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In this work we report on a comparison of some theoretical models usually used to fit the dependence on
temperature of the fundamental energy gap of semiconductor materials. We used in our investigations the theo-
retical models of Viña, Pässler-p and Pässler-ρ to fit several sets of experimental data, available in the literature
for the energy gap of GaAs in the temperature range from 12 to 974 K. Performing several fittings for different
values of the upper limit of the analyzed temperature range (Tmax), we were able to follow in a systematic way
the evolution of the fitting parameters up to the limit of high temperatures and make a comparison between the
zero-point values obtained from the different models by extrapolating the linear dependence of the gaps at high
T to T = 0 K and that determined by the dependence of the gap on isotope mass. Using experimental data
measured by absorption spectroscopy, we observed the non-linear behavior of Eg(T) of GaAs for T > ΘD.
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I. INTRODUCTION

The dependence on temperature of the energy gap, Eg(T),
is a very important characteristic of semiconductor materials
and heterostructures and of great scientific and technological
interest. For a large number of semiconductor materials, the
energy gap decreases with the increase of the temperature and
shows different behaviors depending of the analyzed range of
temperature. At low (T < 0.02 ΘD, where ΘD is the Debye
temperature) and intermediary temperatures (T = ΘD) the de-
crease of Eg(T) is non-linear. For high temperatures (T >>
ΘD) the energy gap decreases linearly with temperature [1-3].
The linear decrease of Eg(T) occurs due to the contribution of
two distinct mechanisms: the electron-phonon interaction and
the thermal expansion of the lattice [4-7]. In general, the con-
tribution of the thermal expansion for the change of Eg(T) is
small as compared to the contribution of the electron-phonon
interaction [7, 8]. By this reason, several models proposed in
the literature just take into account the electron-phonon inter-
action as a first approximation to the behavior of the Eg(T )
[9]. In the case of GaAs, the electron-phonon interactions
which lead to a decrease of the energy gap with the tempera-
ture are associated to the longitudinal-acoustic (LA) and the
longitudinal-optical (LO) phonons, being the dominant con-
tribution due to the LA phonons [9-11].

Among several models usually used to describe Eg(T), we
find in the literature the distinguished models of Viña [12]
(1984), Pässler-p [9] and Pässler-ρ [13] (1997). Essentially,
these models differ among themselves with respect to the be-
havior of Eg(T) at low temperatures. The model of Viña [12]
shows a plateau behavior for T < 50 K, making clear the ab-
sence of any dependence of the energy gap with temperature.
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The Pässler-ρ [13] model shows a quadratic dependence of
Eg(T ) [14]. The Pässler-p model shows a Tp [1] dependence
for T < 0.02 ΘD with p = 4. For several semiconductor ma-
terials Eg(T) still shows a Tp-dependence with the increase of
temperature, but for values of p in the range from 2 up to 3.3.
In the limit of high temperatures (T >> ΘD), all the models
describe a linear asymptotic behavior of the energy gap with
temperature given by[13]:

Eg(T ) = Eg(0)−αi

(
T − Θi

2

)
(1)

where αi =−dEgi(T )/dT )T → ∞ = αB, αp or αρ· Θi = ΘB,
Θp or Θρ are empirical parameters related to the effective en-
ergy of the phonons in the temperature scale (Θe f f = 〈ε〉/kB))
associated to the models of Viña, Pässler-p and Pässler-ρ re-
spectively.

Extrapolating the linear dependence of Eg(T ) from high
temperatures back to T = 0 K, it is possible to estimate
the renormalization of the energy gap at zero temperature,
i.e., the zero-point energy ∆E(0) defined as ∆E(0) = E(0)−
Eg(0), where the non-renormalized energy gap, E(0), is the
energy of the crystalline system with immobile atoms at theirs
equilibrium positions, and Eg(0) is the renormalized gap at
T = 0 K. For the different models, ∆E(0) can be written as:

∆E(0) = αi
Θi

2
≡ ai (2)

with αi and Θi as defined in Eq. (1). It is worthwhile to com-
ment that, according to D. Rönnow et al [15], the renormal-
ization of the gap is highly dependent on the model used to fit
the temperature dependence of the energy gap. Still accord-
ing to the same authors, the value of ∆E(0) estimated from
the temperature dependence of Eg(T ) should be used as a cri-
terion for the applicability of the different proposed models
[15]. Results from the literature show that the values of ∆E(0)
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for GaAs and others semiconductor materials seem to be de-
pendent on the upper limit of the range of temperature used
to perform the fits [16].

