ANÁLISE DIRETA DE SÓLIDOS POR ESPECTROMETRIA DE ABSORÇÃO ATÔMICA COM ATOMIZAÇÃO EM FORNO DE GRAFITE: UMA REVISÃO

Cassiana Seimi Nomura

Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Rua Santa Adélia, 166, 09210-170 Santo André - SP, Brasil **Cíntia Soares da Silva e Pedro Vitoriano Oliveira*** Instituto de Química, Universidade de São Paulo, CP 26077, 05513-970 São Paulo, SP – Brasil

Recebido em 11/7/06; aceito em 30/3/07; publicado na web em 19/12/07

SOLID SAMPLING GRAPHITE FURNACE ATOMIC ABSORPTION SPECTROMETRY: A REVIEW. This is a review of direct analysis using solid sampling graphite furnace atomic absorption spectrometry. Greater emphasis is dedicated to sample preparation, sample homogeneity, calibration and its application to microanalysis and micro-homogeneity studies. The main advantages and some difficulties related to the applicability of this technique are discussed. A literature search on the application of solid sampling graphite furnace atomic absorption spectrometry in trace element determination in many kinds of samples, including biological, clinical, technological and environmental ones, is also presented.

Keywords: solid sampling; atomic absorption spectrometry; graphite furnace.

INTRODUÇÃO

A maioria das amostras submetidas para determinação elementar por espectrometria de absorção atômica com forno de grafite (GF AAS) encontra-se na forma sólida. Usualmente, as amostras são convertidas em soluções aquosas por meio de procedimentos clássicos por via seca, tais como, cinzas para materiais orgânicos, fusão para materiais inorgânicos refratários e por via úmida, digestão ou dissolução ácida em altas temperaturas para amostras orgânicas e inorgânicas, repectivamente¹⁻³. Esses procedimentos apresentam características favoráveis e limitações que dependem, particularmente, do tipo de amostra, dos analitos e de suas concentrações. Erros sistemáticos devido à contaminação ou perdas por volatilização estão entre os mais freqüentes, podendo afetar diretamente a exatidão e precisão dos resultados analíticos. Considerando que a GF AAS é uma técnica destinada à determinação de traços e ultratraços de elementos, os cuidados no preparo das amostras tornam-se cruciais para o sucesso do método empregado4-6.

Nesse contexto, a determinação elementar a partir da análise direta da amostra sólida, com o mínimo de manipulação é uma alternativa bastante viável. A análise direta de sólidos, que pode ser efetuada por meio de suspensões ou por meio da amostragem direta de uma amostra pulverizada, com tamanho de partícula controlado, apresenta algumas vantagens quando comparada aos procedimentos convencionais^{6,7}: simplificação no pré-tratamento da amostra, possibilitando reduzir o tempo gasto nessa etapa, aumentando, assim, a freqüência analítica; minimização dos riscos de contaminação devido ao uso de quantidades reduzidas de reagentes, pouca manipulação ou baixa exposição ao ambiente; minimização das perdas do analito de interesse; menor periculosidade devido a não utilização de reagentes tóxicos ou corrosivos, por exemplo, HF; minimização de geração de resíduos, o que permite classificar os métodos como "limpos"; maior detectabilidade, uma vez que as amostras não são diluídas e, possibilidade de analisar uma pequena quantidade de amostra, permitindo estudos de micro homogeneidade.

A GF AAS apresenta características que a elegem como uma das técnicas mais adequadas para análise direta de sólidos, seja na forma de suspensão (SiS GF AAS) ou de sólido direto (SS GF AAS)4-11. Dentre as suas principais características, destacam-se: o programa de aquecimento que permite o pré-tratamento térmico da amostra, sobretudo durante a etapa de pirólise, o que facilita a remoção de parte dos concomitantes que podem provocar interferências durante a atomização; as pequenas quantidades de amostras que podem ser analisadas; apresenta boa seletividade e sensibilidade; os problemas relacionados ao sistema de transporte são praticamente inexistentes, uma vez que o transporte das suspensões é feito por amostragem discreta (não depende de nebulizadores), e os sólidos são pesados diretamente nas plataformas de grafite que são, posteriormente, introduzidas no atomizador eletrotérmico e, a adequada otimização do programa de aquecimento, aliada ao uso de modificadores químicos, possibilita, na maioria das vezes, a calibração do equipamento com soluções aquosas.

SS GF AAS: CONTEXTO HISTÓRICO

Historicamente, a SS GF AAS é quase tão antiga quanto a própria técnica de espectrometria de absorção atômica. Boris L' Vov foi um dos pioneiros, quando testou o desempenho do seu modelo de forno de grafite após amostragem direta de cloreto de sódio para análise elementar¹². O primeiro forno de grafite idealizado por L' Vov apresentava uma configuração que era bastante adequada para amostragem direta de sólidos. Porém, na simplificação do modelo, posteriormente proposta por Massmann¹³, e que foi aquela adotada pela maioria dos fabricantes, a amostragem direta de sólidos não era tão trivial.

Ao longo do desenvolvimento instrumental da técnica, diversos acessórios e modificações nos fornos surgiram na tentativa de facilitar e permitir a análise direta de sólidos^{4,7,8}. Em geral, os modelos de amostradores propostos visavam a introdução de amostra sólida em um atomizador empregado para amostragem de soluções.

Apesar do interesse na análise direta de sólidos por GF AAS, as pesquisas que culminaram em um modelo de forno de grafite designado para essa finalidade se intensificaram a partir da década de 80^{4.8}. Dois fatores podem ser atribuídos a esse crescente interesse: o surgimento dos fornos de grafite com aquecimento transversal e o uso de corretores de radiação de fundo baseados no efeito Zeeman, que para a maioria dos elementos apresenta melhor eficiência que os corretores com lâmpada de deutério. Além disso, na SS, por causa da ausência da diluição da amostra, os componentes da matriz no forno também estão mais concentrados, levando a sinais de fundo em geral maiores, que podem requerer corretores mais eficientes.

Atualmente, encontra-se comercialmente disponível um modelo de espectrômetro de absorção atômica com atomização eletrotérmica que opera no modo convencional, com solução aquosa, ou com amostragem direta de sólidos. Nesse equipamento, a amostra sólida é pesada diretamente em uma plataforma de grafite pirolítico do tipo "canoa", que é inserida lateralmente no interior do tubo de grafite com auxílio de uma pinça^{8,14}. Esses amostradores podem ser muito simples, com operação manual ou mais sofisticados, com balança e pinça operadas automaticamente⁸.

Apesar das características favoráveis e dos excelentes resultados em matrizes diversas, pode-se considerar que o número de aplicações da SS GF AAS ainda é pequeno. Na Figura 1 estão apresentados os números de artigos publicados, desde 1973, relacionados à análise de sólidos por GF AAS. O perfil do gráfico apresentado na figura indica que a técnica teve um aumento no número de trabalhos publicados a partir dos anos 90. É interessante notar que, a partir de 1995, o número de publicações vem se mantendo constante, com nítida tendência de crescimento a partir de 2003. Como mencionado anteriormente, esse crescente interesse deve estar relacionado à melhoria na instrumentação disponível comercialmente, que permitiu ampliar a capacidade de aplicações da técnica. O lançamento recente de um espectrômetro de absorção atômica de alta resolução com fonte contínua (HR-CS AAS)¹⁵, com capacidade única de correção de fundo, de visualização espectral e possibilidade de determinação multielementar a partir da amostragem direta de sólidos, deverá impulsionar as pesquisas e a popularização da técnica.

Figura 1. Número de artigos publicados por ano referentes à SS ETAAS

Não obstante as vantagens referentes à SS GF AAS, algumas dificuldades ainda precisam ser superadas e que, dependendo da amostra, podem ser um obstáculo para aplicação em análise de rotina: a calibração do equipamento; a homogeneidade da amostra e, a representatividade devido às pequenas massas de amostra que são analisadas.

