brought to you by CORE

A Theoretical Study of the Tautomerism and Vibrational Spectra of 4,5-Diamine-2,6-dimercaptopyrimidine

R. A. Timm,^a J. A. Bonacin,^a A. L. B. Formiga^b and H. E. Toma^{*,a}

^aInstituto de Química, Universidade de São Paulo, CP 26077, 05513-970 São Paulo-SP, Brazil ^bInstituto de Química, Universidade Estadual do Rio de Janeiro, Rio de Janeiro-RJ, Brazil

A 4,5-diamina-2,6-dimercaptopirimidina (DADMcP) constitui uma molécula multifuncional que apresenta uma tautomeria bastante complexa, com nove formas isoméricas possíveis. O estudo da tautomeria nesse composto foi realizado por meio da espectroscopia FTIR em associação com cálculos *ab-initio* HF/SCF e DFT. De acordo com os resultados teóricos, três tautômeros são favorecidos energeticamente, sendo a tiona a forma a mais estável. Os espectros vibracionais das formas tautoméricas mais estáveis foram simulados através de cálculos de DFT, permitindo a atribuição e elucidação do quadro complexo de bandas vibracionais observado experimentalmente, envolvendo a mistura de isômeros.

The 4,5-diamine-2,6-dimercaptopyrimidine (DADMcP) compound is an interesting multifunctional species exhibiting a rather complex tautomerism, encompassing nine tautomeric forms. Investigation of tautomerism in this compound has been carried out by means of FTIR spectroscopy, in association with *ab-initio* HF/SCF and DFT calculations. According to this study three tautomers are energetically favored; the thione form being the most stable one. The theoretical vibrational spectra of such tautomeric forms have been successfully simulated by means of DFT calculations, allowing the elucidation and assignment of the complex composition of the vibrational bands observed for the mixture of isomers.

Keywords: mercaptopyrimidines, DFT calculations, tautomerism, spectral simulation

Introduction

Mercaptopyrimidines are interesting compounds, which have been widely studied over the past few years¹ because of their many interesting applications, especially in coordination chemistry. By incorporating both S and N atoms in their structures, they are able to bind transition metal ions, acting as monodentate² and more frequently as chelating and bridging ligands.³⁻⁵ These compounds exhibit tautomeric equilibrium between the thiol (>C-SH) and thione (> C=S) forms, as a consequence of the highly mobile protons in their structure.⁶⁻⁸ In fact, thione-thiol tautomeric equilibrium have attracted great experimental⁹⁻¹³ and theoretical interest¹⁴⁻¹⁷ in chemistry and biochemistry. These forms can mutually interchange via intramolecular proton transfer between the nitrogen and the nearby carbonyl sulfur. The interchange mechanism is solvent dependent; usually, the thione form predominates in polar solvent while the thiol is favorable in gas phase or nonpolar solvents.^{14,16,18,19}

In this article, we present a theoretical study on the tautomerism of 4,5-diamine-2,6-dimercaptopyrimidine (DADMcP). This compound is an interesting multifunctional species capable of undergoing electrochemical polymerization and of sequestering transition metal ions.²⁰ Experimental support for the existence of the tautomeric forms of this molecule was obtained from FTIR spectroscopy, in analogy with a recent work on violuric acid and 6-amino-5-nitrouracil.²¹ Further insight into the molecular structures was provided by theoretical calculations using *ab-initio* Hartree-Fock Self-Consistent Field (HF/SCF) and the density functional theory (DFT) approaches.

Experimental

The compound 4,5-diamine-2,6-dimercaptopyrimidine was obtained from Aldrich. FTIR spectra of the solid

^{*}e-mail: henetoma@iq.usp.br

samples in the range of 4,000-400 cm⁻¹ were recorded on a Shimadzu FTIR-8300 spectrophotometer, using KBr pellets. The NIR spectra in the range of 29,000-4,000 cm⁻¹ were recorded on a FieldSpec fiber optics instrument from Analytical Spectral Devices (ASD).