Due to the possibility to produce semiconductor materials
with precise isotopic composition, nowadays it is possible to
analyze the material properties as a function of the variation
of the isotopic masses. At low temperatures, the change of the
energy gap with the isotopic mass is proportional to M−1/2,
where M is the mean effective masses of the constituent atoms
of the material [17]. In the high temperature range, the energy
gap does not depend on M. For GaAs, due to its similarity
with Ge and due to the fact that As has only one stable isotope,
the effect of the substitution of the 69Ga and 71Ga isotopes on
the energy gap can be described by [18]:

∂Eg

∂MGa
=

1
2

(
1

2MGe

)
∆E(0) (3)

where MGe = 70 amu and ∆E(0) = 53 meV. N. Garro et al
[19] obtained ∂Eg/∂MGa = 0.39 (0.06) meV/amu for the di-
rect energy gap of GaAs using reflectivity measurements at
10 K, and 0.43 meV/amu performing calculations with the
pseudopotential method. If we use the experimental value
∂Eg/∂MGa = 0.39 meV/amu in Eq. (3), a value of ∆E(0) =
110 meV is obtained for GaAs. As a matter of fact, the values
of ∆E(0) that are found in the literature for GaAs from esti-
mates of isotopic substitution, linear extrapolation, and theo-
retical calculations are quite different [16,18,20]. According
to our understanding, one important factor that must be taken
into account for the analysis of these contrasting results is the
lack of systematic experimental date for T ≥ΘD, which hides
a possible non-linear behavior of Eg(T ) in the high tempera-
ture range. With respect to the issue, we notice that several
estimates of ∆E(0) obtained by extrapolation procedures of
the Eg(T ) curve at T = 0 K are obtained with parameters
determined from fits in small domains of temperature, with
the upper limit of the temperature interval smaller than the
Debye temperature [16]. According to Pässler [3], a precise
description of Eg(T ) and a reliable extrapolation procedure
from high to very low temperatures can only be obtained if
the experimental data set is measured up to or higher than the
Debye temperature.

However, the Debye temperature of several materials is rel-
atively high (for instance, ΘD(C) = 1880 K [3], ΘD(AlN)=
1020 K and ΘD (GaN)= 870 K [21]), and there is a lack of ex-
perimental data for several materials at temperatures around
ΘD. Experimental data from Panish [22], Shen [23] and
Lautenschlager [11], usually used in the literature to describe
Eg(T ) at high temperatures [3, 24], covers a wide temperature
range but have a reduced number of data points with a large
numerical dispersion, which does not allow us to infer about
the non-linear behavior of Eg(T ). In a relatively old work,
Bludau et al [25] analyzing the dependence on temperature of
the indirect energy gap of Si have mentioned that it seems that
the predicted linearity of Eg(T ) is not a precise description of
the behavior of energy gap at high temperatures. Cardona and
Thewalt [16] also make remarks about the accuracy of the re-
sults deriving from perturbation theory that keeps only up to
the second order terms of the atomic displacements (propor-
tional to < u2 >) in the Hamiltonians used to describe the
electron-phonon interactions. At high temperatures < u2 >
is proportional to T, but the inclusion of higher order terms

which are not considered in the linear approximation could
lead to larger values of the exponents of T. In this way, pro-
cedures based on the linear approximation together with ex-
trapolation from high to low temperatures or only the high
temperature behavior of Eg(T ) can lead to incorrect values of
the physical quantities as ∆E(0) or erroneous calculations of
the thermal expansion contribution and the electron-phonon
interaction to the change of the energy gap with temperature.

In the present work we analyzed the applicability of differ-
ent theoretical models to describe to dependence of the fun-
damental energy gap with temperature in the range from 12
up to 957 K/974 K. To analyze the region for temperature T
> 300 K we used experimental data from several researchers
[11, 22, 23, 26, 27]. Performing several fittings for different
values of the upper limit of the analyzed temperature range
(Tmax), we were able to follow in a systematic way the evolu-
tion of the fitting parameters up to the limit of high tempera-
tures and discuss the origin of the contrasting results related
to the renormalization of the zero-point energy. Moreover,
based on the experimental data of Johnson et al [27] we were
able to confirm evidences of non-linear behavior of the GaAs
energy gap for T > 300 K.

