up with 27

peptides (14–24 aa in length) that had each amino acid conserved

among at least 50% of the consensus sequences from the HIV-1

subtypes.

Peptide Synthesis
Peptides were synthesized by solid phase technology using 9-

fluorenylmethoxycarbonyl (Fmoc) strategy, with the C terminal

carboxyl group in amide form (GL Biochem). Peptide purity and

quality were assessed by reverse-phase high performance liquid

chromatography and mass spectrometry, and was routinely above

90%.

HLA Class II and Murine MHC Class II Peptide-binding
Assays

Peptide binding assays were performed by incubating purified

HLA class II molecules (HLA-DR, -DP and -DQ) or murine IAb

and IAd molecules (5–500 nM) with different concentrations of

HIV-1 M-Group Epitope-Based Vaccine

PLOS ONE | www.plosone.org 2 September 2012 | Volume 7 | Issue 9 | e45267



unlabeled peptide inhibitors and 1–10 nM 125I-radiolabeled probe

peptides for 48 h as previously described [41].

Construction of a DNA Plasmid Encoding Multiple HIV-1
Peptides

We designed a multiepitopic construct encoding the 27 HIV-1

peptides: protease (53–75), protease (79–95), RT (343–357), RT

(354–368), RT (369–391), RT (413–427), RT (431–445), RT

(528–546), integrase (28–43), integrase (69–85), integrase (96–113),

integrase (216–235), integrase (249–268), p17 (72–90), p17(131–

132)/p24(1–18), p24 (33–48), p24 (127–145), p24 (138–153), p24

(182–201), vif (1–15), vif (142–158), rev (9–27), vpr (29–42), vpr

(58–80), vpu (13–26), nef (67–87) and nef (133–156). Peptide

sequences were codon optimized for mammalian expression and

assembled in tandem in the above mentioned order with glycine-

proline (GPGPG) spacers at C and N termini to avoid the creation

of junctional peptides, which can interfere on processing and

presentation [42]. The artificial gene (EZBiolab) was subcloned

into pVAX1 vector (Invitrogen) using EcoRI/XhoI sites to

generate the HIVBr27 plasmid, which was purified using the

Endofree Plasmid Giga Kit (Qiagen) according to manufacturer’s

instructions.

Selection of Variants from HIV-1 M-group Consensus
Peptides

The peptides p24(127–145), RT(413–427), RT(528–546) and

int(216–235) were aligned with all HIV-1 circulating variants

available at http://www.hiv.lanl.gov/content/sequence/

QUICK_ALIGN/QuickAlign.html. Sequences from the most

frequent variants of each peptide were synthesized to perform

immunological analysis.

Subjects
Cryopreserved peripheral-blood mononuclear cells (PBMC)

were obtained from a cohort of HIV-1-infected individuals

(n = 25) [43,44], as well as from healthy volunteers (n = 5), and

were used for IFN-c ELISPOT assay. Infecting viral strains were

characterized as previously described [45,46]. Clinical character-

istics of enrolled patients are summarized in the table S1.

Mice and Immunizations
Six to eight week-old female BALB/c mice were used in this

study. Six mice per group were injected intramuscularly, at weeks

0, 2 and 4, with HIVBr27 plasmid or empty pVAX1. Each

quadriceps was injected with 50 mL of DNA at a concentration of

1 mg/mL in saline such that each animal received a total of 100 mg

of plasmid DNA per immunization. Two weeks after the last DNA

immunization, mice were euthanized with CO2.

Spleen Cell Isolation for Immune Assays
Two weeks after the last immunization, mice were euthanized

and spleens were removed aseptically. After obtaining single cell

suspensions, cells were washed in 10 mL of RPMI 1640. Cells

were then resuspended in R-10 (RPMI supplemented with 10% of

fetal bovine serum (GIBCO), 2 mM L-glutamine (Life Technol-

ogies), 1 mM sodium pyruvate (Life Technologies), 1% vol/vol

non-essential amino acids solution (Life Technologies), 1% vol/vol

vitamin solution (Life Technologies), 40 mg/mL of Gentamicin,

20 mg/mL of Peflacin and 561025 M 2b-mercaptoetanol (Life

Technologies). The viability of cells was evaluated using 0.2%

Trypan Blue exclusion dye to discriminate between live and dead

cells. Cell concentration was estimated with the aid of a Neubauer

chamber and adjusted in cell culture medium.