Computational calculations were carried out using the GAMESS(R4) software²² for geometry optimization. In all cases, a convergence criterion of 10⁻⁴ kcal Å⁻¹ mol⁻¹ was used in a conjugate gradient algorithm. Molecular orbitals were expanded using the atomic 6-311G(d,p) basis set to solve the Hartree-Fock (HF) equations as well as the Kohn-Sham ones (DFT). The gradient-corrected density functional methodology employed in DFT calculation was the B3LYP hybrid.²³⁻²⁵ The harmonic vibrational frequencies and intensities were calculated at the same levels of theory with the analytical evaluation of second derivatives of energy as a function of atomic coordinates and the calculated intensities were utilized to generate the theoretical spectra. Low and high frequencies were scaled by factors of 1.01 and 1.06, respectively, and zero-point energies by a factor of 0.9806, as recommended by Scott and Radom.26

The theoretical vibrational spectra shown in Figure 3, were calculated from the sum of Gaussian shaped bands, based on the equation:²⁴

$$T(\omega) = 2,174 \times 10^8 \sum_{I} \frac{f_I}{\Delta_{1/2}} \exp(-2,773 \frac{(\omega - \omega_I)^2}{\Delta_{1/2}^2})$$

where T is transmittance, and assuming half-bandwidths $(\Delta_{1/2})$ of 40 cm⁻¹. The sum in the equation includes all allowed vibration transitions with energies, ω_{I} (expressed in cm⁻¹), and oscillator strengths, f_{I} which were obtained from the theoretical calculations. The total integrated intensity is equal to the sum of the oscillator strengths:

$$4,319\times10^{-9}\int\epsilon(\omega)\,d\omega=\sum_{I}f_{I}$$

Results and Discussion

Theoretical investigation of DADMcP compound showed nine possible tautomers, here denoted 1 to 9 (Figure 1). The geometry of each one was optimized by *ab-initio* RHF/SCF and DFT methods. More than one conformer was found for each tautomer, and the most stable conformer was chosen for further analysis. The energies of each tautomer are shown in Table 1. The usefulness of DFT methods to deal with the tautomerism of nucleic acid bases is a rather well established point. In particular, vibrational frequencies and zero-point energies have been estimated

Figure 1. Tautomeric forms of 4,5-diamine-2,6-dimercapto-pyrimidine.

very accurately, and frequently with errors smaller than those reported using MP2 theory²⁷⁻²⁹. According to HF/SCF and DFT calculations, the order of stability is 2 > 3 > 1 > 6 > 9 > 5 > 4 > 7 > 8. The dithione form is expected to be the most stable one (tautomer 2).

Based on these results, the vibrational spectra of the three most stable tautomers of DADMcP (1, 2 and 3) were calculated theoretically, as shown in Figure 3. In fact, the DFT frequencies provided a good insight into the vibrational structure of the three tautomeric species, as shown in Tables 2-4.

 Table 1. HF/SCF, DFT and Zero-point theoretical energies (kcal mol⁻¹)

 for the 4,5-diamine-2,6-dimercapto-pyrimidine tautomers (vacuum) and

 energy difference with respect to tautomer 2

Tautomer	HF/SCF	ΔE	DFT	ΔE	ZPE	ΔE^{ZPE}
1	-732,895.2	5.8	-734,976.5	9.7	66.6	4.6
2	-732,901.0	0	-734,986.2	0	71.7	0
3	-732,896.4	4.5	-734,980.3	5.9	69.3	3.5
4	-732,875.2	25.8	-734,960.8	25.4		
5	-732,882.2	18.7	-734,967.8	18.4		
6	-732,886.5	14.5	-734,970.4	15.8		
7	-732,871.4	29.6	-734,954.7	31.5		
8	-732,864.5	36.4	-734,950.1	36.1		
9	-732,884.7	16.2	-734.969.8	16.4		

Zero-point vibrational energies for the three tautomers confirmed the stability order, but the energy gap is large enough to indicate tautomer 2 should predominate in gas phase. However, for this tautomer, the comparison of the theoretical and the experimental FTIR spectrum of the

Table 2. Experimental and theoretical vibrational spectrum* of tautomer 1

DADMcP species (Figure 3) shows that the number of bands in the experimental spectrum is higher than for the predicted one, specially in the 400-1700 cm⁻¹ region. For this reason, the occurrence of a mixture of tautomers seems indeed rather plausible in the solid state.

The experimental infrared spectrum of DADMcP is shown in Figure 2, revealing a rather complex composition of the vibration bands for this compound. In a first approximation, the group of broad bands from 3600 to 2800 cm⁻¹ can be attributed to v_{as} (N-H) and v_{s} (N-H) of the free and hydrogen bonded molecules in the solid. The shoulders around 2600 cm⁻¹ can be tentatively ascribed to v(S-H). The bands at 1565 and 1647 cm⁻¹ can be attributed to δ (N-H) in NH₂ groups. The bands at 1300 and 1346 cm⁻¹ can be assigned to v(C=C) + v(C=N) vibrations. The remaining bands are associated with amine groups and aromatic ring vibrations.

