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ABSTRACT

PEREIRA-FILHO, G.H.; AMADO-FILHO, G.M.; MOURA, R.L.; BASTOS, A.C.; GUIMARÃES, S.M.P.B.; SALGADO,
L.T.; FRANCINI-FILHO, R.B.; BAHIA, R.G.; ABRANTES, D.P.; GUTH, A.Z., and BRASILEIRO, P.S., 2012. Extensive
rhodolith beds cover the summits of southwestern Atlantic Ocean seamounts. Journal of Coastal Research, 28(1), 261–
269. West Palm Beach (Florida), ISSN 0749-0208.

Calcium carbonate production by marine organisms is an essential process in the global budget of CO2{
3 , and coralline reefs

are the most important benthic carbonate producers. Crustose coralline algae (CCA) are well recognized as the

most important carbonate builders in the tropical Brazilian continental shelf, forming structural reefs and

extensive rhodolith beds. However, the distribution of CCA beds, as well as their role in CO2{
3 mineralization

in mesophotic communities and isolated carbonate banks, is still poorly known. To characterize the bottom

features of several seamount summits in the Southwestern Atlantic (SWA), side-scan sonar records, remotely

operated vehicle imagery, and benthic samples with mixed-gas scuba diving were acquired during two recent

research cruises (March 2009 and February 2011). The tops of several seamounts within this region are

relatively shallow (,60 m), flat, and dominated by rhodolith beds (Vitória, Almirante Saldanha, Davis, and

Jaseur seamounts, as well as the Trindade Island shelf). On the basis of abundance, dimensions, vitality, and

growth rates of CCA nodules, a mean CaCO3 production was estimated, ranging from 0.4 to 1.8 kg m22 y21,

with a total production reaching 1.5 3 1023 Gt y21. Our results indicate that these SWA seamount summits

provide extensive areas of shallow reef area and represent 0.3% of the world’s carbonate banks. The importance

of this habitat has been highly neglected, and immediate management needs must be fulfilled in the short term

to ensure long-term persistence of the ecosystem services provided by these offshore carbonate realms.

www.JCRonline.org

ADDITIONAL INDEX WORDS: Calcium carbonate production, mesophotic zone, oceanic banks, crustose coralline algae.

INTRODUCTION

Rhodoliths are free-living calcareous nodules composed

mostly (.50%) of crustose coralline algae (CCA) (Corallinales,

Rhodophyta) (Foster, 2001). Rhodolith beds are distributed

worldwide, from the tropics to the poles, from the intertidal

zones to depths of up to 200 m (Foster, 2001; Nelson, 2009).

They are important ‘‘ecosystem engineers’’ (Foster et al., 2007),

providing a structurally complex habitat with high associated

diversity encompassing several taxonomic groups, from mi-

crobes and fleshy algae to fishes and turtles (e.g., Amado-Filho

et al., 2007; Amado-Filho et al., 2010; Peña and Barbara, 2008;

Riul et al., 2009). Because rhodolith beds concentrate high

biodiversity, provide numerous ecosystem services, and are

susceptibile to severe damage from human activities, they are
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protected habitats in several countries (e.g., Birkett, Maggs,

and Dring, 1999).

Besides growing concerns over habitat destruction due to

dredging and trawling in deep reefs (Roberts, 2002), there is a

broad record of anthropogenic impacts in shallow coralline

habitats (e.g., Birkeland, 1997). Mesophotic reefs that occur in

depths between 30 and 40 m and the bottom of the photic layer

have been considered as free from major stresses that affect

shallow coralline reefs, such as temperature anomalies,

overfishing, and water-quality degradation from excessive

sedimentation and sewage (Bak, Nieuwland, and Meesters,

2005; Kahng et al., 2010; Lesser, Slattery, and Leichter, 2009).

Therefore, reefs from the mesophotic zone may often serve

as refugia for several species that also inhabit shallow areas

(Bongaerts et al., 2010). However, the 40% increase in levels of

atmospheric CO2 in the past 250 years (Solomon et al., 2007),

with a third of this anthropogenic carbon tempered by oceanic

uptake (Sabine and Feely, 2007), is already triggering large-

scale changes in seawater chemistry that will indistinctly affect

both shallow and deep reefs (Doney et al., 2009).