Detection of IFN-c Producing Human and Murine Cells by
ELISPOT Assay

PBMC (16105 cells/well) from HIV-1-infected patients and

splenocytes (36105 cells/well) from HIVBr27 or pVAX1 immu-

nized mice were tested for their ability to secrete IFN-c after in vitro

stimulation with 5 mM of individual or pooled HIV-1 peptides

using ELISPOT assay. The ELISPOT assay was performed using

human or murine IFN-c Becton Dickinson kit according to

manufacturer’s instructions. Spots were counted using an AID

ELISPOT reader (Autoimmun Diagnostika GmbH). The number

of antigen-specific T cells, expressed as spot-forming units (SFU)/

106 PMBC or SFU/106 splenocytes, was calculated after

subtracting negative control values (medium only). Responses in

human ELISPOT assay for each patient were considered positive

when $50 SFU/106 PBMC [47]. Responses in murine ELISPOT

were considered positive when .15 SFU/106 splenocytes, which

was calculated as the mean response +3 standard deviations (SD)

of splenocytes from pVAX1 immunized mice, stimulated with

each peptide.

CFSE-based Proliferation Assay
To monitor the expansion and proliferation of HIV-1-specific T

cells, splenocytes from HIVBr27 or pVAX1 immunized mice were

labeled with carboxyfluorescein succinimidyl ester (CFSE) [48].

Briefly, freshly isolated splenocytes were resuspended (506106/

mL) in PBS and labeled with 1.25 mM of CFSE (Molecular

Probes) at 37uC for 10 minutes. The reaction was quenched with

RPMI 1640 supplemented with 10% FBS and cells were washed

before resuspending in RPMI 1640 at a density of 1.56106/mL.

Cells were cultured in 96 well round-bottomed plates (36105/well

in triplicate) for 5 days at 37uC and 5% CO2 with medium only or

5 mM of HIV peptides. Positive controls were stimulated with

2.5 mg/mL of Concanavalin A (Sigma). Cells were then harvested,

washed with 100 mL of FACS buffer (PBS with 0.5% BSA and

2 mM EDTA) and stained with anti-mouse CD3 phycoerythrin

(PE), anti-mouse CD4 peridinin chlorophyll protein (PerCP) and

anti-mouse CD8 allophycocyanin (APC) monoclonal antibodies

(BD Pharmingen) for 45 minutes at 4uC. Samples were acquired

on a FACSCanto flow cytometer (BD Biosciences) and then

analyzed using FlowJo software (version 9.0.2, Tree Star). Fifty

thousand events were acquired in a live lymphocyte gate. The

percent of proliferating CD4+ and CD8+ CFSElow cells was

determined in the CD3+ T-cell population. Positive proliferation

of T cells was determined as CFSElow T cells . cutoff, which was

calculated as median +3 SD of unspecific proliferative responses

obtained with splenocytes from pVAX1 immunized mice stimu-

lated with HIV-1 peptides.

Analysis of Polyfunctional HIV-1-specific T-cell Responses
Splenocytes from immunized mice were labeled with CFSE as

described above. CFSE-labeled cells were cultured in 96 well

round-bottomed plates (56105/well in triplicate) for 4 days at

37uC and 5% CO2 in the presence of medium only or pooled

HIV-1 peptides (5 mM). After incubation, cells were restimulated

with 2 mg/mL anti-CD28 (BD Pharmingen), 5 mM of pooled

HIV-1 peptides and Brefeldin A- GolgiPlugTM (BD Pharmingen)

for the last 12 hours. After this period, cells were washed with

FACS buffer and surface stained using the monoclonal antibodies

anti-CD8-Alexa700 and anti-CD4-PerCP for 30 minutes at 4uC.

Cells were then fixed and permeabilized using the Cytofix/

CytopermTM kit (BD Pharmingen). Permeabilized cells were

washed with Perm/Wash buffer (BD Biosciences) and stained with

the monoclonal antibodies anti-CD3-APCCy7, anti-IL-2-PE, anti-

HIV-1 M-Group Epitope-Based Vaccine
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TNFa-PECY7 and anti-IFNc-APC for 30 minutes at 4uC.