PREPARO DA AMOSTRA PARA SS GF AAS

Apesar de dispensar os morosos pré-tratamentos das amostras, na análise direta de sólidos por SS GF AAS é recomendável que as amostras sejam secas e moídas até se transformarem em um pó muito fino com tamanho de partículas controlado. No entanto, há trabalhos na literatura propondo a introdução direta de pedaços de polímeros¹⁶ e materiais biológicos como sangue, fígado e rim¹⁷ *in natura* para serem analisados.

A secagem deve ser realizada, preferencialmente, por métodos que não interfiram nas propriedades físicas e químicas das amostras¹⁸. A liofilização é um processo comumente empregado para secar amostras biológicas e tem sido também utilizada como uma técnica quantitativa de pré-concentração de elementos traço em águas¹⁹. Jatos de ar aquecido (80 a 85 °C) também podem ser utilizados na secagem de amostras. Essa técnica foi empregada na secagem de fígado de porco visando a preparação de material certificado²⁰. Forno de microondas caseiro (30 W durante 45 min) associado ao aquecimento em estufa (60 °C por aproximadamente 48 h) também foi empregado, com sucesso, para secar amostras de fígado bovino²¹.

A homogeneização é um outro importante processo da etapa de preparo de amostra para análise direta de sólidos e é facilmente alcançada por procedimentos de moagem. Em geral, quanto mais estreita a faixa de distribuição do tamanho de partícula e menor o seu diâmetro (< 10 μ m) melhor será a homogeneidade da amostra^{6,22}.

A escolha do sistema de moagem a ser empregado pode variar dependendo das propriedades da amostra, tais como a dureza e o conteúdo de fibras e gorduras. A moagem criogênica, introduzida por Iyengar e Kasperek em 1977²³, tem como princípio fundamental o aumento da dureza do material e inserção de falhas na estrutura cristalina, que facilitam o processo de moagem^{23,24}. Desde a sua proposição, a moagem criogênica tem sido intensamente empregada para moer diferentes tipos de amostras^{21,25,26}.

Outros moinhos mecânicos como de almofariz e pistilo, de blenda, de disco, de facas e de bolas têm sido aplicados para moer amostras. Um moinho de bolas foi empregado com sucesso na preparação do fígado suíno certificado²⁰, amostras de peixe²⁷ e fígado bovino²¹. O uso de almofariz e pistilo também mostrou ser uma boa alternativa para moer amostras de peixe, visando a determinação de Se²⁸.

Em um estudo desenvolvido por Fajgeli e Zeisler²⁹, os tamanhos de partículas de diversos materiais de referências certificados do IAEA ("International Atomic Energy Agency", Viena, Áustria) e NIST ("National Institute of Standards and Tecnology", Gaithersburg, MD, USA) foram avaliados. Alguns desses materiais eram ambientais e biológicos, moídos em diferentes sistemas. Como conclusão, os autores observaram que os materiais biológicos moídos em moinhos de jato de ar foram os que apresentaram os menores tamanhos de partícula e, conseqüentemente, os mais adequados para serem empregados em microanálises.

FATORES QUE INFLUENCIAM A ANÁLISE DIRETA DE SÓLIDOS POR SS GF AAS

Considerando a quantidade de amostra que é tomada para análise, a SS GF AAS pode ser classificada como uma técnica em que se pratica desde a micro- até a submicroanálise, com massas que podem variar de 10 a 0,01 mg, respectivamente^{30,31}.

Apesar da possibilidade de analisar massas diminutas de amostras ser uma das grandes vantagens da SS GF AAS, essa característica é também um grande desafio, pois obter resultados precisos e exatos nessas condições não é uma tarefa trivial. Em geral, massas inferiores a 100 mg tendem a comprometer a homogeneidade e, conseqüentemente, a representatividade, já que os elementos traço podem não estar homogeneamente distribuídos pelo material³². Quando a amostra é subdividida em porções cada vez menores, ela tende a se tornar cada vez mais não homogênea, pois a probabilidade estatística de encontrar a mesma concentração média do analito na fração tomada para análise torna-se cada vez menor, vide representação apresentada na Figura 2. Em geral, massas de amostra de 100 a 500 mg são pesadas para digestão ou solubilização²². Nesses casos, a micro homogeneidade não é um fator limitante e não deve gerar erros associados à falta de homogeneidade da amostra (Figura 2a). Por outro lado, quando massas diminutas são tomadas para análise (0,01 a 1 mg) a micro homogeneidade torna-se um parâmetro crítico. As diferentes porções de amostras tomadas para análise podem conter diferentes quantidades do elemento de interesse (Figura 2b), gerando grande imprecisão entre as medidas e, desta forma, comprometendo os resultados analíticos.

Figura 2. Diagrama para ilustrar a influência da homogeneidade na determinação de um analito (•): (a) grande massa de amostra e (b) pequena massa de amostra

Quando um material homogêneo se torna heterogêneo para pequenas massas, existe uma massa mínima que deve ser considerada e bem estabelecida para garantir a representatividade da amostra e a exatidão dos resultados analíticos32. A influência da massa de amostra sobre a precisão dos resultados analíticos foi avaliada por Rossbach et al.33, que verificaram que o desvio padrão relativo (RSD) das medidas diminuiu de 50 para 0,5% quando massas de amostras foram aumentadas de 0,01 para 100 mg. Langmyhr³⁴ mostrou, em artigo de revisão, que para muitos materiais, massas entre 0,1 e 10 mg podem ser analisadas sem comprometer a representatividade. Belarra et al.³⁵, por sua vez, demonstraram que massas muito elevadas também podem gerar resultados inexatos em SS GF AAS. Segundo esses autores, que visavam a determinação de Cu em complexo vitamínico, a análise de elevadas massas de amostra gerava resultados superestimados, provavelmente devido à influência da matriz que alterava a cinética de vaporização do analito.

A área superficial das partículas pode exercer grande influência sobre o processo de atomização³⁶. Já foi demonstrado que quando sucessivos procedimentos de atomização são aplicados a uma amostra com partículas de forma esférica, o sinal de absorção desaparece somente após diversos ciclos de atomização.

Considerando a homogeneidade de materiais, pode-se dizer que a maioria dos sólidos, com raras exceções como algumas ligas metálicas e vidros, é uma mistura heterogênea. Materiais biológicos, geológicos e ambientais são caracteristicamente não homogêneos, sendo as rochas, os solos e sedimentos os materiais que apresentam composições mais heterogêneas⁵.

Portanto, a homogeneidade é um importante pré-requisito que deve ser considerado para a análise direta de amostras sólidas²². Esse parâmetro depende de fatores como a natureza do material, a densidade, a massa de amostra a ser utilizada e a concentração do elemento de interesse. Experiências têm mostrado que a heterogeneidade para pequenas massas de amostras é, geralmente, conseqüência da presença de partículas grandes "aglomeradas", as quais podem conter concentrações de elementos em níveis de traço muito maiores que aquelas encontradas em toda a amostra³⁷. Uma maneira de contornar esse tipo de problema é reduzir o tamanho das partículas das amostras por meio de procedimentos de moagem, como já anteriormente mencionado.

A homogeneização é uma das etapas mais importantes e críticas do processo de produção de materiais de referência certificados (CRM). Esses materiais são muito importantes na Química Analítica e atuam como a principal fonte de avaliação da exatidão dos métodos propostos. Desse modo, é importante que as características desses materiais, entre elas a homogeneidade, sejam bem definidas. A maioria dos CRM atualmente disponíveis no mercado apresenta homogeneidade garantida somente para elevadas massas de amostras, variando entre 100 e 500 mg²². Isso é um problema, pois técnicas que praticam a microanálise utilizam massas de amostra geralmente inferiores a 10 mg. Considerando a escassez de CRM para microanálise, alguns esforços vêm sendo direcionados no sentido de produzir materiais que atendam a essas exigências. Nesse sentido, avaliar a micro homogeneidade desses materiais torna-se uma etapa importante no processo de produção^{21,38}. Atualmente existe disponível um material certificado de sedimento marinho (SRM 2703), produzido pelo NIST, que pode ser utilizado em microanálise, pois o mesmo apresenta homogeneidade garantida para massa de 0,7 mg.