II. THEORETICAL DETAILS

In this section, we present a short description of the theo-
retical expressions used to perform the fits of Eg(T ) versus T.
The expression proposed by Viña et al [12] is given by:

Eg(T ) = EB−aB

[
1+

2
exp
(
ΘB
/

T
)
−1

]
(4)

where Eg(T = 0) = EB− aB is the energy gap at T = 0 K;
aB represents the strength of the electron-phonon interac-
tion; ΘB = ~ω/kB is a characteristic temperature represent-
ing the effective mean energy of the phonons (Θ ≡ 〈ε〉/kB)
on the temperature scale, which coincides with the phonon
temperature in the single oscillator model, but does not have
any correspondence with any peak in the phonon spectra;
αB = 2aB/ΘB is the slope of the curve Eg(T ) versus T as
T →∞, i.e., αB ≡−(dEg(T )/dT )T→∞. The material-specific
degree of phonon dispersion (dispersion coefficient), given by
∆ = [(< ε2 >−< ε >2)/ < ε >2]1/2, is zero [28] in this case.

The expression proposed by Pässler [9] in the p-type model
is given by:

Eg(T ) = Egp(0)− αpΘp

2

[
p

√
1+
(

2T
Θp

)p

−1

]
(5)

where Egp(0) is the energy gap at T = 0 K; αp is the slope
of Eg(T ) as T → ∞ i.e., αp ≡ (dEg(T )/dT )T→∞; Θp is an
empirical parameter associated to the effective mean energy
of the phonons in the temperature scale Θ = 〈ε〉/kB and is
given by the expression Θ = Θp [1.152 +0.145 ln(p – 1.7)],
with a dispersion coefficient given by ∆ =(p2−1)−1/2, where
p is an exponent of the spectral function.

The other model used in our work is the ρ-type Pässler
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model [13]:

Eg(T ) = Egρ(0)− αρΘρ

2
ρ

2


 4

√
1+

π2

6

(
4T
Θρ

)2

+
(

4T
Θρ

)4

−1




+(1−ρ)
(

coth
(

Θρ

2T

)
−1
)]

(6)

where Egρ(0) = Eg(T = 0) is the energy gap at T= 0 K; αρ
is the slope of Eg(T ) as T → ∞, αρ ≡ −(dEg(T )/dT )T→∞;
Θρ is an empirical parameter related to the cutoff frequency
ω0(Θρ = ~ω0/kB) and to the effective mean energy of the
phonons in the temperature scale and obeys the relation
Θr = Θρ(1− 0.5ρ), with a dispersion coefficient given by
∆ = (2−ρ)−1[ρ(4−3ρ)/3]1/2. The ρ-parameter controls the
relative weight of each type of interaction: ρ→ 1 represents
the prevalence of the acoustic-phonon interaction, and ρ→ 0
represents the prevalence of interaction with optical phonons.

In order to determine the fit parameters related to each the-
oretical model, we used a chi-squared procedure. The cri-
terion used to obtain the best-fit parameters was calculated
according to the expression:

S2 =
(

1
n−m

) n

∑
j=1

(
Eexp

g j −Ead j
g j

)2
(7)

where Eexp
g j (Ead j

g j ) indicates the experimental (adjusted) val-
ues of the energy gap of the ith-data point. The factor (n – m)
is the number of degrees of freedom left after fitting n data
points with m adjustable parameters in the fitting function.

III. EXPERIMENTAL DETAILS

The experimental data of the temperature dependence of
the energy gap used in the present work were redigitalized
from the following published data obtained with different
characterization techniques: photoluminescence data from
Grilli et al [26], in the range from 12 K up to 280 K / 33
data-points; Lautenschlager et al [11] (ellipsometry), from ∼
297 K to 510 K / 9 points; Shen et al [23] (absorption) from∼
300 K to 881 K / 6 points; Panish et al [22] (absorption), from
294 K to 974 / 5 points, and Johnson et al [27] (absorption)
from 330 K to 957 K / 23 points. Details of sample prepa-
ration and experimental procedure can be found in the cited
references.