Following staining, cells were washed twice and resuspended in

FACS buffer. All antibodies were from BD Pharmingen. Samples

were acquired on a FACSCanto flow cytometer (BD Biosciences)

and then analyzed using FlowJo software (version 9.0.2, Tree Star,

San Carlo, CA). Cells were gated on forward scatter (FSC)/side

scatter (SSC) gate (500,000 events) followed by CD3+ gate and

subsequent gates on CD4+ or CD8+ populations. After identifi-

cation of CD4+ and CD8+ populations, we designed a gate in each

positive population for IFN-c, TNF-a and IL-2 expression within

or not the CFSElow gate. In addition, we used the Boolean gate

(FlowJo software version 9.0.2, Tree Star) platform to create

several combinations of the three cytokines (IFN-c, TNF-a and IL-

2) within CFSElow population resulting in seven distinct patterns.

The percentages of cytokine producing cells within CFSElow

population or not were calculated by subtracting background

values. For each flow cytometry experiment performed in this

paper, unstained and all single-color controls were processed to

allow proper compensation.

Statistical Analysis
Statistical significance (p-values) was calculated by using

Student’s T test or Two-way ANOVA followed by Bonferroni

post test. Statistical analysis and graphical representation of data

was performed using GraphPad Prism version 5.0 software.

Results

Identification of Conserved, Multiple HLA-DR-binding
Peptides in the HIV-1 M-Group Consensus Sequence

The HIV-1 M-group consensus sequence was scanned with

the TEPITOPE algorithm in order to identify multiple HLA-

DR-binding (promiscuous) peptides. The identified peptides

were aligned with consensus sequences from HIV-1 subtypes

A1, B, C, D, F1, F2, G and H. Twenty-seven peptides, from 7

different HIV-1 proteins, showing each amino acid conserved

among at least 50% of the aligned subtypes consensus sequences

were selected (table 1). No Tat peptides were identified with the

employed threshold. Env peptides were identified but excluded

from further analysis due to the potential prejudice of T-cell

responses targeting such protein. We also performed an

alignment in order to evaluate whether the 27 peptides from

M-group consensus sequence were highly conserved among

HIV-1 circulating variants. According to the alignment, most of

our peptides had 0–1 amino acid substitutions when compared

to all sequences from HIV-1 circulating variants available at the

Los Alamos HIV Database (table S2). We performed in vitro

HLA-peptide binding assays to confirm the TEPITOPE

accuracy and observed that each of the 27 peptides bound to

an average of 12 out of the 17 tested HLA-DR molecules and

that each HLA-DR molecule bound to an average of 19 out of

the 27 peptides (figure 1). The peptides also bound to several

HLA-DP and –DQ molecules (table S3 and S4). We also

performed murine MHC class II-peptide binding assays and

observed that 21 and 6 peptides bound to IAd and IAb

molecules, respectively (table 2). Thus, the scanning of HIV-1

M-group consensus sequence with TEPITOPE allowed the

identification of highly conserved and promiscuous peptides.

HIV-1 M-group Consensus Peptides are Antigenic in
Natural HIV-1 Infection

To evaluate whether the 27 predicted promiscuous peptides

would be antigenic during natural infection we performed an IFN-

c ELISPOT assay using PBMC from twenty-five patients infected

with different HIV-1 variants (Table S1). We observed that 7 out

of the 13 Pol peptides were recognized at least once (figure 2A).

Four out of the 6 Gag peptides were also recognized at least once

(figure 2B). Among Vif, Rev, Vpr, Vpu and Nef, we observed

recognition of 5 out of the 8 peptides (figure 2C). Overall, we

found that 72% of the patients recognized at least 1 peptide and

that each patient recognized an average of 2 peptides. In addition,

our data shows that 16 out of the 27 peptides (60%) were

recognized by HIV-1-infected patients, while no responses were

observed in PBMC from healthy individuals (data not shown).

Therefore, most of the conserved and promiscuous HIV-1 M-

group consensus peptides identified with the TEPITOPE

algorithm were showed to be antigenic in natural HIV-1 infection.