A correlation study, trying to match each pair of experimental and theoretical vibrational band, has been carried out, as shown in Tables 2-4. Tautomer **1** exhibits a

Figure 2. FTIR spectrum of the 4,5-diamine-2,6-dimercaptopyrimidine compound (KBr pellets).

Figure 3. Theoretical FTIR spectra of the DADMcP tautomers 1, 2 and 3.

Mode	Exp. / cm ⁻¹	Theor. / cm ⁻¹	Assignments
42	3565	3521	v N.,H.,[98.5]
41	3379	3387	$v N_{10}H_{13,14}$ [98.8]
40	3300	3319	$v N_0 H_{1110}[99.4]$
39	3230	3261	$v_1 N_0 H_{1112}[99.1]$
38	2693	2678	$vS_{g}H_{15}[97.3]$
37	2577	2662	$vS_{7}H_{16}[97.3]$
36	1647	1648	$ \delta N_{10} H_{13,14}[44.0] + \delta N_9 H_{11,12}[42.1] + v N_3 C_{4.5}[9.5] $
35	1565	1626	$\delta N_9 H_{11,12}[57.1] + \delta N_{10} H_{13,14}[36.4]$
34	1525	1577	$\begin{array}{l}(\nu C_{4.5,6}+\delta C_{4}N_{10}H_{13}+\nu (C_{5}-N_{9}H_{11,12})[70.3]+\\\nu N_{3}C_{4.5}[16.7]+\delta S_{8}H_{15}[8.3]\end{array}$
33	1462	1541	$\frac{\delta N_{10}}{V_{4,5,6}} H_{13,14} [30.3] + \frac{\delta N_9}{V_{11,12}} H_{11,12} [28.6] + VC_{4,5,6} [19.3] + VN_3 C_4 N_1 [16.5] + \frac{\delta S_7 H_{16} [3.5]}{V_{16}}$
32	1430	1471	$(vC_4N_{10} + \delta N_{10}H_{13,14})[61.3] + (vC_{5,6} + v(C_5N_{19}H_{11,12})[18.7] + vN_3C_2N_1[12.1]$
31	1346	1370	$(vC_{4,5,6} + v(C_5 - N_9H_{11,12})[45.4] + vN_3C_2N_1[34.2] + \delta N_{10}H_{13,14}[14.6]$
30	1300	1294	$(vC_6N_1C_2 + vC_2S_7)[45.8] + vN_3C_{4,5}[21.3] + \delta N_{10}H_{13,14}[16.2] + \delta N_{10}H_{11,12}[12.2]$
29	1276	1270	$ \rho N_{10} H_{13,14}[40.9] + \nu C_6 N_1 C_2[22.9] + \nu N_3 C_{4,5}[17.5] + \delta N_9 H_{11,12}[8.4] + \delta S_8 H_{15}[8.1] $
28	1232	1218	$ \begin{array}{l} \nu(C_5 \text{-} N_9 H_{11,12})[31.7] + \rho N_{10} H_{13,14}[31.1] + \\ \nu C_6 N_1 C_2 [19.7] + \delta S_8 H_{15}[8.8] + \nu N_3 C_6 [5.8] \end{array} $
27	1182	1153	$vN_9H_{11,12}[92.4]$
26	1152	1084	$ \begin{split} \rho \mathrm{N}_{10}\mathrm{H}_{13,14}[55] + \nu \mathrm{N}_{3}\mathrm{C}_{4}\mathrm{N}_{10}[13.8] + \\ \delta \mathrm{S}_{8}\mathrm{H}_{15}[10.1] + \delta \mathrm{S}_{7}\mathrm{H}_{15}[5.8] + \nu \mathrm{C}_{4.5.6}[9.2] \end{split} $
25	1015	1028	$\begin{split} &\delta S_8 H_{15}[43.9] + (v C_{4,5,6} + v C_4 - N_{10} H_{13,14}) \\ & [28.8] + v N_3 C_2 N_1 [15.3] + \delta N_9 H_{11,12} [8.9] \end{split}$
24		981	$\begin{split} &\delta S_8 H_{15}[45,3] + \rho N_{10} H_{13,14}[17.0] + \\ &v C_6 N_1 C_2 [13.9] + \delta S_7 H_{16} [12.6] + \\ &v N_5 C_{4,5} [7.9] \end{split}$
23	910	917	$\begin{split} &\delta S_{7}H_{16}[59.5] + \delta S_{8}H_{15}[11.9] + \\ &\nu C_{6}N_{1}C_{2}[10.7] + \rho N_{10}H_{13,14}[9.6] + \\ &\nu N_{5}C_{4,5}[4.5] \end{split}$
22	863	863	$\begin{split} & \omega N_9 H_{11,12}[27.0] + (\delta S_7 H_{16} + \nu C_2 S_7)[20.2] + \\ & (\delta S_8 H_{15} + \nu C_6 S_8)[21.0] + \nu N_3 C_{4,5}[16.4] + \\ & \rho N_{10} H_{13,14}[9.9] \end{split}$
21	806	790	$ \omega N_9 H_{11,12}[72.8] + \rho N_{10} H_{13,14}[9.5] + \nu N_3 C_{4,5}[8.2] + \delta S_7 H_{16}[3.0] $
20	746	782	$\tau ring[56,6] + \tau N_9 H_{11,12}[34,5]$
19	712	718	$\omega N_9 H_{11,12}[32.4] + ring breath[35.4] + \rho N_{10} H_{13,14}[20.9] + \delta S_8 H_{15}[11.1]$
18	639	681	$\begin{aligned} \tau ring[52.3] + \tau N_{10}H_{13,14}[30.5] + \\ \tau N_9H_{11,12}[17.1] \end{aligned}$
17	621	629	$\tau N_{10}H_{13,14}[75.4] + \rho N_9H_{11,12}[12.4] + \tau ring[10.2]$
16	600	608	$\tau ring [60.7] + \rho N_9 H_{11,12} [27.1]$
15	571	577	Ring breath[38.6] + $\rho N_{10}H_{13,14}$ [27.7] + $\omega N_9 H_{11,12}$ [19.4] + $(\delta S_8 H_{15} + \delta S_7 H_{16})$ [14.7]
14	545	545	$ \begin{array}{l} \rho N_{10} H_{13,14} [31.3] + \delta ring [28.9] + \\ \omega N_9 H_{11,12} [21.1] + (\delta S_8 H_{15} + \delta S_7 H_{16}) [18.6] \end{array} $
13	446	408	δring
12	412	395	ring breath

