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A poorly understood phenomenon seen in complex systems is diffusion characterized by Hurst exponent
H ≈ 1/2 but with non-Gaussian statistics. Motivated by such empirical findings, we report an exact analytical
solution for a non-Markovian random walk model that gives rise to weakly anomalous diffusion with H = 1/2
but with a non-Gaussian propagator.
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Introduction. Anomalous diffusion [1–4] generalizes the
study of normal diffusion, which began with the pioneering
contributions of Fourier, Brown, Fick, Bachelier, and Einstein.
In normal diffusion the mean square displacement grows
linearly with time. Moreover, the random walk propagators
which give the probability density of finding a particle at
position x2 at time t2 starting from position x1 at time
t1 converge to a Gaussian for large times |t2 − t1| → ∞.
In anomalous diffusion, mean square displacements usually
grow either sublinearly or superlinearly but not linearly, i.e.,
〈x2〉 ∼ t2H , with H �= 1/2. In the results that follow, the mean
position 〈x〉 is not stationary, so we follow the convention
by studying the scaling of 〈(x − 〈x〉)2〉 instead of 〈x2〉. The
exponent H is known as the Hurst exponent and is one of the
most important quantities in the study of anomalous diffusion.
Subdiffusion (H < 1/2) and superdiffusion (H > 1/2) have
been studied in diverse systems, and their theoretical basis is
now well understood [3]. However, there is a marginal case
which is of great importance but which remains very poorly
understood: Diffusion with H = 1/2 but with non-Gaussian
propagators. Our goal is to understand better this phenomenon,
which we refer to henceforth as weakly anomalous diffusion.
This phenomenon has only been observed experimentally, but
the underlying physics has never been properly understood.
Here we present a model that contains the essential ingredients
to reproduce weakly anomalous diffusion. As a bonus, we
obtain the exact analytical solution.

Weakly anomalous diffusion is seen in real complex
systems, yet diffusion with H ≈ 1/2 but with non-Gaussian
propagators is nevertheless counterintuitive. The central limit
theorem which applies to normal diffusion with H = 1/2 also
guarantees Gaussian propagators given the usual conditions.
Specifically, Gaussian propagators are guaranteed (at long
times) for Markovian random walks whose step size distri-
butions have finite variance. Even non-Markovian processes,
such as fractional Brownian motions (e.g., single file diffusion
[5,6]), are described by Gaussian propagators. However,
there are classic empirical findings of diffusive phenomena
with H = 1/2 for which the propagators are nevertheless
non-Gaussian. A remarkable example of weakly anomalous
diffusion is the fluctuation of returns in financial markets. The
log-returns, the logarithm of the returns, have vanishing two-
point autocorrelation at long times, consistent with H = 1/2.

But hidden underneath the apparently uncorrelated returns are
long-range power law correlations in the absolute value of the
log-returns: memory effects which render the process non-
Markovian. The empirically measured propagator is strongly
non-Gaussian, even though H ≈ 1/2 [7].

This gap in our present understanding motivates the study of
random walk models which can reproduce weakly anomalous
diffusion. There is a long tradition in statistical physics of
using limiting models that capture the essential ingredients of
physical systems to study real phenomena. Examples include
the use of the self-avoiding walk to model real polymer
chains and the simple Ising model for studying real magnetic
systems. We adopt this strategy and ask what is the simplest
possible non-Markovian random walk which gives rise to
weakly anomalous diffusion. The results we report below show
clearly how long-range memory effects can change H and the
propagator independently. Our results also have a bearing on
the family of autoregressive and heteroscedastic processes,
some of which have a bearing on anomalous diffusion [8–21].

Model. The model we propose describes the motion of a
random walker in one dimension, which was inspired by the
so-called elephant [22] and Alzheimer [23] walks. In the latter
models, the walker remembers either the complete history
(elephant) or an initial fraction of the history (Alzheimer).
In contrast, in our model the walker remembers only a single
but moving point in time.