AVALIAÇÃO DA MICRO HOMOGENEIDADE

De acordo com o Guia ISO 35³⁹, um material é perfeitamente homogêneo com relação a uma determinada característica, se ao comparar duas partes distintas do mesmo material não houver diferença nos valores dessa característica. Na prática, um material pode ser considerado homogêneo com relação a uma característica se a diferença entre o valor de uma parte com relação à outra parte não puder ser identificada experimentalmente. O conceito básico de homogeneidade, portanto, engloba tanto a característica como o parâmetro da medida (geralmente o desvio padrão), incluindo a massa de amostra da porção testada.

Experimentalmente, o grau de homogeneidade pode ser determinado pela medida de uma propriedade (por exemplo, concentração de um elemento) em uma pequena porção (por exemplo, massa de amostra), utilizando um método com precisão relativamente elevada.

A técnica a ser utilizada para a avaliação da homogeneidade é outro fator importante. Segundo Pauwels *et al.*³², a escolha da técnica deve ser feita considerando alguns requisitos importantes: não deve requerer pré-tratamento da amostra para evitar perdas dos analitos e contaminações; deve possibilitar análise precisa de pequenas massas de amostras, preferencialmente menor que 1 mg e, deve apresentar, preferencialmente, uma freqüência analítica alta. A SS GF AAS contempla todas essas características e, por isso, tem sido utilizada para avaliar a homogeneidade de diversos tipos de materiais^{21,38}.

A informação a respeito de homogeneidade de amostras foi inicialmente proposta por Igamells e Switzer⁴⁰ quando apresentaram a constante de amostragem (K_s) para estimar a imprecisão devido ao erro de amostragem, Equação 1

$$RSD = (K_s/m)^{1/2}$$
 (1)

De acordo com essa equação, K_s pode ser estimada pelo RSD das medidas das sub-amostragens de massa *m*. A Equação 1 não considera os erros aleatórios provenientes dos procedimentos analíticos. Para que essas incertezas sejam devidamente consideradas na avaliação da homogeneidade, pode-se utilizar outro cálculo

$$S_{\rm H}^{2} = \text{RSD}^{2} - \Sigma(\text{outras incertezas})^{2}$$
 (2)

Essas incertezas são decorrentes da pesagem e erros instrumentais, como por exemplo, estabilidade da lâmpada de catodo oco e variações da temperatura do atomizador. Enquanto K_s foi apresentada originalmente para estimar a homogeneidade de amostras geológicas, nas quais massas de amostras relativamente altas eram analisadas, Kurfürst *et al.*⁴¹ introduziram o conceito de constante de homogeneidade (H_e) para pequenas massas de amostras

$$H_e = S_H^* m^{1/2}$$
(3)

Por meio da Equação 3, o erro de amostragem $S_{\rm H}$ de uma determinada massa de amostra *m* (em mg) pode ser estimado diretamente a partir dos valores de RSD das medidas e dos erros aleatórios do procedimento analítico. Como a massa de amostra *m* utilizada nessa avaliação é tipicamente 1 mg, H_e representa a imprecisão devida ao erro de amostragem para uma unidade de massa (1 mg). Quando o fator de homogeneidade é menor que 10, ($H_e < 10$), o material pode ser considerado suficientemente homogêneo.

CALIBRAÇÃO

A calibração é, para a maioria das técnicas, um dos passos mais importantes para garantir a qualidade dos resultados analíticos. Encontrar um método adequado para a construção da curva analítica de calibração é preocupação importante que o analista deve ter, especialmente para a amostragem direta de sólidos⁴².

Em GF AAS o intervalo linear de calibração é reconhecidamente muito estreito, limitando, em alguns casos, a amostragem direta de sólidos. No entanto, o advento do corretor de radiação de fundo baseado no efeito Zeeman com três campos magnéticos e com diferentes intensidades permitiu uma "diluição instrumental", possibilitando a amostragem de maiores massas de amostra, aumentando a representatividade^{43,44}.

A escolha do material a ser utilizado para a calibração depende fortemente do comportamento da matriz e do analito. Em geral, para minimizar interferências, o material usado para calibração deve ter composição idêntica ou a mais próxima possível do material que está sendo analisado⁶. Nesse contexto, os materiais de referência certificados (CRM) são bastante empregados na calibração. Pode-se pesar massas crescentes de um CRM ou massas iguais de um tipo de CRM com diferentes concentrações do analito. Em geral, se a composição do material usado para calibração for muito semelhante à da amostra, o efeito de matriz sobre o processo de vaporização/atomização, em ambos os casos, ocorre da mesma maneira. Atualmente existem disponíveis no mercado diversos tipos de CRM produzidos por diversas instituições, entre as quais, NIST, BCR ("Community Bureau of Reference", IRMM, Geel, Bélgica), NRC ("National Research Council Canada, Institute for Environmental Research and Technology", Otawa, Ontário, Canadá) e NIES ("National Institute for Environmental Studies, Japan Environment Agency", Yatabemachi, Japão).

Embora os CRM sejam intensamente utilizados em SS ET AAS, existem algumas limitações que devem ser consideradas: muitos materiais não são certificados para alguns elementos de interesse; na prática é muito difícil encontrar CRM com composição semelhante à da amostra e, a maioria dos CRMs comercialmente disponíveis apresenta homogeneidade garantida somente para massa de amostra muito superior àquela praticada em SS ET AAS.

O uso de soluções de referência é a forma mais comum, simples e barata para construir a curva analítica de calibração. Além disso, as soluções não apresentam problemas de homogeneidade. Porém, o seu emprego em técnicas de amostragem direta de sólidos nem sempre é possível. Em SS GF AAS, o sucesso da calibração aquosa depende fortemente de fatores que estão relacionados com os mecanismos de atomização dos elementos de interesse. Apesar da forte influência de matriz da amostra sólida, muitos trabalhos utilizaram soluções aquosas para a construção das curvas analíticas de calibração. Na maioria dos casos, isso foi possível devido a uma refinada otimização do programa de aquecimento, à utilização de modificadores químicos, gás de purga alternativo ou mistura oxidante para melhorar a separação analito/matriz durante a etapa de pirólise.

Os modificadores químicos são comumente utilizados na análise direta por SS GF AAS. A adição de uma alíquota de modificador químico em solução sobre a amostra sólida é a forma mais usual de utilizar esse tipo de substância. Como os modificadores químicos em solução são comumente preparados em meio ácido, para alguns elementos, *e.g.* Cd e Pb, a adição sobre a amostra sólida promove a extração, facilitando a interação entre o analito e o modificador⁴⁵. Modificadores químicos permanentes como Ir, Pd, Rh, Ru e W também vêm sendo empregados, com sucesso, nas determinações por SS GF AAS^{21,46,47}. Os mecanismos de ação desses modificadores sobre os analitos das amostras sólidas são bastante complexos. A interação entre o modificador químico permanente e o analito deve ocorrer, provavelmente, na fase condensada. Nesse caso, os analitos migram da amostra sólida para a superfície do modificador durante a etapa de pirólise⁴⁶.