In order to perform a systematic analysis of the experimen-
tal results, we grouped the experimental data in two groups: I)
data from 12 K to 280 K from Grilli et al [26], data from 294
K to 974 K from Lautenschlager et al [11], Shen et al [23],
and Panish et al [22]; II) data from 12 K to 280 K from Grilli
et al [26] and data from 330 K to 957 K from Johnson et al
[27]. The experimental data from group I for T > 294 K is a
very consistent set of data which allowed us to perform accu-
rate fittings for temperatures above the room temperature but
with a large dispersion in that whole temperatures range (see
Fig. 1). A still more consistent data set analyzed by us con-
sists of the absorption data measured in the Urbach-tail region

by Johnson et al [27] (group II). So, according to our strategy,
for the high temperature region we have one set of data with
20 data-points (group I) and another set with 23 data-points
(group II) with almost equal upper limit temperatures (974
K / 957 K), which enable us to perform a systematic anal-
ysis of the applicability of the different models to describe
Eg(T ). From these experimental data we were also able to
compare the results obtained from different data sets and to
check anomalous behaviors of the obtained fit parameters.
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with 20 data-points (group I) and another set with 23 data-
points (group II) with almost equal upper limit temperatures
(974K/957K), which enable us to perform a systematic anal-
ysis of the applicability of the different models to describe
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compare the results obtained from different data sets and to
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FIG. 1: Experimental data of Eg(T) in the range from ∼294 up to
∼974 K from Lautenchlager et al [11] (empty circle), Shen et al [23]
(empty triangle), Panish et al [22] (empty square) and Johnson et al
[27] (full circle) and experimental data from Grilli et al [26] in the
range 12 < T < 280 K. The inset shows the fitted curves to the exper-
imental data from Grilli et al [26] (empty strar), at low temperatures,
according to the Vinã, Pässler-p and Pässler-ρ models.Experimental
data of Eg(T) in the range from ∼294 up to ∼974 K from Laut-
enchlager et al [11] (empty circle), Shen et al [23] (empty triangle),
Panish et al [22] (empty square) and Johnson et al [27] (full circle)
and experimental data from Grilli et al [26] in the range 12 < T <
280 K. The inset shows the fitted curves to the experimental data
from Grilli et al [26] (empty strar), at low temperatures, according
to the Vinã, Pässler-p and Pässler-ρ models.

IV. RESULTS AND DISCUSSIONS

In Fig. 1 we show the experimental data for Eg(T) from
the groups I and II in the temperature range ∼ 12 < T <
974(957)K, and the fitted curves using the different models
considered in the present work. The inset of this figure shows
the redigitalized data of Eg(T ) in the range ∼ 12K < T <∼
100K together with the fitted curves considering the whole
analyzed domain of temperatures. We can observe in the re-
gion of low temperature the same pattern already observed in
the literature [13, 29] with the Viña model showing a plateau
behavior for T = 50K and values of S2 larger than that ones
obtained with the other two models. The fit with the Pässler-ρ
model leads to an approximately quadratic behavior of Eg(T )
with a value of S2 comparable to the one obtained with the
Pässler-ρ model. The values of the parameters obtained from
the fits according to the different models are shown in Ta-
ble I. The extrapolations to high temperatures (T > 280K) for
Eg(T) (see Fig. 1) and for the adjusted parameters (see Figs.
2-4) were performed using the data of Grilli et at [26] in the

FIG. 1: Experimental data of Eg(T ) in the range from ∼294 up to
∼974 K from Lautenchlager et al [11] (empty circle), Shen et al
[23] (empty triangle), Panish et al [22] (empty square) and Johnson
et al [27] (full circle) and experimental data from Grilli et al [26]
in the range 12 < T < 280 K. The inset shows the fitted curves
to the experimental data from Grilli et al [26] (empty strar), at low
temperatures, according to the Vinã, Pässler-p and Pässler-ρ models.