In each time step, the walker currently at position Xt moves
one step to the right or left to Xt+1, according to a probabilistic
recurrence relation:

Xt+1 = Xt + σt+1, (1)

where Xt+1 is the new position and σt+1 = ±1 represents
a stochastic noise that contains two-point correlations (i.e.,
memory). From the entire history of prior random walk step
directions {σt ′ }, only the decision taken at the previous time
t ′ = f t is used at time t , with fixed 0 < f < 1. The current
step direction σt is based on the value of σt ′ at time t ′ = f t in
the following manner:

σt =
{

+σt ′ with probability p,

−σt ′ with probability 1 − p.
(2)

Without loss of generality we assume that the first step always
goes to the right, i.e., σ1 = +1, and t ′ must be an integer value,
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as time is discrete. Therefore one must actually set t ′ = 
f t�,
i.e., the largest integer smaller than f t . The position at time t

thus follows Xt = ∑t
t ′=1 σt ′ , and for the sake of simplicity we

assume that X0 = 0 for t = 0.

Results. We now solve the model. An equation for the first
moment can be obtained by considering effective probabilities
P +(t) and P −(t) of moving to the right or left, respectively,
so that P −(t ′) + P +(t ′) = 1. Define P +(t) as

P +(t) = pP +(t ′) + (1 − p)[1 − P +(t ′)]

= αP +(t ′) + 1 − α

2
, (3)

with α = 2p − 1. Since t ′ = f t , we can write

P +(t ′) = αP +(f 2t) + 1 − α

2
, (4)

which leads to a recursive relation,

P +(t) = αnP +(f nt) +
(

1 − αn

2

)
. (5)

In the asymptotic limit we can write the speed of the random
walker as d〈x〉/dt = σ eff = P + − P − or

d〈x〉
dt

= 2

[
αnP +(f nt) +

(
1 − αn

2

)]
− 1

= αn[2P +(f nt) − 1], (6)

where 〈x〉 stands for the first moment and ensemble average
is assumed. The last stage of the iteration is t ′ = f Nt = 0,
which will be reached for some integer N = N (t). Prior
to this last iteration step we can write f N−1t = A, where
A is some positive integer. Therefore, for n = N we can
write P +(f Nt) = P +(0) = 1, where P +(0) = 1 represents
the initial condition. Then, Eq. (6) becomes

d〈x〉
dt

= αN, (7)

with N = N (t), which is the basic equation to be solved in
order to fully describe this model. We then seek to solve
(7) for v = d〈x〉/dt , with N given by f N−1t = A, or N =
ln t/ ln f −1 − ln A/ ln f −1 + 1, where A � 1 is some integer
that depends on f and t .

The solution of (7) is straightforward for α = 0 or p = 1/2.
In this case d〈x〉/dt = 0, so 〈x〉 does not depend on t . Due
to the initial condition 〈x(0)〉 = 0, we get 〈x(t)〉 = 0. This is
memoryless Brownian motion (p = 1/2 in this model).

We now consider the case α > 0. Equation (7) can be
written as

d〈x〉
dt

= Bαln t/(ln f −1) = Bt ln α/(ln f −1), (8)

with B = |α|−(ln A)/(ln f −1)+1. Here we must distinguish two
cases: one that leads to a power law for 〈x(t)〉 and one
that leads to a logarithmic solution. The latter happens for
ln α/ ln f −1 = −1 (i.e., α = f or 2p − 1 = f ) for which the
equation becomes d〈x〉/dt = B/t , which gives

〈x(t)〉 = B ln t + C. (9)

For ln α/ ln f −1 �= −1 we can perform a direct integration,
i.e.,

〈x(t)〉 = B
t (ln α)/(ln f −1)+1

(ln α)/(ln f −1) + 1
= B

tδ

δ
, (10)

where we set the integration constant to zero due to the initial
condition 〈x(0)〉 = 0 and defined the parameter

δ = (ln α)/(ln f −1) + 1, (11)

which will be extensively used throughout the rest of this
Brief Report. We need to be more careful when α < 0 because
αN oscillates between positive and negative values as N is
even or odd. A direct integration becomes difficult because the
function has a great number of discontinuities. For α < 0 we
can write Eq. (7) as

d〈x〉
dt

= (−|α|)N = (−1)N |α|N. (12)