LIMITE DE DETECÇÃO

De acordo com a definição da IUPAC, o limite de detecção, expresso em termos de quantidade de analito a_L , está relacionado à menor resposta que pode ser detectada com razoável certeza por um dado método analítico⁶. Em geral, o limite de detecção é obtido com base nas medidas do branco analítico. Idealmente, a resposta do branco analítico pode ser obtida a partir de materiais que possuem composição matricial similar à amostra que está sendo analisada, porém, isento do analito de interesse. Efetuar as medições dos sinais analíticos em condições idênticas às das amostras, inclusive na presença da mesma matriz é importante, pois a matriz pode gerar interferências que vão refletir nos resultados analíticos.

Quando as amostras são líquidas, encontrar o branco analítico não é crítico. Nesse caso, um branco sintético composto pode ser preparado, por exemplo, misturando solventes e elementos majoritários presentes na matriz. Por outro lado, em análise direta de sólido, a obtenção desse branco não é trivial, pois o material a ser utilizado para prepará-lo não existe ou é difícil de ser preparado sinteticamente.

Muitos trabalhos na literatura fazem uso de diferentes ferramentas para calcular o limite de detecção associado às técnicas de análise direta de sólidos. A forma mais usual tem sido o cálculo do limite de detecção a partir de uma solução de referência e seu correspondente branco. Entretanto, esse tipo de aproximação dificilmente pode ser utilizado como um guia real da análise direta de sólido.

Uma alternativa seria medir o "branco da amostra", por meio da obtenção do sinal do branco a partir de uma amostra com mesma composição matricial, porém com concentração muito baixa do analito de interesse⁶. Na dificuldade de encontrar esse tipo de material, é possível substituí-los por outros materiais sintéticos. O SiC aquecido a 2200 °C para eliminar as impurezas, por exemplo, é um candidato a branco analítico. Da mesma maneira, outros materiais como o grafite e a celulose de grau analítico são algumas boas opções⁶.

Uma outra forma de medir o branco analítico é realizar as medidas da plataforma de grafite vazia. O sinal de absorbância obtido refere-se à "massa zero"^{21,38,45}. Nessa situação, o desvio padrão do branco analítico é aquele proveniente do "ruído" instrumental. No caso das determinações envolvendo comprimentos de onda mais sensíveis, o desvio padrão está diretamente relacionado às contaminações aleatórias.

Conhecendo-se o valor do desvio padrão de 20 medidas do branco analítico (σ), pode-se calcular a massa do analito referente a esse desvio (a_1) pela equação $3\sigma/S$, na qual *S* é a inclinação da curva analítica de calibração. Por fim, o valor do limite de detecção (em concentração) pode ser obtido utilizando-se a equação $C_L = a_L/m_{max}$, na qual m_{max} se refere à máxima massa de amostra analisada⁴⁵.

APLICAÇÕES MAIS RECOMENDADAS DA SS GF AAS

Considerando as principais características da SS GF AAS, podese dizer que as aplicações são fortemente recomendadas em alguns casos específicos^{7,11}: determinação de elementos em amostras de difícil solubilização; determinações de elementos em níveis de traço e ultratraço em amostras de alta pureza; em situações nas quais a disponibilidade da amostra é pequena e, para avaliar a micro homogeneidade de materiais.

Na Tabela 1 estão apresentadas as aplicações da SS GF AAS para determinações de elementos em matrizes orgânicas, sendo as biológicas e de alimentos, a maioria. Muitos dos artigos exploram o uso da SS GF AAS para avaliar a distribuição dos analitos nas amostras e a micro homogeneidade de CRM. Na Tabela 2 estão apresentados os trabalhos que visam as determinações de elementos em amostras inorgânicas que, muitas vezes, possuem elevada pureza ou são caracteristicamente de difícil decomposição. Na Tabela 3, estão reunidos os trabalhos que fazem uso da SS GF AAS para investigações ambientais.

Tabela 1. Aplicação da SS ETAAS na análise de materiais orgânicos

CONCLUSÕES

Considerando as principais vantagens associadas às técnicas que permitem a determinação direta de sólidos, a SS GF AAS se mostra como uma importante ferramenta para a química analítica aplicada. A alta sensibilidade, a relativa facilidade de amostragem de sólidos e a possibilidade de analisar massas muito pequenas de amostras tornam a técnica recomendada para microanálise. Apesar das inúmeras características positivas associadas à SS GF AAS, algumas dificuldades ainda existem e necessitam ser superadas, tais como, a calibração, o branco analítico e a repetibilidade entre medidas. O caráter monoelementar é um desafio que pode ser superado ao operacionalizar a introdução de amostras sólidas em um espectrômetro de absorção atômica com detecção simultânea (SIMAAS). A não homogeneidade das sub-amostras tomadas para análise é um parâmetro que deve ser sempre considerado. Porém uma moagem eficiente permite boa precisão para massas de amostras inferiores a 1 mg. A falta de CRMs para microanálise também é um problema e que, finalmente, está sendo lentamente resolvido com o empenho de certos grupos de pesquisa e centros de metrologia, reconhecidamente competentes, na produção de materiais de referência.

Amostra	Elementos	Comentários	Ref.
	Tecido	biológico, alimentos e medicamento	
Alimentos	Р	Calibração com solução aquosa	48
		Modificador químico: 5 µg Pd + 5 µg Ca	
Amostras biológicas	Hg	Calibração com solução aquosa	49
em geral	C	Modificador químico: 0,3 mg KMnO	
Amostras biológicas	Pb	HR-CS AAS	46
-		Modificador químico permanente: 400 µg Ru	
		Tamanho de partícula inferior a 50 µm	
		Massa de amostra entre 0,2 e 1,5 mg	
Amostras biológicas	Cr	Calibração com adição de analito sobre 1,0 mg de amostra sólida	50
		Massa de amostra entre 0,1 e 1,2 mg	
Amostras orgânicas	Fe, Mn, Pb	Avaliação da distribuição dos elementos	51
(complexo vitamínico,		Calibração com solução aquosa	
arroz e PVC)		Massa de amostra entre 1 e 2 mg	
Amostras variadas	Ag	Calibração com solução aquosa	44
(fígado bovino, solo, PP)		Modificador químico: 1 μ g Pd(NO ₃) ₂	
Cabelo	Cd, Cr, Pb	Calibração com solução aquosa	52
		Massa de amostra entre 0,2 e 4,0 mg	
Cabelo	As	Distribuição de As ao longo do fio de cabelo	53
		Modificador químico: 30 μ g Pd(NO ₃) ₂ + 20 μ g Mg(NO ₃) ₂	
		Análise de segmentos de 0,5 mm de cabelo	
Cálculo renal e	Cd, Cr, Hg, Ni, Pb	Calibração com CRM	54
salivar		Massa de amostra entre 0,1 e 5,0 mg	
Cálculo salivar	Cd, Pb e Zn	Moagem da amostra em moinho vibratório de ágata	55
humano		Calibração com solução aquosa	
		Massa de amostra entre 0,2 e 10 mg	
Couve de bruxela,	Cd, Pb	Avaliação da homogeneidade	56
Farinha de arroz,		Calibração com solução aquosa e com CRM	
Farinha de trigo,		Massa de amostra entre 0,04 e 5,0 mg	
Fígado bovino,			
Leite em pó,			
Músculo bovino,			
Peixe, Rim suíno			
Fígado bovino	Cd, Pb	Produção de CRM; calibração com solução aquosa	57
Fígado bovino	Cd, Pb	Análise de fígado fresco	58
		Calibração com solução aquosa e com CRM	
		Massa de amostra entre 0,030 e 10 mg	

