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Nonlinear (magnetic) correction to the field of a static charge in an external field
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We find the first nonlinear correction to the field produced by a static charge at rest in a background

constant magnetic field. It is quadratic in the charge and purely magnetic. The third-rank polarization

tensor—the nonlinear response function—is written within the local approximation of the effective action

in an otherwise model- and approximation-independent way within any P-invariant nonlinear electro-

dynamics, QED included.

DOI: 10.1103/PhysRevD.86.125028 PACS numbers: 11.30.Cp, 11.10.Jj, 11.30.Qc, 13.40.Em

I. INTRODUCTION

In Maxwell electrodynamics, the superposition principle
is true, which reads that electromagnetic fields do not
directly interact between themselves and may be linearly
combined independently. This is not the case in nonlinear
electrodynamics, wherein only small electromagnetic
fields are mutually independent.

A popular example of a nonlinear electrodynamics in the
vacuum is provided by the Born-Infeld model [1], and
also by a noncommutative U?ð1Þ gauge theory, considered
in this respect in Refs. [2,3]. Many issues of nonlinear
electrodynamics are thoroughly elaborated in Ref. [4].
Another, practically most important, example is quantum
electrodynamics (QED). The reason why it is nonlinear is
that an electromagnetic field, say a photon, may create
virtual electron-positron pairs that interact with this field
itself and/or with any other ‘‘external’’ field. This makes
a mechanism that lets electromagnetic fields sense each
other.

The well-known nonlinear effect of QED, present
already in the vacuum without any external field, is light-
by-light scattering. When taken off the photon mass shell,
the corresponding probability amplitude becomes as a
matter of fact responsible for the leading nonlinear (cubic)
correction to the electric Coulomb field [5]1 that can be
conveniently written as

E nl ¼ E
�
1� 2�

45�

�
eE
m2

�
2
�
: (1)

Here E ¼ ðq=4�r2Þ is the standard Coulomb field2 in
Heaviside units produced by the point charge q at the
distance r, while e and m are the electron charge and

mass, and � ¼ ðe2=4�Þ ¼ 1=137 is the fine-structure con-
stant. It is generally known, and also seen in this equation,
that in QED the nonlinearity is determined by the ratio of
the electromagnetic field to Schwinger’s characteristic
value ðm2=eÞ ¼ 4:4� 1013 in CGSE units, which makes
1:3� 1016 V=cm when one measures an electric field,
and 4:4� 1013 G if a magnetic field is concerned.
Electromagnetic fields should be comparable in strength
to these values in order for the interaction between them to
become essential. The nonlinear correction in Eq. (1)
becomes valuable when one is interested in approaching
a sufficiently small-sized charge sufficiently close—say,
to approach the nucleus of a not-too-heavy atom within a
few femtometers. On the other hand, electric fields, large in
the Schwinger scale, up to 1018 to 1019 V=cm, occur [6] at
the surfaces of strange quark stars [7], depending on
whether the matter is in the superconducting state [8].
For such fields the vacuum is unstable, and the
Schwinger effect of spontaneous electron-positron pairs
by the vacuum becomes already efficient, which requires
a special treatment (see Ref. [9]). We do not consider
the corresponding complications in the present paper,
however.
In this paper, we are dealing with another nonlinear

phenomenon different from the one given by Eq. (1), also
associated with strong electric fields, namely the produc-
tion of a magnetic field by it: this magnetoelectric effect
becomes possible if an external magnetic field is present.
The linear correction to the Coulomb field of a charge

due to the vacuum polarization in a magnetic field was
studied earlier, [10–12] with the finding that the hydrogen
ground energy level saturates [10,12] as the magnetic field
grows, and that a string is formed [10]. Some hints were
thereby produced for considering [13] interquark potential
in QCD. The nonlinear (purely magnetic) correction to the
field of a charge in a magnetic field, which is to be
considered now for the first time, is based on the known
fact that there exists in this case not only photon-by-photon
scattering, but also one photon splitting into two (and two
photons merging into one). This splitting is enhanced by
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2The linear response to the applied charge q due to the vacuum