Figure 1. HLA-DR binding assay for M-group consensus peptides. Peptide binding assays were performed by incubating purified HLA-DR
molecules (5–500 nM) with different concentrations of unlabeled peptide inhibitors and 1–10 nM 125I-radiolabeled probe peptides for 48 h.
Significant affinity threshold ,1000 nM are shown in gray. A dash represents 50% inhibitory concentration (IC50) .30000 nM.
doi:10.1371/journal.pone.0045267.g001

HIV-1 M-Group Epitope-Based Vaccine
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Figure 2. M-group consensus peptides are recognized by PBMC from HIV-1-infected patients. IFN-c ELISPOT assay was performed to
evaluate T-cell responses against the 27 M-group consensus peptides by stimulating PBMC from patients infected with different variants of HIV-1,
which are represented by colored symbols. A) IFN-c secretion against Pol peptides. B) IFN-c secretion against Gag peptides. C) IFN-c secretion against
Vif, Rev, Vpr, Vpu and Nef peptides. B subtype-infected patients (n = 14), BC recombinant-infected patient (n = 1), BF recombinant-infected patients
(n = 9), F subtype-infected patient (n = 1). Dotted lines represent IFN-c ELISPOT cutoff, which is $50 spots/106 cells. Only positive responses are
shown in the graphs.
doi:10.1371/journal.pone.0045267.g002

HIV-1 M-Group Epitope-Based Vaccine
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A DNA Vaccine Encoding 27 Conserved and Promiscuous
HIV-1 M-group Consensus Peptides Elicits Broad T-cell
Responses in BALB/c Mice

Given the fact that multiple peptides were able to bind to IAd

molecules, we chose the BALB/c strain to undergo immunization.

To evaluate the immunogenicity of the 27 conserved and

promiscuous HIV-1 M-group consensus peptides we designed a

DNA vaccine (HIVBr27) encoding the peptides in tandem. We

assessed the magnitude and breadth of vaccine-elicited HIV-1

specific immune response by IFN-c ELISPOT and CFSE-based

proliferation assays 2 weeks after the last immunization with

HIVBr27 or empty pVAX1. HIVBr27 immunization elicited a

significantly higher number of IFN-c secreting cells when

compared to empty pVAX1 (figure 3A) and elicited 10% of both

CD4+ and CD8+ proliferating T cells against the pool of 27 HIV-1

peptides (figure 3B). To evaluate the breadth of T-cell responses

elicited by HIVBr27, we used individual HIV-1 peptides to

stimulate splenocytes in vitro. Immunization of BALB/c mice

resulted in IFN-c secretion against 11 peptides (figure 3C) and

proliferation of CD4+ and CD8+ T-cells against 8 and 6 peptides,

respectively (figure 4A and 4B). All peptides that stimulated T-cell

proliferation also induced IFN-c secretion. In contrast, pVAX1

immunized mice presented negligible numbers of IFN-c secreting

and proliferating CD4+ and CD8+ T cells after incubation with the

same HIV-1 peptides in all performed experiments. Thus, a DNA

vaccine encoding the 27 identified peptides was immunogenic in

BALB/c mice, eliciting broad T-cell responses.

HIVBr27 Immunization Provides Cross-clade T-cell
Immunity

To evaluate whether HIVBr27 would provide cross-clade

immunity, we synthesized the most frequent variant sequences of

the 4 most immunogenic HIVBr27 encoded peptides, which are

RT(413–427), RT(528–546), int(216–235) and p24(127–145)

(table S5), and used them to stimulate splenocytes from immunized

BALB/c mice. HIVBr27 immunization elicited comparable

frequencies of IFN-c secreting cells against M-group peptides

RT(528–546), int(216–235) and p24(127–145) when compared to

most of their variants, while only IFN-c secretion against RT(413–

427) B and D variants was reduced (figure 5A). The same pattern

was observed for CD4+ and CD8+ T-cell proliferation (figure 5B

and 5C). We evaluated the avidity of T-cell responses against the 4

HIVBr27 encoded peptides and their variants in IFN-c ELISPOT

assay by serial peptide dilution and observed similar responses

among all peptides in a concentration range from 5 mM to 5 pM

(data not shown). Besides, most of the variant sequences kept the

promiscuous profile observed in their parent peptides, according

to the TEPITOPE algorithm (table S5). Taken together, these

results suggest that HIVBr27 immunization elicits cross-clade T-

cell responses of similar avidity, towards the most frequent variants

of the M-group consensus peptides.