Tabela 1. continuação

Amostra	Elementos	Comentários Tecido biológico e alimentos	Ref.
Fígado bovino	Cd, Pb	Avaliação da homogeneidade	38
		Canoração com solução aquosa Modificador químico: 250 μ g W + 200 μ g Rh	
		Massa mínima de amostra: 0.04 mg (Cd) e 1.4 mg (Ph)	
Fígado bovino	Cd. Cu. Pb. Zn	Calibração com CRM: Massa de amostra entre 0.5 e 5.0 mg	59
Fígado bovino	Cd, Cu, Co, Fe, Pb, Zn	Calibração com solução aguosa	60
0	, , , , ,	Modificador químico: (NH ₄) ₂ SO ₄	
		Massa de amostra entre $0,2$ e $2,0$ mg	
Fígado bovino	Cu, Zn	Avaliação da homogeneidade	21
		Calibração com solução aquosa	
		Modificador químico: 250 µg W + 200 µg Rh	
		Massa mínima de amostra: 0,04 mg (Cu) e 0,03 mg (Zn)	
Fígado bovino, dente,	Cd, Pb	Avaliação da homogeneidade	61
osso, músculo,		Calibração com solução aquosa	
sangue, córtex renal		Produção de material de referência	<i>(</i>)
Fígado equino	Cd, Pb	Avaliação da distribuição dos elementos	62
Efende de mete	CI DE U-	Calibração com solução aquosa	(2
Figado de palo	Ca, Pb, Hg	Avanação da nomogeneidade	03
servagem		Modificador químico: NH H PO	
		Massa de amostra entre 0.1 e 10 mg (Cd. Ph) e 1 e 100 mg (Hg)	
Fígado de pato	Cd Ph	Avaliação da distribuição dos elementos	64
selvagem	Cu, 10	Calibração com solução aquosa	01
servageni		Massa de amostra entre 0.18 e 6.5 mg	
Folha de tabaco	Cd, Co, Ni, Pb	Modificador químico: $PdCl_{a} + Pd(NO_{a})_{a}$	65
		Calibração com solução aquosa	
		Tamanho de partículas ~ $20 \ \mu m$	
Folha de tomate e chá	Cu	Avaliação dos métodos de calibração	66
		Calibração com material sólido sintético	
		Massa de amostra entre 0,1 e 1,5 mg	
Frutos do mar	Hg, Cd, Mn, Pb e Sn	Calibração com CRM	67
		Massa da amostra inferior a 1 mg	
Materiais biológicos	Al, Ag, Cu, Mn, Pb	Calibração com solução aquosa	68
em geral		Massa de amostra entre 1 e 4 mg	
Músculo de bacalhau	Pb, Cd, Hg, Fe, Zn	Verificação da micro homogeneidade	69
		Calibração com CRM	
M/ 1 1 '	DI	Massa de amostra entre 0,79 e 2,47 mg	70
Musculo bovino	Pb	Massa de amostra entre 1,0 e 10,0 mg	70
Musculo equilio	Ca	Massa da amostra antra 0.1 a 5.0 mg	/1
Músculo de pato	Ph	Calibração com solução aguosa	72
selvagem	10	Modificador químico: NH H PO	12
servageni		Massa de amostra entre $0.04 \text{ e} 5.0 \text{ mg}$	
Peixe (bacalhau)	Cd	Investigação da calibração	73
		Calibração com CRM	
		Massa de amostra entre 0,02 e 0,12 mg	
Pena de ave	Pb, Cd	Avaliação da distribuição dos elementos	74
		Massa de amostra entre 0,050 e 1,000 mg	
Planta	Cr, Mn	Calibração com solução aquosa	52
		Massa de amostra entre 0,2 e 4,0 mg	
Rim de ave	Cd, Pb, Hg	Avaliação da distribuição dos elementos	75
		Calibração com solução aquosa e com CRM	
D' 1 '	a . b	Massa de amostra entre 0,039 e 0,090 mg	-
Kim bovino	Cd, Pb	Avaliação da distribuição dos elementos	76
		Calibração com solução aquosa	
Vegetais	Cd Cu Ni Dh	Avaliação da homogeneidade	77
vegetais	Cu, Cu, INI, FU	Calibração com solução aquosa	11
		Massa de amostra entre 0.1 e 2.0 mg	

Tabela	1.	continuação
--------	----	-------------

Amostra	Elementos	Comentários Tecido biológico e alimentos	Ref.
Vitamina B-12	Со	Massa de amostra entre 0,1 e 2,0 mg	78
Vitaminas	Mn	Calibração com solução aquosa e com CRM	79
		Massa de amostra entre 0,05 e 0,3 mg	
		Polímeros	
PET e PP	Р	Calibração com solução aquosa	16
		Modificador químico: 20 μ g Pd(NO ₂) ₂ + 20 μ g ácido ascórbico	
		Massa de amostra: 1,0 e 4,5 mg	
Plástico	Cd	Avaliação da homogeneidade	80
		Calibração com CRM	
		Massa de amostra entre 0,060 e 0,250 mg	
Polietileno		Avaliação da homogeneidade e certificação	81
		Massa de amostra entre 0,060 e 0,250 mg	
Poliamida	Si	Modificador químico: 20 μ g Pd(NO ₂), ou 1 μ g H ₂ PtCl ₆	82
		Calibração com solução aquosa	
		Massa de amostra entre 10 e 12 mg	
PVC	Sn	Modificador químico: $Pd(NO_3)_2$	83
		Calibração com solução aquosa	
PVC	Sb	Calibração com solução aquosa	84
		Massa de amostra entre 2,5 e 3,5 mg	

Tabela 2. Aplicação da SS ETAAS na análise de materiais inorgânicos

Amostra	Elementos	Comentários	Ref.
Barita	As, Cd, Cu, Cr,	Adição de 5 µL de HNO ₃ concentrado	85
	Ni, Pb e V	Calibração com solução aquosa	
		Massa de amostra entre 0,04 e 0,7 mg	
Carbeto de silício	Al, As, Ca, Cd, Co,	Tamanho de partículas inferiores a 20 µm	86
	Cr, Cu, Fe, K, Li,	Calibração com solução aquosa	
	Mg, Na, Ni e Pb	Massa de amostra ente 0,1 e 8 mg	
Cimento	Cd, Pb e Cr	Calibração com solução aquosa	87
		Sistema de correção de BG 2-D	
		Massa de amostra entre 0,020 e 0,400 mg	
Cobre	Ag	Calibração com Ag metálica	88
	C C	Massas de amostra entre 0,25 e 1,0 mg	
Filtros de ar	Cd	Os filtros foram cortados e moídos em moinho de titânio	89
(discos circulares)			
Fluoreto de cálcio e	Cu, Cd, Fe, Pb e Zn	Diluição das amostras com carbono de alta pureza	90
outras amostras		Calibração com solução aquosa	
contendo fluoretos		Tamanho das partículas entre 12 e 15 µm	
		Massas de amostra entre 0,04 e 1,4 mg	
Grafite de alta pureza	Al, As, Ca, Cd, Co,	Calibração com solução aquosa	91
•	Cr, Cu, Fe, K, Li,	Tamanho de partículas inferiores a 20 µm	
	Mg, Na, Ni e Pb	Massa de amostra ente 0,1 e 8 mg	
Liga de alumínio	Ga	Calibração com solução aquosa e com CRM	92
		Massa de amostra ente 0,05 e 5 mg	
Ligas metálicas com	Tl, Bi, Se e Te	Calibração com solução aquosa	93
alto teor de Ni			
Materiais cerâmicos	Cu, Ni, Pb e Zn	Calibração com solução aquosa	94
Materiais refratários	Ca, Fe, K, Mg,	Calibração com solução aquosa	95
de alta pureza	Mn, Na e Zn		
Óxido de alumínio	Co, Cr, Cu, Fe, K,	Calibração com solução aquosa	96
	Mg, Mn, Ni e Zn	Uso de metano como modificador químico	
		Tamanho de partículas inferiores a 5 µm	
Óxido de tântalo	Cu, Fe, Mn, Na e Zn	Calibração com solução aquosa	97
de alta pureza		Massa de amostra entre 0,4 e 40 mg	
Óxido de titânio,	Si	Calibração com solução aquosa	98
óxido de nióbio e		Modificador químico: $Pd(NO_3)_2 + Mg(NO_3)_2$	
óxido de zircônio			