polarization known as the Uehling-Silber correction to the
Coulomb potential [5] may be also included in E.
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the strength of the external magnetic field as compared to
the vacuum case above. It was elaborated in theory [14]
and is thought of as being efficient in a pulsar magneto-
sphere with magnetic fields above 1012 G [15], essentially
contributing to the electron-positron plasma production
and radiation pattern of pulsars. Again, the same as above,
when taken outside the photon mass shell, the three-photon
probability amplitudes become responsible for a nonlinear
induction of time-independent current (and, hence, of the
stationary magnetic field) by static charges or, equiva-
lently, by the static electric fields they create. The magnetic
field produced by a static charge in an external magnetic
field is even (quadratic in the lowest order of nonlinearity)
with respect to its magnitude and linearly disappears with
the external field—in agreement with the generalized Furry
theorem of Ref. [3] that states that the numbers of electric
and magnetic legs in every diagram should each be even. It
also agrees with this theorem, that there are no corrections
to the static electric field in the lowest (second-power)
nonlinear order. Previously, magnetoelectric effect was
considered in Refs. [2,3] for classical noncommutative
electrodynamics, and within QED as a linear response to
a static charge by the vacuum filled with external electric
and magnetic fields [16].

In Sec. II, for the most general case of a constant and
homogeneous external electromagnetic field, we outline
the derivation of nonlinear Maxwell equations, keeping
only the first and second powers of the electromagnetic
field living above that external field background, and define
the notion of a current nonlinearly induced by a static
electric field (or by a static charge). The nonlinear field
equations are served by the second- and third-rank polar-
ization tensors. In Sec. III, we restrict the external back-
ground to the magneticlike field; i.e., the one that is purely
magnetic in a class of special Lorentz frames. Then the
involved polarization tensors are given in the small four-
momentum limit, also called the infrared or local approxi-
mation, in terms of the derivatives of the effective
Lagrange density over the background field invariants,
bearing in mind that in the local approximation this density
does not depend upon space-time derivatives of the back-
ground field strength. In Sec. IV, we are working in a
special frame, where the background field is purely mag-
netic and the static charge is at rest. We calculate the
nonlinearly induced current and its magnetic field as
expressed through the static electric field produced by the
charge. The limiting cases of very large and very small
background magnetic fields are discussed within QED,
referring to the one-loop Euler-Heisenberg effective
Lagrangian. In Sec. VI, the results are resumed, and nu-
merical estimates of the domains of their applicability are
given. Detailed calculations of the second- and third-rank
derivatives of the effective action used in the work are
presented in the accompanying paper [17] within the nec-
essary local approximation.

II. NONLINEAR ELECTROMAGNETIC
FIELD EQUATIONS OVER A CONSTANT

FIELD BACKGROUND

In QED and in any otherUð1Þ-gauge-invariant nonlinear
electrodynamics, the field equations, when written up to
terms quadratic in the small electromagnetic field potential
a�ðxÞ, have the form

½���h�@�@��a�ðxÞþ
Z
d4x0���ðx;x0Þa�ðx0Þ

þ1

2

Z
d4x0d4x00����ðx;x0x00Þa�ðx0Þa�ðx00Þ¼ j�ðxÞ; (2)

where j�ðxÞ is a (small) source of the field, greek indices

span the four-dimensional Minkowski space taking the
values 1, 2, 3, 0, the metric tensor is ��� ¼
diagð1; 1; 1;�1Þ, and h ¼ r2 � @20. The second- and

third-rank polarization tensors—��� and ���� here—

are, in the presence of an external field potential A�ðxÞ ¼
A�

extðxÞ, defined as

��	ðx; x0Þ ¼ 
2�


A�ðxÞ
A	ðx0Þ
��������A¼Aext

; (3)

��	�ðx; x0; x00Þ ¼ 
3�


A�ðxÞ
A	ðx0Þ
A�ðx00Þ
��������A¼Aext

(4)

in terms of the effective action

� ¼
Z

LðzÞd4z; (5)

the generating functional of all-rank polarization tensors—
the vertex functions—known in QED as the Legendre
transform of the generating functional of the Green func-
tions [18]. The parameter of the power expansion, to which
Eq. (2) provides the two lowest terms, depends on a field
scale of a definite dynamical theory. We shall discuss this
issue in Sec. IV below for QED.
We did not write the zero-power term ða�ðxÞÞ0, an ex-

ternal macroscopic current, in Eq. (2), because we assumed
that the external field had been subjected to the sourceless
field equation


S


A�ðyÞ
��������A¼Aext

¼ 0; (6)

where

S ¼
Z

LðzÞd4z; LðzÞ ¼ �FðzÞ þ LðzÞ (7)

are the total action and the total Lagrangian, respectively.
Here �FðzÞ ¼ ð1=4ÞF��F