IV. RESULTS AND DISCUSSIONS

In Fig. 1 we show the experimental data for Eg(T ) from the
groups I and II in the temperature range∼ 12 < T < 974(957)
K, and the fitted curves using the different models considered
in the present work. The inset of this figure shows the redigi-
talized data of Eg(T ) in the range ∼ 12 K < T <∼ 100 K to-
gether with the fitted curves considering the whole analyzed
domain of temperatures. We can observe in the region of low
temperature the same pattern already observed in the litera-
ture [13, 29] with the Viña model showing a plateau behavior
for T = 50 K and values of S2 larger than that ones obtained
with the other two models. The fit with the Pässler-ρ model
leads to an approximately quadratic behavior of Eg(T ) with a
value of S2 comparable to the one obtained with the Pässler-ρ
model. The values of the parameters obtained from the fits
according to the different models are shown in Table I. The
extrapolations to high temperatures (T > 280 K) for Eg(T )
(see Fig. 1) and for the adjusted parameters (see Figs. 2-4)
were performed using the data of Grilli et at [26] in the tem-
perature range 12 K < T < 280 K. As can be observed, the
curves obtained by extrapolation are located above the exper-
imental points. This fact confirms that erroneous conclusions
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about the behavior of Eg(T ) at high T are inferred if the ex-
perimental data are within a small temperature range. The
fits obtained with the different models in the full temperature
range coincide in the high temperature region for both groups
of experimental data.

We see in Fig. 1 that the experimental values of Eg(T )
obtained by Johnson et al [27] are located, in general, be-
low the data from group I. This fact is well evident when we
observe the curves fitted to the different sets of experimental
data. A possible explanation for this difference can be related
to the different procedure used by Johnson et al [27] to ob-
tain Eg(T ), which is based on observation of the Urbach tail.
Another possibility which should also be considered is that
the data of Johnson et al [27] were obtained with the same
technique, the same procedure, the same sample in the whole
domain of analyzed temperatures, which can provide a more
systematic behavior for Eg(T ), with a smaller dispersion, dif-
ferently from the others data sets.
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FIG. 2: Temperature range dependence of the fitting parameters ob-
tained according to the Viña model [12] for the experimental data
from group I (full star) and II (empty square). The dashed line is
obtained by extrapolation of the parameters values determined from
fits to the experimental data of Grilli et al [26]. The parameters EgB
and αB are calculated from the relations EgB = EB - aB and αB =
2aB/ΘB, respectively. The error bars are calculated by method of
error propagation.

In Figs 2(b)-(d) we show the parameters EB, ΘB, and aB
obtained with the model of Viña [12]. In order to com-
pare these data with the others obtained by us, we also show
EgB(0) = EB− aB (Fig. 2(a)) and αB = 2aB/ΘB (Fig. 2(e)).
The symbols represent the values of the parameters obtained
in different ranges of temperature for different values of Tmax.
The values of EgB(0), determined for different values of Tmax,
are almost constant in the whole temperature range for the dif-
ferent sets of experimental data. The parameters EB, ΘB, and
aB obtained from group I increase in the range 12 K < T <
280 K showing a tendency to saturate for T > 350 K. The pa-
rameters EB, ΘB and aB from group II show a slight tendency

to increase with the increase of Tmax. The values for ∆E(0)
obtained from the product αB = 2aB/ΘB using Tmax ∼ 3ΘD
(ΘD = 360 K for GaAs) are ∼ 64.1 meV and ∼ 73 meV for
the two experimental data groups I and II respectively (see Ta-
ble I). The values of the parameters determined from extrap-
olations to high temperatures stay constant with the increase
of Tmax and the obtained curves pass well below the experi-
mental points. Therefore, we verify that to obtain consistent
extrapolations using the Viña model it is necessary to have
experimental data beyond the Debye temperature. The pa-
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FIG. 3: Temperature range dependence of the fitting parameters ob-
tained according to the Pässler-p [9] for the experimental data from
group I (full star) and II (empty square).The dashed line is obtained
by extrapolation of the parameters values determined from fits to the
experimental data of Grilli et al [26]. The parameter ap is calculated
by ap = αpΘp/2. The error bars are calculated by method of error
propagation.

rameters obtained with the Pässler-p model [9] are presented
in Figs. 3(a)-(d). The parameter ap defined as ap = αpΘp/2
is shown in Fig. 3(c). The values of the gap parameter Egp(0)
(Fig. 3(a)) has practically a constant value with Tmax. The
parameters Θp, αp and ap show a similar behavior with Tmax
(compare the shape of the curves in Figs. 3(b)-(d)). Concern-
ing the results from group-II, we verified a step increase of
Θp, αp and ap parameters in the range 280 K < T < 350 K
and a small decrease with further increase of the temperature.
The parameter p has values in the range from 2.4 up to 2.7 in
the whole analyzed temperature range, which gives interme-
diary dispersion coefficients (0.3 < 0.4 (p = 2.7) < ∆ < 0.54
(p = 2.4) < 0.577) and leads to a small difference among the
results from the different groups of data in the temperature
range delimited by Tmax (see Table I). In general, the standard
behavior of the parameters determined from the different data
sets by the Pässler–p model is very similar. The curves ob-
tained with the parameters determined from the extrapolation
procedure are very close to the experimental data (see Fig. 3).