Calcium carbonate production by coralline reefs, which is

similar in magnitude to the flux from planktonic carbonate

production, is an essential process in the global carbon cycle

(Milliman, 1993; Vecsei, 2004), and CCA, especially when forming

extensive rhodolith beds, are recognized as foremost carbonate

builders. On the basis of growth rate estimates, density, and living

branch measurements, Bosence (1980) and Freiwald and Henrich

(1994) calculated the CaCO3 production (kg m22 year21) of

rhodolith beds in temperate areas dominated by two CCA species.

However, data deficiencies concerning rhodolith beds in the

southwestern Atlantic (SWA) have hampered a more detailed

appreciation of their relative contribution to the global carbonate

production. The Brazilian tropical shelf is one of the world’s most

important marine CaCO3 deposits, being dominated by extensive

rhodolith beds (Foster, 2001; Kempf, 1970; Milliman and Amaral,

1974). Because SWA rhodoliths are generally multispecific

(Amado-Filho et al., 2007, 2010; Bahia et al., 2010; Riul et al.,

2009), and also have a smoother surface than those studied in

temperate seas, direct inferences from production rates estimated

elsewhere are not straightforward.

We present novel information from rhodolith beds found on the

summits of several SWA seamounts, adding hard data to the

ongoing efforts to characterize the extension and role of rhodolith

beds in the SWA (e.g., Amado-Filho et al., 2010). We also estimated

the unexpectedly high CaCO3 production on the tops of SWA

seamounts. Isolated seamounts are of great geological and

biological importance, encompassing diverse or unique biotas, as

well as high rates of primary productivity due to nutrient

upwelling and CaCO3 production (McClain, 2007; Vecsei and

Freiburg, 2000). The Vitória–Trindade Chain (VTC), 20–21u S and

29–38uW, within the Brazilian exclusive economic zone, comprises

a 1150-km E-W chain of nine seamounts, also bearing two small

islands at its eastern outpost (Trindade and Martin Vaz) (Almeida,

2006). We also sampled the more isolated Almirante Saldanha

Seamount (22u309000 S, 37u309000), southward of the VTC.

Previous biological sampling on these seamounts was restricted

to a few dredging samples, data from commercial fisheries, and

scientific diving operations around the Trindade Island shallow

reefs (,15-m depth) (O’Hara et al., 2010).

MATERIALS AND METHODS

We obtained data from the insular platforms of Trindade and

Martin Vaz islands, as well as from three seamounts within the

VTC (Jaseur, Davis, and Vitoria seamounts), and from the

Almirante Saldanha Seamount, all of which present predom-

inantly flattened tops lying at average depths around 60 m (10–

110 m), within the mesophotic zone. These flattened summits,

with horizontal extensions of up to 50 km, apparently result

from alternate growth and erosion of carbonate deposits over

volcanic pedestals (Skolotnev, Peyve, and Turko, 2010).

Benthic habitats were surveyed during two expeditions (March

2009 and February 2011, Figure 1) with a side-scan sonar

(SSS) Edgetech 4100 system with a 272TD towfish operated at

100 kHz in 200- and 400-m swaths, as well as with a SeabotixH

LBV 150S2 remotely operated vehicle (ROV) equipped with

color video camera and a pair of scaling lasers (5 cm apart),

used to validate sea-bottom features recorded with SSS.

Acoustic data were processed using SonarWis Map4 software;

georeferenced mosaics were exported as GeoTiff images with

1 m/pixel resolution into a geographic information system,

whereas morphological attributes, such as area and depth,

were treated as shapes, using a bathymetric map produced by

ETOPO1 data. Footage from the ROV was recorded for at least

40 minutes in each deployment, covering the main benthic

features at each site (n 5 20). In addition, footage was

transformed into one-frame-per-second still images, from

which 25 randomly selected frames were used to determine

the abundance (individuals m22 by using Coral Point Count

(CPCe) software (Kohler and Gill, 2006).

Divers using mixed gas (TRIMIX) collected 30 rhodolith

samples at each sample site (Figure 1). Immediately after

collections, each specimen was photographed to record the color

of the CCA thallus for vitality estimates (i.e., proportion of live

tissue). Photographs were analyzed using CPCe, with 50

sampling points randomly positioned over each rhodolith image.