*Fractional composition of the vibrational modes are shown in parenthesis.

Table 3. Experimental and theoretical vibrational spectrum of tautomer 2^*

Table 4. Experimental and theoretical vibrational spectrum of tautomer $\mathbf{3}^*$

Mode	Exp. /	Theor. /	Assignments	Mode	Exp. /
	cm ⁻¹	cm ⁻¹			cm ⁻¹
42	3595	3436	$v_{as}N_{10}H_{13,14}[98.4]$	42	3565
41	3379	3394	$vN_{3}H_{16}[95.3]$	41	3379
40	3300	3340	$vN_1H_{15}[95.0]$	40	3300
39	3230	3294	$v_{as}N_{0}H_{1112}[65.0] + v_{s}N_{10}H_{1314}[34.3]$	39	3230
38	3177	3291	$v_{v}N_{10}H_{13,14}[58.7] + v_{w}N_{0}H_{11,12}[39.9]$	38	3177
37		3235	$v_{\rm N} H_{11,12}^{(1)}[98.0]$	37	2577
36	1647	1676	$\pi N_0 H_{1112} [58.7] + \delta N_{10} H_{13.14} [19.2] +$	36	1647
			$vC_{1,s}[10.5] + \delta C_{2}N_{3}H_{1,s}[8.7]$		
35		1632	$\pi N_{9}^{4,5^{*}}$ [49.2] + $\delta N_{10}^{10^{*}}$ [37.3] + $\delta C N H [6.9] + \gamma C [5.5]$	35	1565
34	1565	1586	$\delta N_{10} H_{13,14} [42.9] + \pi N_9 H_{11,12} [22.5] + \delta N_{10} H_{13,14} [42.9] + \pi N_9 H_{11,12} [22.5] + \delta N_{10} H_{11,12} [22.5] + \delta N_{11} H_{11,12} [22.5] + \delta N_{1$	34	1525
33		1574	$(\delta N_3 H_{16} + \delta N_1 H_{15}) [56.7] + \pi N_9 H_{11,12} [13.7] + \delta N_1 H_{15} [15.7] + \pi N_9 H_{11,12} [13.7] + \delta N_1 H_{15} [11.5] + \gamma C_{15} [10.1] + (\gamma C_{5} + 1)$	33	1462
22	1460	1500	$vC_{6}S_{8}$ [8.0] (vC N + SN U)[26.8] + (vC N +	55	1402
52	1402	1300	$(VC_2V_1 + \delta V_1H_{15})(50.8) + (VC_4V_3 + \delta N_3H_{16})(23.0) + VC_{5.6}[14.8] +$	32	1430
31	1430	1400	$\frac{\delta N_{10}H_{13,14}[15.4] + \pi N_9 H_{11,12}[8.5]}{\nu(C_4 - N_{10}H_{13,14})[38.6] + \nu C_{56}[25.7] + 0}$	31	1386
30	1386	1386	$vC_2N_3[20.8] + \delta N_1H_{15}[14.8]$ ($\delta N H + \delta N H$) (57.11 + v(C - N H))	30	1346
50	1500	1500	$[22.4] + (vC_{5}S_{8} + vC_{2}S_{7})[11.8] + v(C_{5}.$	20	1200
29	1300	1292	$N_{9}H_{11,12}$ [8.5] ($vN_{1}C_{2}N_{3} + \delta N_{3}H_{16}$)[36.1] +	29	1300
			$\pi N_0 H_{1112}[28.4] + \rho N_{10} H_{1314}[17.8] +$		
28	1276	1276	$v_{as}C_{4,5,6}[17.5]$	28	1276