�� is the (free) Maxwell

Lagrangian, and F��ðzÞ ¼ @�A�ðzÞ � @�A�ðzÞ is the field
strength tensor. In what follows, we shall only deal with the
external fields F ��¼ @�Aext

� �@�Aext
� , which are inde-

pendent of the four-coordinate z�, and with the case where
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the effective Lagrangian LðzÞ may depend on z� only

through the field tensor F��ðzÞ and its space-time deriva-

tives, and not explicitly. The latter property is fulfilled in
QED and will be also assumed for other theories subject to
our consideration. Under this assumption, the constant
field does satisfy the exact sourceless nonlinear field
equation [Eq. (6)]. To see this, we fulfill the variational
derivative


S


A�ðxÞ
��������A¼Aext

¼2
X
n

Z 
S


FðnÞ
��ðzÞ

��������F¼F

@

@z�

4ðnÞðx�zÞd4z;

where (n) marks the derivative with respect to any space-
time component. Once the variational derivative 
S


FðnÞ
��

ðzÞ ,

when restricted onto the coordinate-independent fields
F��ðzÞ ¼ F ��, cannot depend on z, the integration by

parts turns this integral to zero.
The above presentation explains why Eq. (2) is the field

equation for small electromagnetic perturbations a�ðxÞ ¼
A�ðxÞ �A�

extðxÞ over the external field of a constant field
strength, caused by a small external current j�ðxÞ and taken
to the lowest-power nonlinearity.

Polarization tensors of every rank, ��	...�ðx; x0; . . . x00Þ,
satisfy the continuity relations with respect to every argu-
ment and every index (the transversality property)

@

@x0	
��...	...�ðx; . . . x0; . . . x00Þ ¼ 0 (8)

necessary to provide invariance of every term in the ex-
pansion of � in powers of the field a� under the gauge
transformation of it. Note that this is the primary property
of � as a functional given on field strengths and their space-
time derivatives only.

In our case of the external field with space- and time-
independent strength, the translational invariance holds
true, which makes the all-rank polarization tensors depend
on their coordinate differences.

With the definition of the photon propagator D��ðx; x0Þ,
D�1

��ðx�x0Þ¼ ½���h�@�@��
ð4Þðx0 �xÞþ���ðx�x0Þ;
(9)

the nonlinear field equations [Eq. (2)] take the form of (the
set of) integral equations

a�ðxÞ¼
Z
d4yD��ðx�yÞj�ðyÞþ

Z
d4yD��ðx�yÞjnl� ðyÞ;

(10)

jnl�ðxÞ¼�1

2

Z
d4yd4u��	�ðx�u;y�uÞa	ðyÞa�ðuÞ; (11)

where we have introduced the notation jnl�ðxÞ for what we
shall be calling ‘‘nonlinearly induced current’’.

Before proceeding, the following explanation seems to
be in order. Within the present approach, the electromag-
netic field a�ðxÞ is not quantized; this is not needed unless
we leave the electromagnetic sector. The nonlinear equa-
tions written in this section are classical and will be treated
classically below in understanding that the effective action
is known. In QED, the latter is the final product of quantum
theory, obtained by continual integration over fermions
[18]. The effective Lagrangian and all-rank polarization
tensors involved are subject to approximate quantum cal-
culations, and hence are functions containing the Planck
constant, electron mass and charge. Available is the effec-
tive action in the local limit referred to in the next section,
which is known as the Euler-Heisenberg action when it is
calculated within the approximation of one electron-
positron loop (see Ref. [5]), and as the Ritus action when
it is calculated with two-loop accuracy [19]. The second-
rank polarization tensor [Eq. (3)] was calculated in the one-
loop approximation when the external background is
formed by a constant and homogeneous electromagnetic
field of the most general form (when both its invariants F
and G are nonvanishing) in Ref. [20]. One-loop diagrams
with three photon legs corresponding to the third-rank
tensor [Eq. (4)] were calculated both on and off the photon
mass shell for QED with external magneticlike (F> 0,
G ¼ 0) and crossed (F ¼ G ¼ 0) fields in Ref. [14], and
for charge-asymmetric electron-positron plasma without
an external field, using the temperature Green function
techniques, in Ref. [21]. The calculations of Stoneham in
Ref. [14] might become a basis for extending the results of
the following sections beyond the local approximation
used there, but they are overcomplicated and not well
structured, so we leave this extension for future study.
In the next sections, we stick to the general form of the
effective Lagrangian and refer to its specific Euler-
Heisenberg form only in the very last steps for getting
numerical estimates.