The number of points over the living algae thallus (shades of red

on the image) was recorded and vitality expressed as a

percentage of the total number of sampling points.

Rhodolith volume was estimated from submersion in a

graduated beaker filled with water and measured to the nearest

millimeter. The largest, intermediate, and smallest diameters

were also measured and, thereafter, plotted using the TRIPLOT

spreadsheet of Graham and Midgley (2000), who plotted data on

the pebble-shaped diagram of Sneed and Folk (1958), and which

can be used to separate rhodoliths into spheroidal, discoidal,

or ellipsoidal shapes. Analysis of variance (ANOVA) was

performed to assess differences between sites for each measured

variable (rhodolith volume, diameter, vitality, and densities).

Identification of coralline species that composed the rhodo-

liths was done on the basis of both vegetative and reproductive

characters following Amado-Filho et al. (2010), Bahia et al.

(2011), Harvey et al. ( 2006), Harvey and Woelkerling (2007),

and Verheij (1993). Formalin-preserved specimens were

decalcified in 10% nitric acid and sequentially immersed in

70%, 90%, and 100% ethanol for a minimum of 30 minutes in

each concentration. Specimens were then immersed in Leica

Historesin (Leica Microsystems, Wetzlar, Germany) until

completely infiltrated. A hardening solution was added and
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the specimens were orientated in this final solution until set.

All specimens were sectioned at 5–10mm thickness using a

Bright 5030 microtome (Bright Instrument Co. Ltd., Cambs.,

U.K.). Each section was removed from the microtome blade

using a fine sable hair brush and transferred to a slide covered

with distilled water. All slides were then placed on a hot plate

until dry. Slides were then stained with 1% toluidine blue.

Two main methods have been used to estimate carbonate

production in coralline reefs (Vecsei, 2001, 2004). The hydro-

chemistry method consists in estimating CaCO3 production

from changes in seawater alkalinity (Chisholm and Gattuso,

1991; Kinsey, 1985), but large quantities of biological material

are needed to produce measurable changes (Kinsey, 1985). The

census-based method uses data on relative cover by reef

organisms and their growth/accretion rates (Chave, Smith,

and Roy, 1972; Hart and Kenck, 2007). For instance, calcifica-

tion rates of CCA have been calculated by multiplying algae

growth rate (mm) by its bulk skeletal density (g cm23) (Hart and

Figure 1. Sampled sites. (A) Map showing the Vitória–Trindade Chain position, (B) Vitória Seamount, (C) Almirante Saldanha Seamount, (D) Jaseur

Seamount, (E) Davis Seamount, and (F) Trindade Island. Dotted line shows where the samples by remotely operated vehicle and side-scan sonar were taken.

The shorter and larger dotted lines correspond, respectively, to March 2009 and February 2011 expeditions.
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Kench, 2007). For our estimates, the mass of coralline algae

added per square meter after 1 year in a rhodolith bed (g m22 y21)

was calculated on the basis of growth rate, vitality, dimensions,

and abundance of rhodolith as follows:

Rhodoliths have an ellipsoid form, with volumes (V)

determined by the equation:

V ~ 4=3p Rað Þ Rb
� �

Rcð Þ

where Ra, Rb, and Rc are the largest, intermediate, and smallest

radii, respectively.

Increases in rhodolith volume after 1 year can be obtained by

subtracting initial from final volumes with the following

equation:

Vafter 1 year~ 4=3p Razgð Þ Rbzg
� �

Rczgð Þ
� �

{ 4=3p Rað Þ Rb
� �

Rcð Þ
� �

where g is rhodolith growth in centimeters after 1 year. Density

(d) is defined as mass/volume, with CCA density estimated at

,1.56 g cm23 (Stearn, Stoffin, and Martindale, 1977).

CaCO3 production rate (CaCO3pr, expressed in g m22 y21)

was obtained with the following equation:

CaCO3pr~4
�

3pdVitD Razgð Þ Rbzg
� �

Rczgð Þ
� �

{ Rað Þ Rb
� �

Rcð Þ
� �� �

where Vit is rhodolith mean vitality (ranging between 0 and 1)

and D is mean rhodolith abundance (individuals21 m22).The

growth thickness value used was 1 mm y21 according to Blake

and Maggs (2003).