20	1270	1270	$(v_{as}c_2N_3C_4 + \delta N_3H_{16})[28.1] + vC_6N_1[9.8]$	27	1232
27	1232	1237	$\tau N_9 H_{11,12}[76.6] + (\nu N_1 C_2 N_3 + \delta N_3 H_{16})$ [16.0] + $\pi C_{4.5.6}[7.2]$	26	1182
26	1182	1166	$(vN_1C_6 + \delta N_1H_{15})[40.5] + \rho N_{10}H_{13,14}[22.6] + (vN_1C_6 + \delta N_1)[17,9] + vN_1C_1[17,8]$		
25	1156	1142	$ (\rho N_{10}^{-}H_{13,14}^{-} + C_4 N_{10}^{-} [31.2] + (\nu C_2 N_1 C_6 + \delta N_1 H_{15}) [25.6] + \delta N_3 H_{16}) [25.7] + $	25	1156
24		1062	$\omega N_{9} H_{11,12}[13.8]$ $\rho N_{10} H_{13,14}[50.1] + (\delta N_{13} H_{16} + \delta N_{1} H_{15})$ $[22.7] + (\nu C. S_{12} + \nu C. S_{12})[13.7] +$	24	1015
			$\omega N_9 H_{11,12}[8.2] + \nu C_{4.5}[5.6]$	23	910
23	1015	1025	$v_{as}C_{2}N_{3}C_{4}[29.2] + v_{as}C_{4,5}N_{1}[24.7] + \omega N_{9}H_{11,12}[24.5] + \rho N_{10}H_{13,14}[21.6]$	22	863
22	910	942	$\omega N_9 H_{11,12}[50.7] + v_8 N_1 C_2 N_3 [23,7] + 0 N_1 H_1[17,7] + v_1 C_2 [7,7]$	21	806
21	863	902	$ \omega N_0 H_{11,12}[52.0] + \nu C_6 S_8[21.4] + $	20	746
20	746	745	$\begin{array}{l} & (\delta C_4 N_3 C_2 [18.8] + \rho N_{10} H_{13,14} [7.7] \\ & (\delta C_{4,5,6} + \nu C_5 N_9) [38.1] + \delta_8 N_1 C_2 N_3 [40.2] + \end{array}$	20	/40
19	712	727	$\rho N_{10} H_{13,14}[21.5]$ $\pi N_1 H_{15}[65.4] + \pi C_{4.56}[23.6] +$	19	712
18	640	707	$\tau N_{3}H_{16}[9.3]$ $\pi N.C.N.[28.9] + \tau NH[26.2] +$	18	
17	623	645	$\pi C_{4,5,6}^{12}[23.6] + \omega N_9 H_{11,12}^{12}[21.1]$ $\pi N_{11,12}^{11}[21.1]$	17	
17	023	045	$\omega N_9 H_{11,12}[16.1] + \pi C_4 N_3 C_2[8.8]$	16	600
16	600	618	$\pi N_{1}C_{2}N_{3}[45.3] + \tau N_{10}H_{13,14}[24.9] + \omega N_{0}H_{11,15}[15.1] + \pi C_{4.56}[14.6]$	15	
15	584	591	$\pi N_{3} H_{16}^{111}[33.4] + \tau N_{10} H_{13,14}^{12}[24.2] + \tau C_{4.5,6}[18.7] + \tau N_{14} H_{15}^{111}[11.1] +$	14	571
14	571	570	$\tau N_9 H_{11,12}^{-1.5}$ sring[5.0] + πN H [15.0]	13	545
13	545	563	$\pi N_3 H_{16}[32.6] + \omega N_{10} H_{13,14}[29.4] + (\pi C_6 S_8 +$	13	545
			$\pi C_2 S_7 [11.1] + \omega N_9 H_{11,12} [10.7] + \pi$		
12	495	524	$N_1H_{15}[9.4]$ $\delta ring[81.9] + \pi N_1H_1[18, 1]$	12	495
-					