III. LOCAL LIMIT

From now on, we shall restrict ourselves only to slowly
varying fields a�ðxÞ and, correspondingly, to consideration
of the sources j�ðyÞ that give rise to such fields via

Eqs. (10) and (11). To this end, we may take the effective
action in the local limit. This is equivalent to going to the
infrared asymptotic limit in the second- and third-rank
polarization operators; i.e., to keeping, respectively, only
the second and third powers of the four-momentum k�
in their Fourier transforms. Aiming at the local limit,
we may admit that the effective Lagrangian L depends
only on (relativistic invariant combinations of) the
(gauge-invariant) field strengths F��. Moreover, as long

as constant fields are concerned, all such combinations
may be expressed as functions of the two field invariants
F ¼ 1

4F��F
�� and G ¼ 1

4F
�� ~F��, where the dual

field tensor is defined as ~F�� ¼ 1
2 ����
F

�
, with the
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completely antisymmetric unit tensor defined in such a
way that �1230 ¼ 1. Then the variational derivatives in
Eqs. (3) and (4) can be calculated in terms of derivatives
of LðF;GÞ with respect to the field invariants reduced
to the space- and time-independent external field.
Henceforth, we shall be interested in the special case where
the external field is a constant, purely magnetic field in a
certain class of reference frames called ‘‘special’’ below.
Since in other Lorentz frames the electric field is also
present, we refer to this case as magneticlike. The invariant
conditions that specialize the magneticlike case are F> 0,
G ¼ 0. Once the invariant G is a pseudoscalar, the
Lagrangian of a P-invariant theory, QED included, may
contain it only in an even power. Hence, all the odd
derivatives of LðF;GÞ with respect to it disappear after
being reduced to the external magneticlike field:

@LðF;GÞ
@G

��������F¼F ;G¼0
¼ @2LðF;GÞ

@G@F

��������F¼F ;G¼0
¼ 0;

@3LðF;GÞ
@G@F2

��������F¼F ;G¼0
¼ @3LðF;GÞ

@G3

��������F¼F ;G¼0
¼ 0:

(12)

We calculate Eqs. (3) and (4) in the Appendix to Ref. [17]
using the rule


F��ðzÞ

A�ðxÞ ¼

�
���

@

@z�
� ���

@

@z�

�

4ðx� zÞ (13)

(understood as integrated over z with any function of z) by
repeatedly applying the relation


�


A�ðxÞ ¼
Z �

@LðFðzÞ;GðzÞÞ
@FðzÞ F��ðzÞ

þ @LðFðzÞ;GðzÞÞ
@GðzÞ

~F��ðzÞ
�

@

@z�

4ðx� zÞd4z

(14)

and reducing the final results onto the external field. Then,
taking Eq. (12) into account and using the notations

LF¼dLðF;0ÞÞ
dF

��������F¼F
; LFF¼d2LðF;0Þ

dF2

��������F¼F
;

LGG¼@2LðF;GÞ
@G2

��������F¼F ;G¼0
; LFFF¼d3LðF;0Þ

dF3

��������F¼F
;

LFGG¼ d

dF

@2LðF;GÞ
@G2

��������F¼F ;G¼0
;

all with F�� ¼ F �� substituted (hence, from now on,F ¼
1
4F ��F �� > 0 and G ¼ 1

4F
�� ~F �� ¼ 0), we get for the

second-rank tensor

�IR
�	ðx� yÞ ¼ LF

�
@2

@x	@x�
���	h

�

4ðx� yÞ

� fLFFF ��F �	 þLGG
~F ��

~F �	g
� @

@x�

@

@x�

4ðx� yÞ; (15)

and for the third-rank tensor in the infrared limit

�IR
�	�ðx� y; x� uÞ ¼ �O�	����

@

@x�

��
@

@x�

4ðy� xÞ

�

�
�
@

@x�

4ðx� uÞ

��
; (16)

where

O�	����¼LGG½ ~F ������	þ ~F ����	��þ ~F �	������
þLFF½ð��	���������	ÞF ��

þF ��ð�	����������	Þ
þF �	ð�������������Þ�
þLFGG½F ��

~F �	
~F ��þ ~F ��F �	

~F ��

þ ~F ��
~F �	F ���þLFFFF ��F �	F ��: (17)