HIVBr27 Immunization Elicits Polyfunctional CD4+ and
CD8+ T-cell Responses

To assess the functional profile of both CD4+ and CD8+ T-cell

vaccine-induced responses we used multiparameter flow cytome-

try. The gating strategy is outlined in figure 6A. HIVBr27

Figure 3. Immunization with HIVBr27 elicits T-cell responses in BALB/c mice. Two weeks after the last immunization with HIVBr27 or empty
pVAX1, pooled spleen cells from 6 BALB/c mice were cultured in the presence of individual or pooled HIV-1 peptides (5 mM). Frequency of IFN-c
secreting cells (A) and proliferating CD4+ and CD8+ T-cells (B) against pooled HIV-1 peptides. C) Frequency of IFN-c secreting cells against individual
HIV-1 peptides. Dotted line represents ELISPOT cutoff values. Data are shown as mean of three independent experiments for ELISPOT assays. Data
from proliferation assay are representative of three independent experiments.
doi:10.1371/journal.pone.0045267.g003
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Figure 4. Immunization with HIVBr27 elicits CD4+ and CD8+ T-cell proliferation against multiple HIV-1 peptides. Two weeks after the
last immunization with HIVBr27 or empty pVAX1, pooled spleen cells from 6 BALB/c mice were cultured in the presence of HIV-1 peptides (5 mM) or
medium only. Splenocytes were labeled with CFSE (1.25 mM) and cultured for 5 days. After staining with fluorochrome-labeled anti-CD3, -CD4 and -
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immunization elicited higher frequencies of IFN-c and TNF-a
producing CFSElow CD4+ T cells (4% and 3.4%, respectively)

than CD8+ T cells (2% and 1.8%, respectively) against pooled

HIV-1 peptides (figure 6B). It is of note that there were lower

frequencies of IL-2 producing CFSElow CD4+ and CD8+ T-cells

(0.34% and 0.36%, respectively) compared to other cytokine

producing cells (figure 6B). To analyze whether HIVBr27 elicits

polyfunctional T cells, Boolean combinations of cytokine-produc-

ing CFSElow CD4+ and CD8+ T cells were generated. HIVBr27

immunization elicited about 0.2% of IFN-c+IL-2+TNF-a+ CFSE-
low CD4+ T cells and less than 0.1% of IFN-c+IL-2+TNF-a+

CFSElow CD8+ T cells (figure 6C). We observed higher

frequencies of both CFSElow CD4+ and CD8+ T cells able to

produce the combination of IFN-c and TNF-a (2.5% and 1.12%,

respectively) compared to triple cytokine producing CFSElow T

cells (figure 6C). Overall, these data showed that HIVBr27

immunization can elicit polyfunctional CD4+ and CD8+ T cells

that simultaneously proliferate and produce effector cytokines.

Discussion

In the present study, we designed a DNA vaccine encoding 27

highly conserved and promiscuous peptides from the HIV-1 M-

group consensus sequence. This vaccine (HIVBr27) elicited broad,

cross-clade and polyfunctional CD4+ and CD8+ T-cell responses

in BALB/c mice. The 27 encoded peptides bound in vitro to

multiple HLA-DR, -DP, -DQ and to murine IAb and IAd

molecules. Furthermore, the peptides were shown to be antigenic

in natural infection, being recognized by PBMC from patients

infected with different HIV-1 variants.

The 27 peptides identified with the TEPITOPE algorithm [34]

bound in vitro to an average of 12 out of the 17 tested HLA-DR

molecules and to several HLA-DP and -DQ molecules, showing

that our peptides are highly promiscuous and that TEPITOPE is

accurate in predicting promiscuous HLA-peptide binding. More-

over, each tested HLA-DR molecule bound on average to 19 out

of the 27 peptides, which indicates that a vaccine encoding such

peptides would have potential to induce T-cell responses against

multiple targets in a wide proportion of the population. Notably,

all peptides bound to at least one HLA class II molecule associated

CD8 monoclonal antibodies, cells were analyzed by flow cytometry. CFSE dilution on gated CD3+CD4+ (A) or CD3+CD8+ (B) cells was used as readout
for antigen-specific proliferation. Data are representative of three independent experiments.
doi:10.1371/journal.pone.0045267.g004

Figure 5. HIVBr27 immunization provides cross-clade immunity. Two weeks after the last immunization with HIVBr27 or empty pVAX1,
pooled spleen cells from 6 BALB/c mice were cultured in the presence of HIV-1 M-group consensus peptides (5 mM) (white bars) or their variants
(colored bars), from diverse HIV-1 subtypes. Frequency of IFN-c secreting cells was assessed by ELISPOT assay (A) and proliferative CD4+ (B) and CD8+

(C) T-cell responses were assessed by CFSE dilution assay. Dotted lines represent ELISPOT or proliferation cutoff, which were calculated as median +3
SD of unspecific responses obtained with splenocytes from pVAX1 immunized mice stimulated with HIV-1 peptides. Data are representative of two
independent experiments.
doi:10.1371/journal.pone.0045267.g005
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with AIDS protection, such as HLA-DRB1*0101, -DRB3*0202, -

DRB1*13 and -DQB1*06 [49,50], which suggests that those

peptides may be involved in protective immunity against HIV-1.