*Fractional composition of the vibrational modes are shown in parenthesis

Iode	Exp. /	Theor. /	Assignments
	cm ⁻¹	cm ⁻¹	
2	3565	3490	$v_{as}N_{10}H_{13,14}[95.0]$
1	3379	3372	$\nu N_1 H_{15}[92.4] + \nu_{as} N_{10} H_{13,14}[7.6]$
)	3300	3345	$vN_1H_{15}[96.2]$
9	3230	3288	$v_{as}N_{9}H_{11,12}[99.3]$
3	3177	3243	$v_{s}N_{9}H_{11,12}[98.8]$
7	2577	2517	$vS_{7}H_{16}[99.3]$
5	1647	1663	$\delta N_9 H_{11,12}[62.8] + \delta N_{10} H_{13,14}[20.3] +$
			$v_{as}C_{4,5,6}[9.5] + v_{as}N_1C_2N_3[7.3]$
5	1565	1628	$(\delta N_{10}H_{13,14} + \nu C_4 N_{10})[57.6] +$
			$\delta N_9 H_{11,12}[37.0]$
4	1525	1587	$\delta_{s}N_{10}H_{13,14}[38.1] + \delta_{s}N_{9}H_{11,12}[25.2] +$
			$v_{as}C_{4.5.6}[12.8] + v_{as}N_1C_2N_3[19.7] +$
			$\delta S_{7} H_{15}[4.7]$
3	1462	1542	$\pi N_1 H_{15}[56] + v_{as} C_2 N_3 C_4[21.3] +$
			$\delta N_{9} H_{11,12}[17.1] + \delta N_{10} H_{13,14}[13.0] +$
			$\delta C_5 C_6 S_8 [8.8]$
2	1430	1508	$\delta C_{456}^{[40.0]} + \delta N_1 H_{15}^{[29.9]} + \delta N_{10} H_{1314}^{[22.2]} +$
			vN ₂ C ₃ [7.8]
1	1386	1460	$v(\tilde{C}_4 - N_{10}H_{13,14})[67.7] + v_{ss}N_1C_2N_3[16.5] +$
			$\delta N_0 H_{1112}[10.8] + v C_{56}[5.7]$
)	1346	1340	$vC_{456}[24.5] + \delta N_1 H_{15}[22.5] + \tau N_9 H_{1112}[22.1] +$
			$\delta N_{2}C_{3}S_{4}H_{4}[18.3] + \rho N_{4}H_{124}[12.8]$
9	1300	1285	$(vC_5N_0 + \delta N_0H_{1112})[33.0] + \rho N_10H_{1214}[24.6] +$
			$v_{c}C_{n}N_{c}C_{1}[16.4] + \delta N_{1}H_{1}[15.9] +$
			$vC_{s}[5.5]$
3	1276	1233	$\tau N_0 H_{,0} [67.0] + \rho N_0 H_{,0} [12.3] +$
			$\delta N, H, [8.0] + \delta C_{s}S_{r}H, [4.8]$
7	1232	1211	$\rho N_0 H_{10} [33.5] + \tau N_0 H_{10} [25.1] +$
			$\pi N.H.[20.9] + \delta C.N.C.[9.4] + \delta S.H.[4.8]$
5	1182	1142	$(vC_{r}N_{r} + \delta N_{r}H_{r})[53.1] + (vC_{r}N_{r} + \delta N_{r}H_{r})[53.1]$
			$vN_{0}H_{1}$ [26.6] + $\delta S_{0}H_{1}$ [10.6] +
			vC.N.C.[7]
5	1156	1071	$\rho N_{\rm H}$ [46.1] + $\delta N_{\rm H}$ [17.9] +
			vC.N.C.[11.5] + vC.S.[6.3] + (vC.N. +
			$(0.2^{-3})^{-4}$ (14.0]
1	1015	1040	$0N_{11,12}/10^{-11}$
			$[20.0] + \delta C_N C_{16.8} + \delta S_H [15.4]$
3	910	959	$\delta S_{-H} = [44.6] + \omega N_{-H} = [29.1] + \rho N_{-H}$
			[11,7] + vC N C [10,1]
2	863	935	$\omega N_{1}H_{1} = [53.6] + (\delta S_{1}H_{1} + v N_{1}C_{1}N_{2})[32.9]$
			$+ 0N H_{11,12}$
1	806	885	$\omega N_0 H_{1.1.1} = \{44,1\} + \delta S_0 H_{1.1} = \{24,5\} +$
			$vC_NC_{2}[21.3] + vC_{2}S_{2}[9.9]$
)	746	752	$\pi N_{a}C_{b}C_{c}[40,2] + \pi C_{a}N_{b}C_{c}[33.1] +$
			τN ₂ H ₁ [25.7]
9	712	725	$\tau N_{}H_{}[30.2] + vC_{}N_{}[25.5] +$
			$\delta N_{c} C_{s} S_{s} [23.6] + v C_{s} S_{s} [10] + v C_{s} N_{s} [10.0]$
3		672	$\pi N.H.[56.7] + \tau N.H[11.8] +$
			$\pi C_{11} [11,2] + \pi S_{11} H_{11} [11] + \omega N_{11} H_{11} [8.7]$
7		646	$\tau N_{}H_{}[58.5] + \pi N_{}C_{}N_{}[18,1] +$
			$\omega N_0 H_{1.1,14} = \pi C_{1.1,14} [9,3]$
5	600	638	$\tau N_{10} H_{10} + \frac{1}{44.1} + \pi N_{10} C_{0} N_{0} [30.3] +$
			πC_{10} [25.8]
5		592	$(\pi N.H. + \pi N.C.C.)$ [65.8] + $\pi C.N.C.$ [28.3] +
			πS_{-H} [5.8]
4	571	569	$v ring[41.1] + oN_{}H_{}[33.4] +$
			$\omega N_0 H_{1.1.1}[17.4] + \delta S_0 H_1[7.9]$
3	545	540	$\rho N_{10} H_{12,14}[36.9] + \delta ring[23.1] +$
			$\omega N_0 H_{11,12}[18.0] + \delta N_0 H_{11}[14.7] +$
			δS _{-H} .[7.2]
2	495	442	$\delta ring[55.9] + vC_s[16.0] + \delta N.H_{}[14.8]$
			$+\delta S_{a}H_{a}[13.0]$
Fraction	nal compo	sition of	the vibrational modes are shown in paren