Tabela 2. continuação

Amostra	Elementos	Comentários	Ref.
Óxido de zircônio	Cd, Co, Cr, Cu, Fe,	Calibração com solução aquosa	99
	Li, Mn, Ni e Zn	Tamanho de partícula inferior a 1 µm	
		Massa de amostra entre 0,5 e 40 mg	
Ouro	Si	Comparação dos resultados por suspensões em ICP-OES	100
		Massa de amostra entre 0,2 e 0,5 mg	
		Uso de N, para a remoção de água na etapa de secagem	
Pentóxido de nióbio	Al, Co, Cr, Cu, Fe, K,	Calibração com solução aquosa	101
	Mg, Mn, Na, Ni e Zn	Adição de metano para remoção da matriz	
Pó de Mo metálico e	Cu, K, Mg, Mn, Na e Zn	Comparação dos resultados por RNAA e GDMS	102
Silicato de molibdênio		Eliminação de molibdênio durante o programa de	
		aquecimento do forno de grafite	
Prata de alta pureza	Au, Pd e Pt	Calibração com solução aquosa e com material sólido "in house"	103
		Adição de 15 µL de HNO ₃ 25% v/v	
		Massa de amostra entre 0,1 e 0,5 mg	
Tântalo de alta pureza	Cu, Fe, K, Mg, Mn, Na e Zn	Calibração com solução aquosa	104
		Tamanho de partículas inferiores a 70 µm	
		Massa de amostra entre 0,1 e 8 mg	
Titânio de alta pureza	Al, Ca, Co, Cr, Cu, Fe, K,	Adição de C em pó	105
	Mg, Mn, Na, Ni, Pb, Sn e Zn	Adição de 5% v/v HNO ₃ e 2% v/v HF	
		Massa da amostra 0,2 e 5 mg	
Trióxido de tungstênio	Ca, Co, Cr, Cu, Fe,	Calibração com solução aquosa	106
e óxido de tungstênio azul	K, Mg, Na, Ni e Zn	Tamanho das partículas entre 0,5 e 2 μ m (WO ₃)	
		e 5 a 150 μm (WO _{3 x})	
Tungstênio de alta pureza	Ca, Co, Cr, Cu, Fe, K,	Adição de H, na etapa de pirólise	107
	Mg, Mn, Na, Ni e Zn	Calibração com solução aquosa	
		Massa de amostra entre 0,15 e 100 mg	

Tabela 3. Aplicação da SS ETAAS na análise de amostras ambien	tais
---	------

Amostra	Elementos	Comentários	Ref.
Água de rio e mar	Cr	Co-precipitação com complexo Pd/8-quinolinol/ácido tânico	108
0		Massas de amostra 0,1 e 1,5 mg	
Águas subterrâneas	Cu, Cd	Massa de amostra de aproximadamente 5 mg	109
Água do mar	As (III), As (V)	Análise após coprecipitação com APDC e Ni-PDC	110
Amostras ambientais	Cd, Cr, Ni (V)	Calibração com solução aquosa	111
(material particulado)		Modificadores químicos NH ₄ H ₂ PO ₄ , Mg(NO ₃) ₂	
		Uso de Triton X-100	
Amostras geológicas	As, Cd, Pb, Hg, Sb e Se	Massa da amostra entre 1 e 5 mg	112
(diferentes solos		Modificadores químicos H_3PO_4 , $Mg(NO_3)_2$, $Ni(NO_3)_2$	
e rochas)		Amostras diluídas com grafite para eliminar picos duplos ou	
		interferências causadas por amostras vítreas	
Amostras geológicas	Cd, Cr, Cu, Ni, Pb, Zn	Calibração com solução aquosa	113
		Avaliação da homogeneidade das amostras	
		Massa da amostra entre 0,05 e 1,5 mg	
Amostras geológicas	Hg	Massa de amostra de 30 e 400 mg	114
Ar atmosférico	Pb	Depósito de material particulado sobre a	115
		plataforma por um determinado tempo	
Carvão	Cd	Calibração com solução aquosa	116
		Modificador químico: 400 µg Ir	
		Massa de amostra entre 0,6 e 1,2 mg	
Carvão	Hg	Calibração com solução aquosa	47
		Modificador químico: Pd eletrodepositado	
		Tamanho de partículas < 50 μ m	
Carvão	Pb	Calibração com solução aquosa	117
		Massa de amostra entre 0,1 e 1,0 mg	
Carvão mineral	Cd, Cu e Pb	Calibração com solução aquosa	118
		Modificador químico: $Pd(NO_3)_2 + Mg(NO_3)_2 e Ru$	
Lodo	Cu, Pb	Calibração com solução aquosa	119
		Massa de amostra de 0,15 mg (Cu) e 2 mg (Pb)	

Tabela 3. continuação

Amostra	Elementos	Comentários	Ref.
Materiais ambientais	Hg	Calibração com solução aquosa	120
		Modificador químico permanente: Ir, Pd, Rh, Ru	
		Massa de amostra entre 0,035 e 0,32 mg	
Material particulado	Cd, Cr, Cu, Ni, Pb	Material particulado coletado em filtro	121
industrial		Filtro cortado em círculos de diâmetros de 1 mm e	
		analisados por SS ETAAS	
		Modificador químico: Pd(NO ₃) ₂	
		Calibração com solução aquosa	
Sedimento de rio	Cd, Pb e Cr	Massa de amostra 20 e 400 µg;	122
		Calibração com solução aquosa	
Sedimento de rio e	Tl	Tamanho de partículas inferiores a 50 µm	123
sedimento marinho		Calibração com solução aquosa	
Sedimentos, solo, rochas	Cu, Ni, Pb e Zn	Calibração com solução aquosa	124
Solo	Hg	Calibração com solução aquosa;	125
		Modificador químico: KMnO ₄	
Solo	Co, Zn	Calibração com solução aquosa;	126
		Massa de amostra entre 5 e 10 mg	

AGRADECIMENTOS

À Fundação de Amparo à Pesquisa do Estado de São Paulo pelo suporte financeiro e pelas bolsas concedidas à C. S. Nomura e C. S. Silva, e ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) pelo suporte financeiro e pela bolsa de produtividade concedida a P. V. Oliveira.