Figure 2. Rhodolith beds from the seamounts Vitória, Almirante Saldanha, Davis, Jaseur, and Trindade Island shelf reaching depths down to 100 m.

(A) Side-scan sonar (SSS) image of rhodolith beds at Davis Seamount; (B) image obtained by remotely operated vehicle as ground truth for SSS data, and (C)

bathymetric map of Vitoria–Trindade Chain (data source: ETOPO 1).
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RESULTS

A representative SSS coverage was acquired from the tops of

three seamounts in the VTC (Vitória, Davis, Jaseur), from the

Trindade and Martin Vaz islands shelf, and from the Almirante

Saldanha Seamount. With the exception of Martin Vaz Island,

flat and highly reflective bottoms predominated in depths of up

to 100 m, largely corresponding to the low-relief hard bottom

typical of rhodolith beds (Figure 2). This benthic feature was

explored by ROV across the whole area, confirming its

correspondence with rhodolith beds (100% match). On the

basis of bathymetry and extension of occurrence, the estimated

area covered by rhodolith beds in the studied area is 1511 km2

(850, 590, 40, 15, and 16 km2, for Davis, Vitória, and Jaseur

seamounts and Trindade shelf, respectively) (Figure 3).

Noticeably, rhodolith beds were absent from Martin Vaz

Island, where only a few small patches of smaller CCA nodules

were sighted by divers in interreefal areas, apparently resulting

Figure 3. Rhodoliths from sampled sites at Vitória–Trindade Chain. (A) Diver collecting samples on rhodolith bed; (B) and (C) rhodoliths from Jaseur

Seamount showing the occurrence of rhodolith fusion and the presence of associated corals, respectively; (D) sample from the Trindade shelf, showing the

spheroidal shape and low biomass of associated community.

Rhodolith Beds from Southwestern Atlantic Seamounts 265
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from a detached reef framework. The insular platform of

Martin Vaz is largely covered by finer sandy sediments

(unpublished data).

Five taxa of coralline algae were identified forming the

rhodoliths in the seamounts and islands: Mesophyllum en-

gelhartii (Foslie) Adey, Sporolithon ptychoides Heydrich,

Sporolithon sp., Hydrolithon rupestris (Foslie) Penrose, and

Lithothamnion sp. (voucher specimens deposited at Rio de

Janeiro Botanical Garden Herbarium: RB 505683, RB 505760,

RB 505770, RB 505784, and RB 511250, respectively). The

occurrence of H. rupestris constitutes a first record of this

species for the Atlantic Ocean.

No significant differences among the mean abundance of

rhodoliths (individuals m22) in the different seamounts were

observed (ANOVA, F 5 2.3, p . 0.05), with values ranging

between 24.2 6 5 and 48 6 7 individuals m22 (mean 6 SE)

(Vitória and Davis, respectively). The highest diameters and

volumes were observed at Vitória Seamount (14.2 6 0.8 cm and

1071 6 170 ml), whereas the smallest ones were recorded at the

Trindade Island shelf ( 8.4 6 0.4 cm and 296 6 48 ml) (ANOVA,

F 5 18.6, p , 0.05 and F 5 12.2, p , 0.05 for diameter and

volume, respectively) (Figure 4). Rhodoliths from seamount

tops tended to be spheroidal in shape. Differences in the

measured proportion between the shortest (or the intermedi-

ate) and the largest diameters were observed. Rhodoliths taken

at Almirante Saldanha Seamount and Trindade Island shelf

tended to be smaller than those collected from the Vitória,

Jaseur, and Davis seamounts (Figure 5). Mean vitality ranged

between 33 6 2.1% and 36 6 1.4%, with no significant

differences among seamounts (ANOVA, F 5 3.2, p . 0.05).

On the basis of rhodolith abundance, dimension, vitality, and

a constant growth rate of CCA of 1 mm y21, the estimated

CaCO3 productions were: 1.8 kg m22 y21 for Jaseur Seamount,

1.2 kg m22 y21 for Davis Seamount, 0.85 kg m22 y21 for Vitória

Seamount, 0.8 kg m22 y21 for Almirante Saldanha Seamount,

and 0.4 kg m22 y21 for the Trindade Island shelf. Taking into

account the areas occupied by rhodolith beds, CaCO3 produc-

tion was estimated at 1.5 3 1023 Gt y21 in these SWA

seamounts (Table 1).