(The reader may consult the Appendix in Ref. [17] for
detailed calculations.) This tensor turns to zero when there
is no external field, F ¼ 0, in agreement with the Furry
theorem. The two transversality conditions [Eq. (8)] for
Eq. (15) are provided for, in that the matrix in the brackets
is antisymmetric under each permutation � , � and
	 , �, while the first term in Eq. (15) is transverse explic-
itly. The three transversality conditions [Eq. (8)] for
Eq. (16) are provided for, in that the matrix [Eq. (17)] is
antisymmetric under each permutation � , �, 	 , �,
and � , �. Thanks to the two latter antisymmetries, by
using Eqs. (16) and (17) in Eq. (11), we obtain for the
nonlinearly induced current the expression

jnl�ðxÞ ¼ 1

8
O�	����

@

@x�
ðf�	f��Þ; (18)

that includes only the field intensity tensors f�	 ¼
@

@x�
a	ðxÞ � @

@x	
a�ðxÞ. Therefore, the nonlinearly induced

current is gauge invariant: it depends only on field inten-
sities and, besides, it is conserved, @

@x�
jnl�ðxÞ ¼ 0, due to the

first antisymmetry, � , �.
We have to approach the nonlinear set in Eqs. (10) and

(11) by looking for its solution in a power series in the field
a�ðxÞ. Within the first iteration, to which we shall as a
matter of fact confine ourselves, we substitute the linear
approximation to the solution of Eq. (10)

alin� ðxÞ ¼
Z

d4x0D��ðx� x0Þj�ðx0Þ (19)

for aðxÞ into Eq. (11). In other words, we should use the
electromagnetic field f�	 ¼ flin�	 ¼ @

@x�
alin	 ðxÞ � @

@x	 a
lin
� ðxÞ
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linearly produced by the source j�ðxÞ in the expression for
the nonlinearly induced current [Eq. (18)].

IV. MAGNETIC FIELD OFA STATIC CHARGE AT
REST IN EXTERNAL MAGNETIC FIELD

We are in a position to start studying the nonlinear
effect of the production of a magnetic field by a static
charge at rest in a constant and homogeneous external
magnetic field in a special frame. The linear effect of the
external magnetic field on the electrostatic field of a charge
was studied earlier (beyond the infrared approximation) in
Refs. [10–12].

In this frame, the external magnetic field is defined as

Bi ¼ ð1=2Þ�ijkF jk ¼ ~F i0, B ¼ jBj, while the external

electric field disappears, Ei ¼ F 0i ¼ 0. The roman indices
span the 3D subspace in this reference frame; �ijk is the

fully antisymmetric tensor, and �123 ¼ 1.
Consider now a static charge given in that frame by the

four-current j�ðxÞ ¼ j�ðxÞ
�0. In the linear approxima-

tion [Eq. (19)], naturally only an electrostatic field is
generated in that frame. Hence, the components with � ¼
� ¼ � ¼ 0, 	, � � 0 do not contribute to Eq. (18), so we
need only the components

Oi00jmn ¼ �F ji½
mnLFF � ~F n0
~Fm0LFGG�

þ ½ ~Fm0�jin0 þ ~F n0�jim0�LGG

¼ �ijkBk½
mnLFF � BnBmLFGG�
þ ½Bm�jin þ Bn�jim�LGG (20)

in Eq. (18) [and those obtained from Eq. (20) by permuta-
tions between the second and fifth, and between the third
and sixth indices], whileO000jmn ¼ 0 according to Eq. (17).