REFERÊNCIAS

- 1. Sulcek, Z.; Povondra, P.; *Methods of Decomposition in Inorganic Analysis*, 1st ed., CRC Press: Boca Raton, 1989.
- Anderson, R.; Sample Pretreatment and Separation, Chichester, John Wiley & Sons: New York, 1991.
- Kingston, H. M.; Haswell, S. J.; *Microwave-Enhanced Chemistry: Fundamentals, Sample Preparation*, 1st ed., American Chemical Society: Ohio, 1997.
- Welz, B.; Sperling, M.; Atomic Absorption Spectrometry Third, Completely Revised Edition, Wiley-VCH Verlag GmbH: Weinheim, 1999.
- Jackson, K. W.; Electrothermal atomization for analytical atomic spectrometry, John Willey & Sons: New York, 1999.
- Kurfüst, U.; Solid Sample Analysis, Springer-Verlag: Berlin-Heidelberg, 1998.
- 7. Bendicho, C.; de Loos-Vollebregt, M. T. C.; J. Anal. At. Spectrom. 1991, 6, 353.
- Vale, M. G. R.; Oleszczuk, N.; Santos, W. N. L.; Appl. Spectrosc. Rev. 2006, 41, 377.
- Cal-Prieto, M. J.; Felipe-Sotelo, M.; Carlosena, A.; Andrade, J. M.; Lopez-Mahia, P.; Muniategui, S.; Prada, D.; *Talanta* 2002, 56, 1.
- 10. Magalhães, C. E. C.; Arruda, M. A. Z.; Quim. Nova 1998, 21, 459.
- Belarra, M. A.; Resano, M.; Vanhaecke, F.; Moens, L.; *Trends Anal. Chem.* 2002, *21*, 828.
- 12. L' Vov, B. V.; Spectrochim. Acta, Part B 1984, 39, 149.
- 13. Massmann, H.; Spectrochim. Acta, Part B 1968, 23, 215.
- 14. Friese, K. C.; Krivan, V.; Spectrochim. Acta, Part B 1998, 53, 1069.
- Welz, B.; Becker-Ross, H.; Florek, S.; Heitmann, U.; High-Resolution Continuum Source AAS, Wiley-VCH Verlag GMbH: Weinheim, 2005.
- Resano, M.; Belarra, M. A.; Castillo, J. R.; Vanhaecke, F.; J. Anal. At. Spectrom. 2000, 15, 1383.
- 17. Lucker, E.; Schuierer, O.; Spectrochim. Acta, Part B 1996, 51, 201.
- 18. Uchino, E.; Jin, K.; Tsuzuki, T.; Inoue, K.; Analyst 1987, 112, 291.
- 19. Harrison, S. H.; LaFleur, P. D.; Anal. Chem. 1975, 47, 1685.
- 20. Yanan, C.; Fresenius J. Z. Anal. Chem. 1987, 326, 705.
- Nomura, C. S.; Silva, C. S.; Nogueira, A. R. A.; Oliveira, P. V.; Spectrochim. Acta, Part B 2005, 60, 673.
- 22. Zeisler, R.; Fresenius. J. Anal. Chem. 1998, 360, 376.
- 23. Iyengar, G. V.; Kasperek, K.; J. Radioanal. Nucl. Chem. 1977, 39, 301.
- 24. Koglin, D.; Backhaus, F.; Schladot, J. D.; Chemosphere 1997, 34, 2041.

- Santos, D.; Barbosa, F.; Tomazelli, A. C.; Krug, F. J.; Nóbrega, J. A.; Arruda, M. A. Z.; *Anal. Bioanal. Chem.* **2002**, *373*, 183.
- Santos, D.; Barbosa, F.; Souza, S. S.; Krug, F. J.; J. Anal. At. Spectrom. 2003, 18, 939.
- Lima, E. C.; Krug, F. J.; Ferreira, A. T.; Barbosa Junior, F.; J. Anal. At. Spectrom. 1997, 12, 375.
- 28. Fuller, C. W.; Hetton, R. C.; Preston, B.; Analyst 1981, 106, 913.
- 29. Fajgelj, A.; Zeisler, R.; Fresenius. J. Anal. Chem. 1998, 360, 442.
- Stoeppler, M.; Wolf, W. R.; Jenks, P. J., eds.; *Reference Materials for Chemical Analysis Certification, Avaiability, and Proper Usage*, 1st ed., Wiley-VCH Verlag GMbH: Weinheim, 2001.
- Grant, R.; Grant C.; Grant and Hackh's Chemical Dictionary, 5th ed., McGraw-Hill: Texas, 1987.
- Pauwels, J.; Hofmann, C.; Vandecasteele, C.; *Fresenius. J. Anal. Chem.* 1994, 348, 418.
- Rossbach, M.; Ostapczuck, P.; Emons, H.; Fresenius J. Anal. Chem. 1998, 360, 380.
- 34. Langmyhr, F. J.; Fresenius J. Anal. Chem. 1985, 322, 654.
- Belarra, M. A.; Crespo, C.; Martínez-Garbayo, M. P.; Castillo, J. R.; Spectrochim. Acta, Part B 1997, 52, 1855.
- 36. Takada, K.; Hirokawa, K.; Fresenius J. Anal. Chem. 1982, 312, 109.
- 37. Kurfürst, U.; Pure Appl. Chem. 1991, 63, 1205.
- 38. Nomura, C. S.; Oliveira, P. V.; Quim. Nova 2006, 29, 234.
- 39. ISO Guia 35; Certification of Reference Materials General and Statistical Principles, ISSO: Geneva, 1989.
- 40. Ingamells, C. O.; Switzer, P.; Talanta 1973, 20, 547.
- Kurfürst, U.; Pauwels, J.; Grobecker, K. H.; Stoeppler, M.; Muntau, H.; Fresenius J. Anal. Chem. 1993, 345, 112.
- 42. Berglund, M.; Baxter, D. C.; Spectrochim. Acta, Part B 1992, 47, E1567.
- 43. Gleisner, H.; Eichardt, K.; Welz, B.; Spectrochim. Acta, Part B 2003, 58, 1663.
- Resano, M.; Aramendía, M.; García-Ruiz, E.; Crespo, C.; Belarra M. A.; Anal. Chim. Acta 2006, 571, 142.
- Nomura, C. S.; *Tese de Doutorado* Universidade de São Paulo, Brasil, 2006.
- Borges, D. L. G.; Silva, A. F.; Welz, B.; Curtius, A. J.; Heitmann, U.; J. Anal. At. Spectrom. 2006, 21, 763.
- Maia, S. M.; Welz, B.; Ganzarolli, E.; Curtius, A. J.; Spectrochim. Acta, Part B 2002, 57, 473.
- 48. Coskun, N.; Akman, S.; Spectrochim. Acta, Part B 2005, 60, 415.
- Silva, A. F.; Lepri, F. G.; Borges, D. L. G.; Welz, B.; Curtius, A. J.; Heitmann, U.; J. Anal. At. Spectrom. 2006, 21, 1321.
- 50. Minami, H.; Zhang, Q.; Itoh, H.; Atsuya, I.; Microchem. J. 1994, 49, 126.
- Belarra, M. A.; Resano, M.; Castillo, J. R.; J. Anal. At. Spectrom. 1998, 13, 489.
- 52. Stupar, J.; Dolinsek, F.; Spectrochim. Acta, Part B 1996, 51, 665.
- 53. Koone, R. D.; Peters, C. A.; J. Anal. Toxicol. 1994, 18, 36.
- Strübel, G.; Rzepka-Glinder, V.; Grobecker, K. H.; Jarrar, K.; Fresenius J. Anal. Chem. 1990, 337, 316.
- Strübel, G.; Rzepka-Glinder, V.; Grobecker, K. H.; Fresenius J. Anal. Chem. 1987, 328, 382.