Based on our findings we can say that the extrapolations us-
ing the Pässler-p model provide results more consistent with
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the experimental data for T > 280 K. We also verified that the
curves determined by extrapolation for T > ΘD (ΘD = 360 K
for GaAs) are superimposed to the experimental data in this
temperature range. Larger errors in the range 280 K < T <
500 K are probably due to the dispersion of the group-I ex-
perimental data. The parameter ap tends to ∼ 58 meV (∼ 68
meV corrected) and to 70 meV (84 meV corrected) for the
two experimental data group I and II respectively (see Table
I).
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FIG. 4: Temperature range dependence of the fitting parameters ob-
tained according to the Pässler-ρ [13] for the experimental data from
group I (full star) and II (empty square).The dashed line is obtained
by extrapolation of the parameters values determined from fits to the
experimental data of Grilli et al [26].The parameters Θr and aρ are
calculated by the equations Θr = Θρ(1-0.5ρ) and aρ= αρΘr/2. The
parameter ap is calculated by ap = αp Θp/2. The error bars are
calculated by method of error propagation.

In Figs. 4 (a)-(e) we show the parameters obtained from
the Pässler-ρ model [13]. We see in Fig. 4(a) that the values
Egρ(0) are practically constant with Tmax. The parameters Θr,
aρ and αρ show similar trends with the increase of the tem-
perature. The results of group II show an abrupt increase in
the range 280 K < T < 350 K. The parameter Θr from group I
show large error bars and oscillatory behavior around 500 K.
Moreover, the tendency of all the parameters with the increase
of the temperature is practically the same and does not depend
on Tmax. The ρ-parameter has values in the range from 0.4 up
to 0.8 for groups I and II. However, its value is more concen-
trated in the region 0.3 < ρ < 0.6, which leads to an interme-
diary dispersion in the range 0.328 < ∆ < 0.574, in agreement
with the criterion of applicability of the Pässler model [29].
Similarly to the results of the Pässler-p model, the results ob-
tained with Pässler-ρ are also in excellent agreement with the
experimental data and are more consistent when compared to
the ones obtained with the Viña model. The parameter aρ
tends to ∼ 65 meV and ∼ 76 meV for the two experimental
data group I and II respectively (see Table I). In general, the
fitting parameters are strongly dependent of the range of tem-
perature chose to perform the fits, i.e., the chosen value of
Tmax, mainly in the range 12 K < T < 450 K for the case of

 

FIG. 5: Temperature dependence of the GaAs energy gap in the tem-
perature range from∼ 294 up to∼974 K. The variation is calculated
by the change of Eg(T ) at two consecutive temperatures divided by
the respective temperature interval which that change occurred. The
temperature mean value in each interval is plotted for each tempera-
ture interval.

the Viña model, and in the range 12 K < T < 300 K for the
Pässler-p and Pässler-ρ models. Therefore, the extrapolations
of the fitted curves for Eg(T ) from the low temperature exper-
imental data to the high temperature regions lead to parame-
ters with very consistent values for T > 450 K for the Viña
model, and T > 360 K for the Pässler-p and Pässler-ρ models.
Considering Tmax = 974 K or 957 K, the Pässler-ρ model pro-
vides parameters with larger error bars. In order to correlate
our findings with the GaAs density of phonons we must take
into account a correction for the value of Θp according to the
expression Θe f f ≡< ε/kB >= Θp [1.152 +0.145ln(p– 1.7)]
[3]. This correction increases about 10% to 20% the value of
Θp if we consider the range 280 K < T < 957 / 974 K. Con-
sidering the fits performed for Tmax (957/974 K) the changes
of the values of kBΘi (i = B, p effective, ρ) due to the inclusion
of the corrections vary from 22.2 meV (ΘB from group I) up
to 27.8 meV (Θe f f p from group II), as can be seen in Table I.
The values of Θi from the two data sets are, therefore, below
the cut-off energy of the LA-phonon branch (εLA = 28 meV).
This result indicates that the decrease of the energy gap with
temperature is mainly due to the interaction of electrons with
LA phonons.