DISCUSSION

Our results show that the flattened mesophotic tops of the

seamounts within the VTC, Almirante Saldanha Seamount, and

Trindade Island shelf are predominantly covered by rhodolith

beds, at least up to 100-m depths. Rhodolith beds along the

eastern Brazilian continental shelf are considered to be the most

extensive in the world (Foster, 2001; Kempf, 1970; Milliman and

Amaral, 1974), and the data presented herein add the VTC

seamount tops and the Trindade Island shelf to the large

rhodolith realm off the tropical southwestern Atlantic Ocean.

Vecsei and Freiburg (2000) provide data on the distribution,

coordinates, size areas, and depth occurrences of the world’s

isolated carbonate banks in the tropical–subtropical climate

zone, but their review lacks data from the SWA. Remarkably,

the estimates for carbonate areas presented herein (1511 km2)

are higher than those described for the Red Sea (Vecsei and

Freiburg, 2000), representing 0.3% of the world’s isolated

carbonate banks (Table 2).

Figure 4. Rhodoliths from sampled seamounts. Mean diameter (cm) and

volume (ml) (6 SE) (n 5 30).

Figure 5. Rhodolith samples plotted using the TRIPLOT spreadsheet of

Graham and Midgley (2000) (n 530): rhodolith with a 5 highest rhodolith

diameter, b 5 intermediate diameter, and c 5 lowest diameter.
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The high-magnesium calcite produced by CCA is the most

soluble form of the common CaCO3 minerals (Martin and

Gattuso, 2009; Nelson, 2009), and is thus highly susceptible to

ocean acidification (Hoegh-Guldberg et al., 2007; Kleypas,

1997). Recent projections indicate that tropical CCA will stop

growing by 2040, and will start to dissolve when the high-

magnesium calcite saturation state is less than 1 (Hoegh-

Guldberg et al., 2007). By the end of the century, seawater pH

may decrease by as much as 0.4 pH units (Doney et al., 2009),

indicating that rhodolith beds will rapidly decline across the

globe, at faster rates than those expected for coral reefs. The

slow growth rate and long life span of CCA (Foster, 2001;

Nelson, 2009) indicate a low resilience to such major distur-

bances. The unprecedented rate of change in seawater

chemistry, which is over 1000 times faster than that of the

last 420,000 years, makes the adaptation of CCA to such

environmental changes unlikely (Anthony et al., 2008). The

decline or disappearance of CCA in the near future could have

dramatic biological and physicochemical consequences on a

global scale (Veron et al., 2009), and can be even more acute in

the eastern tropical shelf of South America, where rhodolith

beds are confirmed to occupy vast areas.

Besides the carbonate sink promoted by living rhodoliths on

the superficial layer of the studied seamounts, Skolotnev,

Peyve, and Turko (2010) remark that these carbonate platforms

can be as thick as 300 m, adding to their importance in the

oceanic compartment of the carbon cycle. Vecsei (2003) found

that the depth window of 0–70 m to the occurrence of carbonate

deposits is related to the last postglacial sea-level rise and,

therefore, characterizes the tops of most of the world’s warm-

water carbonate platforms and isolated banks, as also found in

our study.

Our estimated CaCO3 production rates (1.8–0.4 kg m22 y21)

are lower than estimates for most reef environments, which

range between 0.8 and 30.5 kg m22 y21 (Vecsei 2000).

Concerning rhodolith-forming algae, Bosence (1980) found

values ranging between 0.029 kg m22 y21 and 0.164 kg m22 y21

with Lithothamnium corallioides and between 0.079 kg m22 y21

and 0.249 kg m22 y21 with Phymatolithon calcareum from

Mannin Bay, Ireland. Freiwald and Hernrich (1994) estimated

the CaCO3 production of Lithothamnium glaciale from Norway

as ranging between 0.895 and 1.432 kg m22 y21. For the CCA

reefs at the Great Barrier Reef, Chisholm (2000) estimated the

CaCO3 production ranging from 1.5kg m22 y21 to10.3kgm22 y21

to Hydrolithon onkodes and Neogoniolithon conicum, respec-

tively. We remark that, although the coralline algal thickness

growth for tropical zones varies from 0.1 mm y21 to 5.2 mm y21

(Adey and Vassar, 1975; Eakin, 1992; Rivera, Riosmena-

Rodriguez, and Foster, 2004; Stearn, Scoffin, and Martindale,

1977), the mean CCA growth rate of 1 mm y21 used in our study

should be considered a conservative value for tropical warm-

water regions (see Blake and Maggs, 2003).