A full solution for Eq. (12) can be obtained by writing a Fourier
series expansion for the square wave (−1)N , which gives

d〈x〉
ds

= −4B

π

∞∑
m=0

1

2m + 1
sin

(
2m + 1

λ
πs

)
e(1+ln |α|/λ)s ,

(13)

with λ = ln f −1 and s = ln t . This equation can be integrated
directly in s to give

〈x(t)〉 = −4B

π
tδ

∞∑
m=0

(
1

2m + 1

)
sin[am(ln t + s0) − φm]√

a2
m + δ2

+ C

= t δS(ln t) + C,

where C is an integration constant, am = [(2m +
1)/(ln f −1)]π , φm = arccos[δ/(a2

m + δ2)1/2], and s0 is a shift
to adjust the solution to the initial condition. The sum and
other factors have been collected inside the function S(ln t),
defined for convenience.

We now turn our attention to the second moment 〈x2(t)〉 ≡
〈X2

t 〉, whose asymptotic behavior is important to determine
the Hurst exponent. Starting with the basic equation of motion
(1), we can write 〈X2

t+1〉 − 〈X2
t 〉 = 2〈σt+1Xt 〉 + 1. Therefore

we can define the second moment derivative,

d〈x2〉
dt

= 1 + 2〈σt+1Xt 〉, (14)

where the explicit time dependence of 〈x2(t)〉 was
dropped.

The exact evaluation of the second moment is more chal-
lenging because of the correlation function appearing on the
right hand side. We have used several approaches to reach an
exact solution, but the results are still incomplete. Fortunately,
however, we can carry on the discussion about the nature of
the diffusive regimes based solely on the exact information
available for the asymptotic behavior of the first moment. In
what follows, we show how to derive exact expressions for
the Hurst exponent, allowing a complete characterization of
the phase diagram and analytical determination of the critical
separation lines.

We have argued before [24] that the diffusion behavior is
normal if the scaling exponent of 〈x(t)〉 is δ � 1/2. The Hurst
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exponent is then given by H = 1/2. For the convenience of
the reader we hereby reproduce the main arguments that give
support to this result. Based on experimental observations,
we have conjectured that H = δ is valid throughout the
superdiffusive regime, provided that there is no subdiffusion
(the model we discuss does not present subdiffusion since
other ingredients would then be necessary, e.g., traps in the
system [25]). Although a general proof is still lacking, the
conjecture has been rigorously proved for a quite general
model presenting amnestically induced persistence [24] and is
supported by the following reasoning: a ballistic motion leads
trivially to H = δ; it is therefore reasonable to assume that
H = δ = 1 − ε (ε very small) for a motion near the ballistic
regime. By inductive reasoning we can conclude that this
must be true up to the transition line, where H = δ = 1/2.
Since there is no subdiffusion, the regime must be normal
with H = 1/2 within the region corresponding to δ � 1/2.
In conclusion, we have H = 1/2 for δ � 1/2 and H = δ for
δ > 1/2. This has been confirmed by computing simulations
for 〈x2〉. The case δ > 1/2, however, remains elusive. In this
case, since H = δ, 〈x2〉 ∼ t2H , and 〈x〉 ∼ t δ [from Eq. (10)],
we can write 〈x2〉 ∼ 〈x〉2 (i.e., they have the same scaling
behavior). The regime is therefore either superdiffusive with
H = δ > 1/2 or normally diffusive (H = 1/2) with escape.
In the latter case 〈x2〉 = 〈x〉2 plus correction terms, which
was not observed in the simulations. The experiments indeed
show the same scaling behavior for the variance and the
second moment, thereby indicating superdiffusive behavior.
Rigorously, however, we prefer to leave the true diffusive
nature of the walk as inconclusive since the asymptotic limit
may not yet have been reached. We are currently looking for
an exact solution for this problem.

We therefore settle for two normal diffusive regimes, one
for δ < 0 and another for 0 < δ < 1/2. Although the Hurst
exponent is H = 1/2 in both cases, the behavior of the walk
is not the same, as can be seen from the asymptotic behavior
of 〈x〉. For δ < 0 the random walk performs a localized walk,
never going too far from the origin. This regime represents
well a normal diffusion. On the other hand, for 0 < δ < 1/2
the first moment diverges in the asymptotic limit. This case is
a normal diffusion regime with escape. But is it really normal
diffusion? The computing simulations show that although
H = 1/2, the regime for 0 < δ < 1/2 is characterized by
non-Gaussian propagators. This important point of this Brief
Report is discussed below.