Therefore jnl0 ðxÞ ¼ 0; i.e., there is no nonlinear (quadratic)

correction to the static charge within the current quadratic
approximation—the induced current of Eq. (18) is purely
spatial:

jnli ðxÞ¼
1

2
Oi00jmn

@

@xj
ðflinm0f

lin
n0Þ

¼1

2
ðr�BÞi½LFFE2�LFGGðBEÞ2�

�LGGðr�EÞiðBEÞ; (21)

where En ¼ EnðxÞ ¼ flin0n ¼ �@
@xn

alin0 ðxÞ is the time-

independent electric field, linearly produced following
Eq. (19), and the differential operator r acts on everything
to the right of it. The magnetic field strength hðxÞ generated
by this current according to the Maxwell equation
r� hðxÞ ¼ jnlðxÞ is

hiðxÞ ¼ hiðxÞ þ ri�; (22)

where

h iðxÞ ¼ Bi

2
½LFFðEðxÞÞ2 � LFGGðBEðxÞÞ2�

� EiðxÞLGGðBEðxÞÞ (23)

becauser� r� � 0, and the scalar function� should be
subjected to the Poisson equation

r 2� ¼ �rjhjðxÞ
to make the magnetic field hðxÞ obey the other Maxwell
equation,rhðxÞ ¼ 0. Hence, themagnetic field is the trans-
verse part of Eq. (23):

hiðxÞ¼
�

ij�

rirj

r2

�
hjðxÞ¼hiðxÞþ

rirj

4�

Z hjðyÞ
jx�yjd

3y:

(24)

Note that the substitution of the field of a pointlike charge
into Eq. (24) through Eq. (23) would cause the divergency
of the integral in Eq. (24) near y ¼ 0: the present approach
fails near the point charge, since it is not applicable to its
strongly inhomogeneous field. Dealing with the point
charge would require going beyond the infrared approxi-
mation followed in the present work. Nevertheless,
Eq. (24) is sound as applied to extended charges.
Equation (24) would coincide with the magnetic induc-

tion bðxÞ ¼ r� anlðxÞ if the linear vacuum magnetization
effect could be neglected; i.e., if the nonlinear correction to
the field in Eq. (10),

a�nlðxÞ ¼
Z

d4yD�
�ðx� yÞjnl� ðyÞ; (25)

could be taken without the contribution of the linear
response function [Eq. (16)] ���ðx� x0Þ in the photon

propagator [Eq. (9)]. Taking this contribution into account
results in more complicated integrals. The situation
remains simple, however, when we may disregard the
anisotropy of the linear magnetic response. The inverse
magnetic permeability tensor inherent in the second-rank
polarization tensor [Eq. (15)] is, in the special frame, the
constant tensor [22]

��1
ij ¼ ð1� LFÞ
ij � LFFBiBj;

whose two3 eigenvalues ��1
? ¼ 1� LF and ��1

jj ¼ 1�
LF � 2FLFF are responsible for magnetizations linearly

caused by certain conserved, constant, straight-linear cur-
rents flowing along the external magnetic field and across
it, respectively (see the Appendix in Ref. [23]). In QED,
the values LF and 2FLFF are of the order of the fine

structure constant � ¼ 1=137 but depend on the field B.
When B is very large (B � m2=e), these quantities, as
found from the Euler-Heisenberg one-loop effective
Lagrangian (see, e.g., Ref. [24]), behave as

3The constant background magneticlike field makes a uniaxial
medium in any of the special frames [22].

NONLINEAR (MAGNETIC) CORRECTION TO THE FIELD . . . PHYSICAL REVIEW D 86, 125028 (2012)

125028-5



LF � �

3�
ln
eB

m2
; 2FLFF � �

3�
:

So, when eB
m2 � 2:7, the contribution of 2FLFF may be

neglected as compared to LF, and the linear magnetization

becomes isotropic, ��1
? ¼ ��1

jj . Therefore, in this limit,

we finally have for the nonlinear magnetic induction

b ðxÞ ¼ ð1� LFÞ�1hðxÞ: (26)

The electric field E ¼ �ralin0 ðxÞ to be substituted in

Eqs. (21) and (23) is the one that is linearly produced via
Eq. (19) by a static charge distribution within the same
infrared approximation. To determine it, note that in
Eq. (26) only the propagator component D00 participates,
and that in the Fourier representation D00 ¼ ðk2 � ß2Þ�1,
with ß2 being one (out of three) eigenvalues of the second-
rank polarization tensor [Eq. (4)] taken in the static limit
k0 ¼ 0 in the special reference frame. Once the polariza-
tion tensor is considered in its infrared limit [Eq. (15)],
this quantity is [23,24] ß2 ¼ k2LF � k2jj2FLGG. Here

k2 ¼ k2? þ k2jj and k?, kjj are the momentum components

of the small electromagnetic field across and along B,
respectively. With the use of this propagator, the calcula-
tion of Eq. (19) for the pointlike charge j0ðxÞ ¼ q
3ðxÞ
results in the anisotropic Coulomb law

alin0 ðxÞ ¼ q

4�

1ffiffiffiffiffiffi
�?