The 27 peptides were also shown to be highly conserved when

compared to sequences from all HIV-1 circulating variants

available at the Los Alamos HIV Database, indicating that the

identified peptides, or sequences highly homologous to them, are

broadly represented across several HIV-1 subtypes.

The peptides identified in this study showed to be antigenic

during natural infection since we observed that 72% of the HIV-1-

infected patients recognized at least one peptide and that 16 out of

the 27 peptides were recognized. The responses were similar to

those previously found by our group among clinically matched

HIV-1-infected patients, towards HIV-1 B subtype consensus

peptides [51]. It is of note that T-cell responses against M-group

consensus Gag peptides were previously observed in HIV-1-

infected patients [52]. In this study, 34% of the 15-mer M-group

consensus peptides were recognized by HIV-1 B subtype-infected

patients, while we observed recognition of 44% of our peptides by

patients infected with the same subtype. Considering only our Gag

peptides, we observed 50% of recognition by HIV-1 B subtype-

infected patients, suggesting that our TEPITOPE-selected con-

served and promiscuous HIV-1 M-group consensus peptides were

more frequently recognized than the 15-mer peptides employed in

the previous study.

HIVBr27 immunization led to broad T-cell responses in

BALB/c mice, with recognition of 11 peptides in IFN-c ELISPOT

assay, which is a desirable result since broad T-cell responses have

been associated with protective vaccines [6,7,20]. We extended

our immunological analysis and also observed broad CD4+ and

CD8+ T-cell proliferation, against 8 and 6 peptides, respectively.

Elicitation of HIV-1-specific proliferating CD8+ T cells with this

vaccine designed to elicit CD4+ T-cell responses may have

occurred due to the fact that long peptides can harbor CD8+ T-

cell targets [53]. In addition, 24 out of the 27 peptides were

predicted to bind to MHC class I molecules from BALB/c mice,

according to the PredBalb/c algorithm [54], which could explain

the potential of HIVBr27 to induce CD8+ T-cell responses. The

broad T-cell response observed in BALB/c mice, despite the fact

that the peptides were selected for promiscuous HLA-DR binding,

is supported by results from the in vitro MHC-peptide binding

assay, in which 21 out of the 27 peptides effectively bound to IAd

molecules. Moreover, previous studies have already reported

cross-species recognition of peptides identified with TEPITOPE,

probably by the fact that such algorithm may select for

promiscuous peptides that share MHC class II binding motifs

similar to many other human and non-human MHC class II

molecules [33,37,55].

HIVBr27 immunization elicited comparable T-cell responses

against M-group consensus peptides and their respective high-

frequency variants, providing evidence that HIVBr27 is able to

elicit cross-clade immunity across several HIV-1 subtypes, which is

thought to be essential to afford protection against the global

diversity of HIV-1. Moreover, we believe that our approach has

brought significant improvement on the HIV-1 M-group consen-

sus-based vaccine strategy, since we designed a vaccine encoding

highly conserved and promiscuous CD4+ T-cell epitopes from 7

different viral genes, while no other study had addressed all these

features together. Previous HIV-1 M-group consensus-based

vaccines only focused on inducing cross-clade immune responses

against Env [23,24,56]. These studies were able to elicit broader

cross-subtype neutralizing antibodies and broader cross-clade T-

cell responses when compared to immunogens based on single

HIV-1 subtypes. However, their immunogens failed to include

other HIV-1 proteins, as was done in HIVBr27. We conceive that

multiepitopic approaches as HIVBr27 may facilitate the emer-

gence of each peptide as individually immunogenic [25,42,57],

being more attractive to broaden T-cell responses against HIV-1.

Indeed, it has been shown that immunization with multiple

peptides increased the breadth of the T-cell responses, as

compared to those induced by whole proteins [58,59].