Complementary analysis, performed by expanding the
range of temperature up to T ∼ 1179 K and the models of
Viña and Pässler-ρ along with the data from Beaudoin et al
[30] which were obtained with a similar experimental proce-
dure used by Johnson et al [27], show that the value of the
ai parameter does not show an enlargement tendency with the
increase the expansion of the temperature range, becoming
stabilized around ∼ 75 meV (Viña) and ∼ 79 meV (Pässler-
ρ) [31]. The values obtained here are therefore different from
that founded in the literature obtained extrapolating the lin-
ear dependence of the gaps at high T to T = 0 K and that
determined by the dependence of the gap on isotope mass
[16,18,20]. As we mention before, we consider that the lack
of experimental data of Eg(T ) in the high-T range in the fit
models of Eg(T ) is one of the relevant factors to consider for
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Table I – Fitting parameters of Eg(T) and their respective incertitudes according to Viña (EgB(0), 
EB, ΘB, aB, αB) [12] , Pässler-p (Egp(0), Θp, ap, αp, p) [9] and Pässler-ρ (Egρ(0), Θr, aρ, αρ, ρ) [13] 
models for the temperature ranges 12 K < T < ~192 K, 12 K< T < 280 K, and 12 K < T < 974 K 
for the group I experimental data and in the range 12 K < T < 957 K  for group II. The last 
column shows the values of S2 (see Eq. 7). 

 a) Viña 

∆T 
EgB(0) 
(meV) 

EB 
(meV) 

ΘB 
(K) (meV) 

aB 
(meV) 

αB 
(meV/K) 

S2 

(10-4 meV2) 
I) 12-192 1519.1 ± 2.5 1566.1 ± 1.6 214.88 (18.5) ± 4.36 47.0 ± 1.6 0.43 ± 1.73x10-2 3.57x10-4 

I) 12-280 1518.4 ± 2.0 1570.4 ± 1.2  227.97 (19.6) ± 3.57 52.0 ± 1.3 0.46 ± 1.35 x10-2 23.8x10-4 

I) 12-974 1518.0 ± 5.3 1582.1 ± 2.8 258.14 (22.2) ± 12.0 64.1 ± 3.4 0.50 ± 3.50 x10-2 19.2 x10-2 
II) 12-957 1517.6 ± 1.8 1590.1 ± 0.9 278.31 (23.9) ± 3.75 72.5 ± 1.1 0.52 ± 1.05 x10-2 1.83 x10-2 

 
b) Pässler-p 

∆T 
Egp(0) 
(meV) 

Θp 
(K) (meV) 

ap 
(meV) 

αp 
(meV/K)    p S2 

(10-4 meV2) 
I) 12-192 1519.2 ± 0.07 215.43 (18.6) ± 12.68 50.6 ± 3.4 0.47 ± 0.0152 2.66 ± 0.086 4.69x10-4 

I) 12-280 1519.1 ± 0.09 219.44 (18.9) ± 5.99 51.6 ± 5.72 0.47 ± 0.0054 2.62 ± 0.06 5.17x10-4 

I) 12-974 1519.0 ± 1.42 236.90 (20.4) ± 18.0 58.1 ± 9.01 0.49 ± 0.0069 2.6 ± 0.37 19.2 x10-2 
II) 12-957 1519.2 ± 0.34 268.25 (23.1) ± 5.63 69.7 ± 1.50 0.52 ± 0.00169 2.40 ± 0.07 1.07 x10-2 

∆T  Θeff
p 

(K) (meV) 
aeff

p 
(meV) 

      

I) 12-192  249.45 (21.5) ± 14.53 58.6 ± 3.9    

I) 12-280  255.45 (22.2) ± 6.82 60.0 ± 1.80    

I) 12-974  276.53 (23.8) ± 20.55 67.8 ± 10.8    
II) 12-957  322.90 (27.8) ± 6.27 84.0 ± 1.7    
 
c) Pässler-ρ 

∆T Egρ(0) 
(meV) 

Θr 
(K) (meV) 

aρ 

(meV) 

αρ 
(meV/K)    ρ 

S2 

(10-4 meV2) 
I) 12-192 1519.3 ± 0.07 251.01(21.6) ± 13.49 60.2 ± 3.8 0.48 ± 0.087 0.38 ± 0.04 4.61x10-4 