Notice that although we cannot give a definite answer as
to the nature of the diffusion for δ > 1/2, we can safely say
that it represents a fast escape walk, in contrast to the walk
with 0 < δ < 1/2. Therefore the corresponding region in the
phase diagram is either a superdiffusive region or a normally
diffusive region with fast escape. This question calls for more
detailed studies, which are currently being addressed.

Figure 1 shows the complete phase diagram on the (f,p)
plane. The parabola for δ = 1/2 (or f = 4p2 − 4p + 1) sets a
discontinuity in the asymptotic behavior of 〈x2〉. For δ > 1/2
(0 < δ < 1/2) we have a fast (slow) escape regime for all α.
For α < 0 (p < 1/2), the escape regime disappears on the δ =
0 line, but the log-periodicity remains. For α > 0 (p > 1/2),
the solution for 〈x〉 is given by (10). Again, δ = 0 divides
the p > 1/2 region in two: one below (escape regime, δ >

0 0.5 1p
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Slow
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Localized
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FIG. 1. The richness of the f -p phase diagram. The parabola
(δ = 1/2) separates the two escape regimes. The dashed lines (δ = 0)
separate the localized and slow escape regimes. The vertical dotted
line (p = 1/2) separates the log-periodic (L) region on the left and
the non-log-periodic region on the right.

0) for which x(t) → ∞ and one above (normally diffusive,
δ < 0) for which x(t) → 0, asymptotically. On the δ = 0 line
itself, the solution is logarithmic, as given by (9). It is still an
escape regime since x(t) diverges, unlike what was found for
p < 1/2. It is, however, slowly divergent. Experimentally, we
have found that this logarithmic regime manifests itself after
an initial transient (not shown).

Figure 2 shows selected log-periodic solutions for 〈x(t)〉,
all for p < 1/2. Typical solutions for the fast escape regime
are shown in Figure 2(a), both analytically and numerically.
The sharp peaks are a direct consequence of the memory
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FIG. 2. Examples of solutions for 〈x(t)〉 within the log-periodic
region (p < 1/2). (a) Exact and experimental solutions, normalized
for visual aid. The experimental observations were obtained with
103 runs with 6 × 106 total time units each. (b) The escape regime
associated with 0 < δ < 1/2. (c) and (d) The localized regimes. The
log-periodic solution for δ < 0 in (d) fades away in the asymptotic
limit.
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FIG. 3. (a) Gaussian probability plot of the speed of the ran-
dom walker measured after 108 time units, calculated using v =
[x(108 + 10) − x(108)]/10 vs the normal order statistic medians m.
Three cases are shown: f = 0.1 (solid circles, δ ≈ 0.90), f = 0.7
(squares, δ ≈ 0.37), and f = 0.9 (open circles, δ ≈ −1.12), all for
p = 0.1. They correspond, respectively, to the fast escape, slow
escape, and normal localized regimes. The straight line for δ < 0
indicates Gaussian behavior. (b) The persistence length distributions
corresponding to the same parameters (f,p) as above. The inset
shows the corresponding Gaussian probability plot for position 〈x〉
(f = 0.1) vs the normal order statistics medians m. The propagator is
visibly non-Gaussian. (c) The difference 	3 = 3〈x〉[〈x2〉 − 〈x〉2] −
[〈x3〉 − 〈x〉3] as a function of ln t . This difference is equal to zero
for a Gaussian distribution. The inset shows 	3 for α > 0. (d) The
difference 	4 = 3[〈x2〉2 − 〈x〉4] − [〈x4〉 − 〈x〉4] as a function of t

in a log-log plot. This also is identically equal to zero for Gaussian
distributions. The straight line represents a linear fit. The inset shows
the form of the distribution of the position, but any resemblance to a
Gaussian distribution is misleading (see text).

profile consisting of δ distributions at f t , with the Fourier
expansion for the square wave (−1)N leading naturally to this
type of solution. As expected from (14), we can clearly see
the log-periodic solutions for δ > 0 and p < 1/2. For δ > 0
the random walk escapes to infinity with a scaling exponent
equal to 1/2. The δ < 0 regime can be termed “log-periodic
evanescent” because, although the random walker position
oscillates, the walker stays localized around the origin since
x(t) → 0 as t gets larger and larger.