Given the frequent association of either Env-specific CD4+ or

CD8+ T-cell responses with progression to AIDS [29–31,60,61], it

is possible to speculate that an Env-based T-cell immunogen may

not provide protection against AIDS progression. However, results

from the RV144 trial showing predominant anti-Env CD4

responses [2], and the correlation between Env-specific antibodies

and protection against HIV-1 infection [62] suggest that a vaccine

able to elicit strong CD4+ T-cell responses against Env would be

valuable in order to improve antibody-mediated protection. The

higher risk of HIV-1 infection observed in vaccinated subjects

from the Step study may raise questions about the association of

T-cell responses specific to other viral proteins with susceptibility

of infection. However, even after extended analysis, it still seems to

be an event related to the prior adenovirus 5-specific immunity

[63]. Thus, it is important to carefully evaluate the inclusion of

Env in HIV-1 vaccine formulations.

Different approaches have been suggested to overcome HIV-1

genetic diversity. Ad26-vectored mosaic vaccines comprising Gag,

Pol and Env were found to be more immunogenic than a similar

vaccine based on M-group consensus sequence in rhesus macaques

[64]. However, it is important to note that the M-group vaccine

studied by the authors was based on whole HIV-1 proteins, unlike

our approach. Another strategy proposed to elicit cross-clade T-

cell responses was based on a chimaeric protein composed of

conserved regions of Pol, Gag, Vif and Env from HIV-1 A, B, C

and D subtypes [65]. This approach induced significant CD8+ T-

cell responses in immunized mice, but limited CD4+ T-cell

responses compared to those induced with HIVBr27 immuniza-

tion. Indeed, HIVBr27 is the first vaccine specifically aimed to

elicit broad and cross-clade CD4+ T-cell responses against HIV-1.

Thus, we hypothesize that HIVBr27 may confer direct CD4+ T-

cell-mediated antiviral immunity, as well as provide help for CD8+

T-cell-based vaccines, since CD4+ T cells are required for both

enhancement of virus-specific CD8+ T-cell effector function and

mobilization of these cells to infected tissues [66–68].

HIVBr27 immunization was also able to elicit high frequencies

of both polyfunctional CD4+ and CD8+ T cells, which simulta-

neously proliferate and produce effector cytokines such as IFN-c
and TNF-a. We observed a low but detectable frequency of CD4+

Figure 6. HIVBr27 immunization elicits polyfunctional CD4+ and CD8+ T cells. Two weeks after the last immunization with HIVBr27 or
empty pVAX1, pooled spleen cells from 6 BALB/c mice were collected, labeled with CFSE (1.25 mM) and cultured for 4 days in the presence of pooled
HIV-1 peptides (5 mM) or medium only. On day 4, cells were pulsed for 12 hours with pooled peptides in the presence of Brefeldin A and
costimulatory antibody (anti-CD28). A) Multiparameter flow cytometry strategy used to determine the frequency of IFN-c, IL-2 or TNF-a producing
CFSElow CD4+ and CD8+ T cells. B) Frequency of IFN-c, IL-2 or TNF-a producing CFSElow CD4+ (left) and CD8+ (right) T-cells. C) Boolean combinations of
IFN-c, IL-2 and TNF-a producing CFSElow CD4+ and CD8+ T cells from HIVBr27 immunized mice. Background responses detected in negative control
tubes (cells stimulated with medium and cells from pVAX1 immunized mice stimulated with pooled peptides) were subtracted from those detected
in stimulated samples. Data are representative of three independent experiments.
doi:10.1371/journal.pone.0045267.g006
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T cells able to proliferate and produce IFN-c, IL-2 and TNF-a.

These results indicate that HIVBr27 has potential to induce T-cell

responses with a functional profile related to natural control of

viral replication and non progression to AIDS, as previously

observed in HIV-1-infected patients [50,69–71] and vaccine-

mediated protection in NHP models [9,72].

We hereby demonstrate that immunization with the HIVBr27

vaccine encoding multiple conserved and promiscuous HIV-1 M-

group consensus peptides is able to elicit broad, cross-clade and

polyfunctional T-cell responses. This vaccine concept may cope

with HIV-1 genetic diversity as well as provide increased

population coverage, which are desirable features for an effica-

cious strategy against HIV-1/AIDS.
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