The rhodolith beds in the studied seamount tops are located

in a highly oligothrophic oceanographic context, and also in

deeper waters (60- to 70-m depth) than most studied coralline

reefs, with light intensity of 6.9 6 1.4 mmol s21 m22 (mean 6

SE). These conditions are similar to those found in the

mesophotic Brazilian continental shelf, where extensive rho-

dolith beds were found (Amado-Filho et al., 2007), indicating

similar oceanographic forcing in both areas. Rhodolith beds in

the VTC summits shall constitute a starting point for

monitoring the overall state of the huge SWA carbonate banks,

constituting an outlying observatory of global significance for

the forthcoming impacts from seawater chemistry changes.

Also, these seamount tops are in great need of local-scale

conservation, because the mesophotic reefs (.30-m depth)

Table 1. Measures of the ray maximum, intermediate, and minimum from rodoliths in each seamount; CaCO3 production; seamount area; and total

production for each sampled seamount.

Seamount Radius Maximum (cm) Radius Intermediate (cm) Radius Minimum (cm) CaCO3(kg.m22.y21) Seamount Area (km2) CaCO3(Gt y21)

Jaseur 7.5 5.9 4,4 1.85 40 7.4 3 1025

Trindade 4.8 4.1 3.2 0.41 16 6.5 3 1026

Davis 6.3 5.3 6,3 1.19 590 7.0 3 1024

Vitória 9.1 7.3 5.1 0.83 850 7.0 3 1024

Saldanha 6.2 5.4 4.7 0.82 15 1.2 3 1025

Total 1511 1.5 3 1023

Table 2. Number and area of the tops of isolated carbonate banks

(modified from Vecsei, 2000).

Ocean, Cluster, or Region

Number of Carbonate

Oceanic Banks

Area of the

Top (km2)

Caribbean 38 170,557

Northern Caribbean 15 141,398

Nicaragua Rise area 17 22,993

Antilles 6 6165

Western Indian Ocean 23 181,967

Red Sea area 3 972

Seychelles area 11 76,485

Mascarene Ridge area 9 104,510

Eastern Indian Ocean 30 47,270

Laccadives 9 6653

Maldives 17 21,575

Chagos 4 19,042

Southeast Asia 28 53,458

Northern South China Sea 5 9407

Southern South China Sea 18 27,746

Mkassar Strait 5 13,018

Western Pacific 59 53,979

Caroline Island 16 14,639

Bismarck Sea 2 1027

Queensland Plateau 6 14,607

Lord Howe Rise to New Caledonia 18 27,154

Melanesian Boderland 14 5034

Tonga 3 6157

Eastern Pacific 20 15,434

Hawaii Chain 18 14,466

Southwestern Atlantic 4 1511

Total 201 524,875
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serve as important shelter for species that inhabit other reef

areas, including commercial fishes (Carpenter et al., 2008;

Hoegh-Guldberg, 1999; Hoegh-Guldberg et al., 2007; Lesser,

Slattery, and Leichter, 2009).

CONCLUSIONS

The summits of several seamounts within the tropical SWA

are covered by extensive rhodolith beds formed by CCA. The

importance of these large extensions of living hard-bottom beds

as CaCO3 sinks has been largely underestimated. Our

calculations indicate that they are responsible for 0.3% of the

world’s carbonate production in isolated oceanic carbonate

banks. Although more data are needed to reach a better

understanding of the calcium carbonate balance and the

relative roles of seamounts, immediate local-level protection

and long-term monitoring programs must be included in the

priority agenda for environmental conservation in Brazil, the

country that owns rights and duties over the unique carbonate

realm of the VTC of seamounts.
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