Discussion and conclusion. Now we can see why we
should expect non-Gaussian propagators. Even though H =
1/2, the first moment can be highly nonstationary and can
oscillate log-periodically, so that the propagator cannot easily
retain its shape. The tails of the propagator cannot rearrange
themselves and move in synchrony with the peak or central
part of the propagator. The log-periodic oscillations prevent
convergence towards a stable (Gaussian) shape. Figure 3
shows this surprising effect whereby normal diffusion can be
associated with non-Gaussian propagators. Figure 3(a) shows
the speed of the random walker versus the normal order statistic

medians m as usual, after 108 time units with 104 runs. A
straight line implies a Gaussian probability distribution. Notice
that the localized regime (δ < 0) is well fitted by a straight
line (dot-dashed line) indicating a Gaussian propagator, as
expected. However, both escape regimes (δ > 0) show re-
markable deviations from Gaussian behavior (the dashed line
is a linear fit and the continuous thin lines are just connecting
lines). Figure 3(b) shows the persistence length distributions on
a log-linear plot, corresponding to the same parameters (f,p)
shown in Fig. 3(a). Gaussian propagators present exponential
persistence length distributions. The departure from the ex-
ponential behavior is appreciable, and we see nonexponential
behavior for f = 0.7 and f = 0.1, inconsistent with Gaussian
propagators. The inset is a probability plot (f = 0.1) drawn
with the logarithm of the distribution data, also confirming
nonexponential behavior. The normal probability plots were
drawn by plotting the ordered sample data against the order
statistic medians. The latter are related to the inverse of the
standard normal cumulative distribution function. If the plot is
linear, then the data are normally distributed [26]. The length
of persistence was counted after Tmin = 106, and the data were
statistically averaged over 103 runs (convergence tested for
8 × 103 runs). The spikes (and their period) showing up for
f = 0.7 and f = 0.1 can be shown to be a consequence of
the sharp peaks (and their periods) in the analytic solution
shown in Fig. 2(a). The straight lines were fitted to the tail
of the distribution excluding the spikes (f = 0.7 and f =
0.1), revealing the nonexponential character. Long persistence
lengths and log-periodic oscillations prevent convergence
towards Gaussian propagators, even if weak autocorrelation
gives H = 1/2. Figures 3(c) and 3(d) present stronger and
convincing evidence about the non-Gaussian behavior of the
propagator within the region 0 < δ < 1/2. In Fig. 3(c) the
difference 	3 = 〈(x − 〈x〉)3〉 = 3〈x〉[〈x2〉 − 〈x〉2] − [〈x3〉 −
〈x〉3] is shown as a function of ln t . This difference must
be equal to zero for a Gaussian distribution. We see that
	3 oscillates with ever growing amplitudes in a log-periodic
fashion, which is supported by computing simulations. The
errors involved in these experiments are no greater than
1%. From the log-log plot of 	3 for α > 0 shown in the
inset, we see that 	3 grows with time as a power law. The
difference 	4 = 3[〈x2〉2 − 〈x〉4] − [〈x4〉 − 〈x〉4], which also
must be identically zero for Gaussian distributions, is plotted
in a log-log plot in Fig. 3(d). These results are evidence of
the non-Gaussian character of the propagator. The inset shows
the distribution of the position of the walker. Notice that the
resemblance to a Gaussian distribution is misleading, in view
of the discussions above. The plots in Figs. 3(c) and 3(d) were
obtained for 50 000 time units with 20 × 106 runs.

In conclusion we have shown that the long-range memory
effects lead to a change in the nature of the propagator of
a normal diffusive regime. The departure from the expected
Gaussian statistics breaks down the usual connection between
the observed macroscopic behavior and the underlying mi-
croscopic statistics that ultimately govern the actions of the
walker.
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