*Fractional composition of the vibrational modes are shown in parenthesis dithiol structure. The characteristic v(N-H) vibrational peaks expected for this isomer at 3521, 3387, 3319 at 3261 cm⁻¹ (Table 2), practically coincide with the experimental bands observed at 3565, 3379, 3300 and 3230 cm⁻¹ for DADMcP. The v(S-H) vibrations appear as weak bands in the theoretical spectrum of isomer **1**, at 2678 and 2662 cm⁻¹ (about 2% relative intensity), corresponding to the weak shoulders observed at 2693 and 2577 cm⁻¹, respectively.

In the case of the tautomer **2**, which corresponds to the dithione form, the v(N-H) vibrations are very close to those of tautomer **1**, however there is no (S-H) band (Table 3). Unfortunately, in this case, the v(C=S) vibration does not correspond to a characteristic peak, since it always occurs in combination with v(C-N) and v(C-C) vibrations, e.g. at 1294 cm⁻¹, in Table 2.

In the case of tautomer **3**, because of its mixed thiol and thione features, its theoretical vibrational spectrum exhibits a close similarity with those of tautomers **1** and **3**, as shown in Table 4.

Therefore, one can see that the infrared spectra fit fairly well those predicted by the theoretical model, corroborating the existence of a mixture of tautomers.

Additional evidence for the occurrence of the thiol tautomers (**1** or **3**) was obtained from the near-infrared (NIR) spectrum of the DADMcP species, as shown in Figure 4. In fact, it should be mentioned that the NIR region is being increasingly exploited in analytical chemistry, because of the occurrence of characteristic overtone and combination bands of the C-H, N-H, O-H and S-H fundamental vibrations. In the DADMcP compound, only the N-H and S-H vibrations³⁰ can contribute to the NIR spectrum, occurring at frequencies approximately two times those observed for the fundamental ones in the middle IR region, *i.e.*, at 6653, 6473, 6293 and 4968, 4778 cm⁻¹, respectively (Figure 4).

Figure 4. NIR spectrum of 4,5-diamine-2,6-dimercaptopyrimidine in solid form.

Conclusions

Due to the thione-thiol equilibrium, the 4,5-diamine-2,6-dimercaptopyrimidine compound can exhibit nine tautomeric forms. HF/SCF and DFT calculations support the existence of at least two major tautomeric forms of which the dithione tautomer is the most stable one. A successful simulation of the vibrational spectra of the most stable tautomers is reported, showing a good agreement with the experimental bands in the FTIR spectrum. According to the theoretical and experimental evidence, tautomers **2** and **3** should be the predominant species in the solid state. This conclusion is corroborated by the S-H overtone band, in the NIR spectrum.