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�?x2jj þ �jjx2?

q ; (27)

where �?¼1�LF and �jj ¼ 1� LF þ 2FLGG are eigen-

values of the dielectric tensor [22] �ij ¼ ð1� LFÞ
ij þ
LGGBiBj responsible for polarizations, linearly caused by

homogeneously charged planes parallel and orthogonal to
B, respectively, and x? and xjj are the coordinate compo-

nents across and along B. For a large magnetic field, one
gets the linearly growing asymptote from the Euler-
Heisenberg Lagrangian 2FLGG � �

3�
eB
m2 . This means that

if eB
m2 >

3�
� , the dielectric component �jj dominates over �?;

i.e., the electrization becomes highly anisotropic, in con-
trast to the magnetization. In this asymptotic region,
Eq. (27) becomes (if we disregard the polarization in �?
by setting �? ¼ 1) the large-distance behavior of the
potential of a point charge in a strong magnetic field
calculated in the linear approximation in Refs. [10,11]
beyond the infrared approximation of the polarization
tensor. Note that Eq. (27), as well as its high-field limit,
is only valid far from the charge. In that domain, however,
it also fits any charge, with the total value q, distributed
over a finite region.

The formal substitution of the electric field E corre-
sponding to the potential [Eq. (27)] into Eqs. (23) and
(24) would result in a strong singularity x�4 at the origin
for the magnetic field of a pointlike charge. Beyond the
infrared approximation, Eq. (27) is replaced in QED by an
anisotropic Debye regime [10,11], actual at the distances,

much smaller than the Compton length of the electron;
however, the singularity in the origin would remain the
same. Neither course of action is justified for the pointlike
charge. To cover that case, one should use the third-rank
polarization tensor [Eq. (4)] beyond the infrared limit
[Eqs. (16) and (17)]. The behavior at the origin is governed
by the ultraviolet limit k ! 1. In this limit, the momentum
k dominates over the external magnetic field; hence, the
latter may be neglected. However, without that field, the
third-rank polarization tensor disappears due to the Furry
theorem. For this reason, we may expect that the resulting
magnetic field of the point charge will be less, if at all,
singular at the origin. Any similar consideration is not
helpful in the case of x�6 singularity of Eq. (1) if applied
to a pointlike charge, since this equation depends on the
fourth-rank polarization tensor, nonzero already in the
absence of an external field. However, in the case of
Eq. (1), the singularity can be absorbed into charge
renormalization.

V. SOME NUMERICAL ESTIMATES

To analyze the large magnetic field limits of the induced
current [Eq. (21)] of the resulting magnetic field [Eq. (24)]
and of its induction [Eq. (26)], one should also bear in mind
the asymptotic behavior LFGG ¼ � �e

3�m2B3 . Then it fol-

lows from the large external magnetic field asymptotic
behavior eB

m2 � 3�
� of the other derivatives of the Euler-

Heisenberg Lagrangian involved in Eq. (23) that were
listed above that in this limit,

ehjj
m2

� �

6�

�
�
�
eEjj
m2

�
2 þ

�
eE?
m2

�
2 m2

eB

�
;

eh?
m2

�� �

3�

eEjj
m2

eE?
m2

;
eB

m2
� 3�

�
:

The minus sign in the first line indicates that the induced
magnetic field diminishes the external field in the large
external field regime.
We may apply the results of Eqs. (23) and (24) to a small

external magnetic field, ðeB=m2Þ � 1, as well. With the
Euler-Heisenberg Lagrangian density, one has in this
regime

LFF ¼ 4�

45�

�
e

m2

�
2
; LGG ¼ 7�

45�

�
e

m2

�
2
;

LFGG ¼ �

315�

�
e

m2

�
4
:

The third coefficient LFGG does not contribute in the

leading order in ðeB=m2Þ � 1 to the estimates

hjj � B
�

45�

�
2

�
eE
m2

�
2 � 7

�
eEjj
m2

�
2
�
;

h? ��B
7�

45�

�
eE?
m2

��
eEjj
m2

�
;

eB

m2
� 1:

(28)
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In this approximation, we may set �?¼�jj ¼��1
? ¼