- Mohl, C.; Grobecker, K. H.; Stoeppler, M.; Fresenius J. Anal. Chem. 1987, 328, 413.
- Lücker, E.; Rosopulo, A.; Kreuzer, W.; *Fresenius J. Anal. Chem.* 1991, 340, 234.
- 58. Lücker, E.; Fresenius J. Anal. Chem. 1992, 343, 386.
- 59. Schauenburg, H.; Weigert, P.; Fresenius J. Anal. Chem. 1991, 342, 950.
- Chakrabarti, C. L.; Wan, C. C.; Li, W. C.; Spectrochim. Acta, Part B 1980, 35, 93.
- 61. Lucker, E.; Konig, H.; Gabriel, W.; Fresenius J. Anal. Chem. 1992, 342, 941.
- Lücker, E.; Meuthen, J.; Kreuzer, W.; Fresenius J. Anal. Chem. 1993, 346, 1068.
- 63. Lücker, E.; Appl. Spectrosc. 1997, 51, 1031.
- Lücker, E.; Gerbig, C.; Kreuzer, W.; Fresenius J. Anal. Chem. 1993, 346, 1062.
- 65. Dobrowolski, R.; Mierzwa, J.; Fresenius J. Anal. Chem. 1992, 344, 340.
- 66. Atsuya, I.; Akatsuka, K.; Itoh, K.; Fresenius J. Anal. Chem. 1990, 337, 294.
- 67. Detcheva, A.; Grobecker, K. H.; Spectrochim. Acta, Part B 2006, 61, 454.
- 68. Byrd, E. D.; Butcher, D. J.; Spectrosc. Lett. 1993, 26, 1613.
- Pauwels, J.; Kurfurst, U.; Grobecker, K. H.; Quevauviller, P.; Fresenius J. Anal. Chem. 1993, 345, 478.
- 70. Lücker, E; Thorius-Ehrler, S.; Fresenius J. Anal. Chem. 1993, 346, 1072.
- 71. Lücker, E.; J. Anal. At. Spectros 1999, 14, 583.
- 72. Lücker, E.; J. Anal. At. Spectrom. 1999, 14, 1731.
- Hofmann, C.; Vandercasteele, C.; Pauwels, J.; Fresenius J. Anal. Chem. 1992, 342, 936.
- Hahn, E.; Hahn, K.; Mohl, C.; Stoepler, M.; Fresenius J. Anal. Chem. 1990, 337, 306.
- 75. Lücker, E.; Fresenius J. Anal. Chem. 1997, 358, 848.
- Lücker, E.; Rosopulo, A.; Kreuzer, W.; Fresenius J. Anal. Chem. 1987, 328, 370.
- Bagschik, U.; Quack, D.; Stoeppler, M.; Fresenius J. Anal. Chem. 1990, 338, 386.
- 78. Akatsuka, K.; Atsuya, I.; Fresenius J. Anal. Chem. 1989, 335, 200.
- 79. Coskun, N.; Akman, S.; Talanta 2004, 64, 496.
- Pauwels, J.; Hofmann, C.; Grobecker, K.; *Fresenius J. Anal. Chem.* 1993, 345, 475.
- Pauwels, J.; Lambert, A.; De Biève, P.; Grobecker, K. H.; Bauspiess, C.; Fresenius J. Anal. Chem. 1994, 349, 409.
- Resano, M.; Aramendia, M.; Volynsky, A. B.; Belarra, M. A.; Spectrochim. Acta, Part B 2004, 59, 523.
- Belarra, M. A.; Resano, M.; Rodríguez, S.; Urchaga, J.; Spectrochim. Acta, Part B 1999, 54, 787.
- Belarra, M. A.; Belategui, I.; Lavilla, I.; Anzano, J. M.; Castillo, J. R.; *Talanta* 1998, 46, 1265.
- Nowka, R.; Marr, I. L.; Ansari, T. M.; Muller, H.; Fresenius J. Anal. Chem. 1999, 364, 533.
- 86. Scaffer, U.; Krivan, V.; Fresenius J. Anal. Chem. 2001, 371, 859.
- 87. Nowka, R.; Muller, H.; Fresenius J. Anal. Chem. 1997, 359, 132.
- Pauwels, J.; De Angelis, L.; Peetermans, F.; Ingelbrecht, C.; Fresenius J. Anal. Chem. 1990, 337, 290.
- Schothhorst, R. C.; Géron, H. M. A.; Spitsbergen, D.; Herber, R. F.; Fresenius J. Anal. Chem. 1987, 328, 393.
- Schron, W.; Detcheva, A.; Dressler, B.; Danzer, K.; *Fresenius J. Anal. Chem.* 1998, 361, 106.

- 91. Scaffer, U.; Krivan, V.; Fresenius J. Anal. Chem. 2001, 371, 859.
- 92. Awad, N. A.; Jasim, F.; Microchem. J. 1989, 40, 187.
- Irwin, R.; Mikkelsen, A.; Michel, R. G.; Dougherty, J. P.; Preli, F. R.; Spectrochim. Acta, Part B 1990, 45, 903.
- Schron, W.; Liebmann, A.; Nimmerfall, G.; Fresenius J. Anal. Chem. 2000, 366, 79.
- 95. Docekal, B.; Spectrochim. Acta, Part B, 1998, 53, 427.
- 96. Lucic, M.; Krivan, V.; J. Anal. At. Spectrom. 1998, 13, 1133.
- Friese, K. C.; Krivan, V.; Schuierer, O.; Spectrochim. Acta, Part B 1996, 51, 1223.
- 98. Dong, H.; Krivan, V.; Spectrochim. Acta, Part B 2001, 56, 1645.
- 99. Krivan, V.; Janickova, P.; Anal. Bioanal. Chem. 2005, 382, 1949.
- 100. Brown, G. N.; Styris, D. L.; J. Anal. At. Spectrom. 1995, 10, 527.
- 101. Huang, M. D.; Krivan, V.; Fresenius J. Anal. Chem. 2000, 368, 227.
- 102. Docekal, B.; Krivan, V.; Spectrochim. Acta, Part B 1995, 50, 517.
- 103. Hinds, M. W.; Spectrochim. Acta, Part B 1993, 48, 435.
- 104. Friese, K. C.; Krivan, V.; Spectrochim. Acta, Part B 1998, 53, 1069.
- 105. Krivan, V.; Dong, H. M.; Anal. Chem. 1998, 70, 5312.
- 106. Hornung, M.; Krivan, V.; Spectrochim. Acta, Part B 1999, 54, 1177.
- 107. Hornung, M.; Krivan, V.; Anal. Chem. 1998, 70, 3444.
- 108. Zhang, Q.; Minami, H.; Inoue, S.; Atsuya, I.; Anal. Chim. Acta 1999, 401, 277.
- 109. Freedman, Y. E.; Ronen, D.; Long, G. L.; *Environ. Sci. Technol.* 1996, 30, 2270.
- 110. Zhang, Q.; Minami, H.; Inoue, S.; Atsuya, I.; Anal. Chim. Acta 2004, 508, 99.
- 111. Schlemmer, G.; Welz, B.; Fresenius J. Anal. Chem. 1987, 328, 405.
- 112. Dekersabiec, A. M.; Benedetti, M. F.; Fresenius J. Anal. Chem. 1987, 328, 342.
- 113. Nimmerfall, G.; Schron, W.; Fresenius J. Anal. Chem. 2001, 370, 760.
- 114. Hall, G. E. M.; Pelchat, P.; Analyst 1997, 122, 921.
- 115. Low, P. S.; Hsu, G. J.; Fresenius J. Anal. Chem. 1990, 337, 299.
- 116. Silva, A. F.; Borges, D. L. G.; Lepri, F. G.; Welz, B.; Curtius, A. J.; Heitmann, U.; Anal. Bioanal. Chem. 2005, 382, 1835.
- 117. Borges, D. L. G.; Silva, A. F.; Curtius, A. J.; Welz, B.; Heitmann, U.; *Microchim. Acta* **2006**, *154*, 101.
- 118. Vale, M. G. R.; Silva, M. M.; Welz, B.; Lima, E. C.; Spectrochim. Acta. Part B 2001, 54, 1859.
- 119. Belarra, M. A.; Crespo, C.; Resano, M.; Castillo, J. R.; Spectrochim. Acta, Part B 2000, 55, 865.
- 120. Silva, A. F.; Welz, B.; Curtius, A. J.; Spectrochim. Acta, Part B 2002, 57, 2031.
- 121. Almeida, A. A.; Lima, J. L. F. C.; At. Spectrosc. 1995, 16, 261.
- 122. Sahuquillo, A.; Rauret, G.; Rehnert, A.; Muntau, H.; Anal. Chim. Acta 2003, 476, 15.
- 123. Vale, M. G. R.; Silva, M. M.; Welz, B.; Nowka, R.; J. Anal. At. Spectrom. 2002, 17, 38.
- 124. Schron, W.; Liebmann, A.; Nimmerfall, G.; Fresenius J. Anal. Chem. 2000, 366, 79.
- 125. Resano, M.; García-Ruiz, E.; Aramendia, M.; Belarra, M. A.; J. Anal. At. Spectrom. 2005, 20, 1374.
- 126. Belarra, M. A.; Crespo, C.; Martinez-Gasbayo, M. P.; Resano, M.; Spectrochim. Acta, Part B 2003, 58, 1847.