Acknowledgments

The support from FAPESP, CNPq, and IM2C is gratefully acknowledged.

References

- 1. Senge, M. O.; Angew. Chem. Int. Ed. 1996, 35, 1923.
- 2. Raper, E. S.; Coord. Chem. Rev. 1996, 153, 199.
- Fandos, R.; Lafranchi, A.; Otero, A.; Pellinghelli, M. A.; Ruiz, M. J.; Terreros, P.; *Organometallics* 1996, *15*, 4725.
- 4. Brandt, K.; Sheldrick, W. S.; Inorg. Chim. Acta 1998, 267, 39.
- 5. Raper, E. S.; Coord. Chem. Rev. 1996, 165, 475.
- 6. Spinner, E.; J. Chem. Soc. 1960, 1237.
- Stoyanov, S.; Petrov, I.; Antonov, L.; Stoyanov, T.; Karagiannidis, P.; Aslanidis, P.; *Can. J. Chem.* **1990**, *68*, 1482.
- Stoyanov, S.; Stoyanov, T.; Akrivos, P. D.; *Trends Appl.* Spectrosc. 1998, 2, 89.
- Chou, P. T.; Wei, C. Y.; Hung, F. T.; J. Phys. Chem. B 1997, 101, 9119.
- Beak, P.; Fry, F. S.; Lee Jr., J.; Steele, F.; J. Am. Chem. Soc. 1976, 98, 171.
- Matsuda, Y.; Ebata, T.; Mikami, N.; J. Phys. Chem. A 2001, 105, 3475.
- Kwiatkowski, J. S.; Leszczynski, J.; J. Mol. Struct. 1996, 376, 325.
- Cakir, S.; Bicer, E.; Odabasoglu, M.; Albayrak, C.; J. Braz. Chem. Soc. 2005, 16, 711.
- Wong, M. W.; Wiberg, K. B.; Frisch, M. J.; J. Am. Chem. Soc. 1992, 114, 1645.
- Schlegel, H. B.; Gund, P.; Fluder, E. M.; J. Am. Chem. Soc. 1982, 104, 5347.
- Moran, D.; Sukcharoenphon, K.; Puchta, R.; Schaefer III, H. F.; Schleyer, P. V. R.; Hoff, C. D.; *J. Org. Chem.* 2002, 67, 9061.
- Lorenc, J.; Dyminska, L.; Mohmed, A. F. A.; Hanuza, J.; Talik,
 Z.; Maczka, M.; Macalik, L.; *Chem. Phys.* **2007**, *334*, 90.

- Hatherley, L. D.; Brown, R. D.; Godfrey, P. D.; Pierlot, A. P.; Caminati, W.; Damiani, D.; Melandri, S.; Favero, L. B.; *J. Phys. Chem.* **1993**, *97*, 46.
- 19. Wang, J. H.; Boyd, R. J.; J. Phys. Chem. 1996, 100, 16141.
- 20. Demets, G. J. F.; *PhD Thesis*, Universidade de São Paulo, Brazil, 2001.
- Bonacin. J. A.; Formiga, A. L. B.; Melo, V. H. S.; Toma, H. E.; Vib. Spectrosc. 2007, 44, 133.
- Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, T. S.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S.; Windus, T. L.; Dupuis, M., Montgomery, Jr., J. A.; J. Comput. Chem. 1993, 14, 1347.
- 23. Becke, A. D.; J. Chem. Phys. 1993, 98, 5648.
- 24. Lee, C.; Yang, W.; Parr, R. G.; Phys. Rev. B 1988, 37, 785.

- 25. Miehlich, B.; Savin, M. A.; Stoll, H.; Chem. Phys. Let. 1989, 157, 200.
- 26. Scott, A. P.; Radom, L.; J. Phys. Chem. 1996, 100, 16502.
- Gorelsky, S. I.; Lever, A. B. P.; Can. J. Anal. Sci. Spectrosc. 2003, 48, 93.
- Estrin, D. A.; Paglieri, L.; Corongiu, G.; J. Phys. Chem. 1994, 98, 5653.
- 29. Tian, S. X.; Xu, K. Z.; Chem. Phys. 2001, 264, 187.
- 30. Goddu, R. F.; Delker, D. A.; Anal. Chem. 1960, 32, 140.

Received: October 9, 2007 Published on the web: February 22, 2008

FAPESP helped in meeting the publication costs of this article.