��1
jj ¼1. Therefore, h ¼ b, and for the electric field of a

charge outside of it, one may use here the standard Coulomb
law aC0 ðxÞ ¼ ðq=4�Þ x=jxj2, EC ¼ ðq=4�Þ x=jxj3 instead

of Eq. (27).
It is interesting that for a small external magnetic field B,

the deflection of the linearly induced electric field Elin, as
obtained from Eq. (27) by calculating the gradient Elin ¼
ð@=@xÞalin0 ðxÞ from the Coulomb field EC, is approximately

expressed in a way very much symmetrical under the
exchange E,B with Eq. (28):

Elin
jj � Ejj � Ejj

�

45�

�
eB

m2

�
2
:

Note that �=45� ¼ 5� 10�5. So, for the electric field
value close to Schwinger’s 1:3� 1016 V=cm, the nonli-
nearly produced magnetic field makes up to 3� 10�4 of
the external magnetic field, which must be kept below
Schwinger’s 4:4� 1013 G in this case.

VI. CONCLUSION

In this paper, we have found an expression for the
magnetic field hðxÞ produced by a static charge q placed
into an external magnetic field B [Eqs. (23) and (24)]. It is
shown that, in QED, this nonlinear magnetoelectric effect,
not considered before, occurs already in the simplest ap-
proximation, where the effective Lagrangian L is taken in
its local limit, and only the second power of the charge q
and/or its electric field EðxÞ are kept. As for the back-
ground magnetic field B, to reveal the effect, it suffices to
take it into account in the linear approximation �B,
although a magnetic field B of arbitrary magnitude is
included in our result as well. The final formulas depend
on the first three derivatives of the effective action
L with respect to the external field invariants, which com-
plies with the fact that, minimally, diagrams with three
photon legs are responsible for the effect in the given
approximation.

The results are model independent and relate not only to
QED, but also to any nonlinear electrodynamics provided
the standard postulates ofUð1Þ-gauge, Lorentz, translation,
C, P, and T invariances are respected. When applying them
to QED, we take the Euler-Heisenberg Lagrangian for L to
estimate the regimes of weak and strong B. In QED, all
electromagnetic fields appear in ratios to the Schwinger
characteristic valuem2=e of 4:4� 1013 in CGSE units. The
nonlinear magnetoelectric effect we are reporting on is
efficient if the electric field of a charge is comparable to,

but still smaller than, m2=e. Such fields take place near
atomic nuclei and at the surfaces of strange quark stars.
Besides this, strange quark stars can be strongly magne-
tized [25]. When the Schwinger value is exceeded by the
electric field, the nonlinearity can no longer be treated via
the power expansion of Eq. (2), and electron-positron pair
creation from the vacuum must also be taken into account.
To reveal the effect that the present nonlinear contribu-

tion to the field produced by the charged atomic nucleus
may have on the atomic spectrum in a magnetic field, a
separate study is needed. At present, we restrict ourselves
to the remark that first of all, the interaction between the
electron orbital momentum and the magnetic field due to
the nucleus’s magnetic moment is subject to modification.
This interaction is known to be responsible, in the absence
of the external magnetic field, for the hyperfine splitting.
The contribution to the magnetic field at the edge of

the proton coming from Eq. (28) is about �3B
45�a4m4 ¼

2�2

45��P
eB
m2 ðmP

m Þ2 1
mPa

4 . Here �P ¼ e
2mP

is the nuclear magne-

ton, with mP being the proton mass, while the proton’s
electric radius a may be taken as a ¼ 0:87 Fm �5=mP.
The ratio of this ‘‘nonlinear’’ correction to the magnetic
field at the edge of the proton due to the proton magnetic

moment �2:8�P=a
3 makes, thus, �106 �2

3	45�
eB
m2 . At the

extreme laboratory values of the magnetic field of the order
of, say, B� 10�7ðm2=eÞ � 4:4� 106 G, this ratio,
�10�6, seems to be too small for producing measurable
effects on atomic spectra, but it may be essential for other
possible effects associated with the proton magnetic
moment, which—without the magnetic field—is known
[26] to an accuracy of 10�8�P. On the contrary, in mag-
netic fields of the magnetar scale, B� ð1
 102Þm2=e, the

nonlinear correction makes �ð1
 102Þ �2

225� ðmP

m Þ2 part of

the magnetic field of the nucleon magneton�P; i.e., it may
even exceed it. Therefore, one may expect an influence on
the magnetized neutron star matter.
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