I) 12-280 1519.3 ± 0.09 252.80(21.8) ± 10.5 60.7 ± 2.72 0.48 ± 0.004 0.41 ± 0.04 4.84x10-4 

I) 12-974 1519.2 ± 1.70 261.80(22.6) ± 96.8 65.4 ± 21.8 0.50 ± 0.01 0.35 ± 0.41 19.3x10-2 
II) 12-957 1519.4 ± 0.30 287.90(24.8) ± 25.2 76.1 ± 6.5 0.53 ± 0.001 0.52 ± 0.08 1.01x10-2 

 
 
 
 the precise description of Eg(T ). In face of the dispersion of

results for ∆E(0) values from both procedures (extrapolating
the linear dependence of the gaps at high T to T = 0 K and
the dependence of the gap on isotope mass) we inferred that
or the linear dependence of Eg(T ) at high temperatures (T
>> ΘD) is not reached in the analyzed temperature range or,
as pointed out by Cardona and Thewalt [16], electron-phonon
anharmonic effects lead to a higher-order dependence of the
energy gap with temperature. Therefore, the choice of upper
limit of temperature to which Eg(T ) has a linear dependence
with T is arbitrary, and can lead to incorrect values of ∆E(0)
when Eq. 2 is used.

For instance, using the Pässler-p model [9] to describe the
temperature dependence of the energy gap of GaAs in the
range from 2 K to 280 K, and the values Θp = 226 K, αp
= 0.347 meV/K and p = 2.51, Cardona et al [18] estimated
∆E(0) = 53 meV (- 53 meV in the Cardona [16] notation)
from the photoluminescence data measured by Grilli et al
[26]. Using another set of experimental data with a differ-
ent upper limit defining the domain of temperature (974 K ∼
2.7ΘD), Cardona et al [18] obtained ∆E(0) = 90 meV. As can
be find out from these results, the values of ∆E(0) obtained for
GaAs seem to be dependent on the upper limit of the domain
of temperature used to perform the fits. It is also important
to say that the value of 90 meV was obtained from the fits
of two sets of experimental results: (i) the data obtained by
Grilli et al [26] in the range 2 K < T < 280 K and (ii) the
absorption data obtained by Panish et al [22] in the high tem-
perature region (294 K < T < 974 K). However, these data
for high temperatures were recorded in a relatively large tem-

perature range with a reduced set of data points (5 points),
which prejudices the fits and the carried out analysis.

The lack of systematic experimental data for temperatures
above the room temperature is an entanglement for the anal-
ysis of Eg(T ) for a large number of materials. The data
from Johnson et al [27] allow, a more systematic analysis of
Eg(T ) for GaAs. Using the finite difference method to ana-
lyze the experimental data of Eg(T ) obtained by Johnson et
al [27], it is possible to visualize the change of the parameter
αexp =−∆Egexp(T )/∆T by performing derivatives in succes-
sive ranges of Eg(T ). In Fig. 5 we show the values of αexp as
a function of the mean temperature for each interval ∆T ob-
tained with the data of Johnson et al [27]. Therefore, αexpn is
given by:

αexpn =
∆Eg(T )

∆T
=

Eg(Tn)−Eg(Tn−1)
Tn−Tn−1

(8)

where Tn and Tn−1 are consecutive values of T, and Eg(Tn),
Eg(Tn−1) are the respective experimental values of the en-
ergy gap. In general, in the range from 330 K up to 957
K, the value of αexpn decreases from -0.47 to -0.55 meV/K
between two consecutive intervals. This variation of αexpn is
relatively large (∼ 17%) considering the predicted linear be-
havior of Eg(T ) at high temperatures. The non-linear behav-
ior of Eg(T ) was already foreseen by Bludau et al [25] who
used second order polynomes to fit the temperature depen-
dence of Si indirect-energy gap. Cardona and Thewalt [16]
also point out the importance of anharmonic terms (which
leads to higher order terms in T) in the electron-phonon in-
teraction to analyze the temperature dependence of the lattice
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parameter of Si. The experimental data of Eg(T ), from the
results of Johnson et al [27], even in the limit of high temper-
atures, show a small curvature that must be taken into account
when we analyze the temperature dependence of the energy
gaps. The extrapolation from the linear dependence at high
temperature to low temperature tends to be done with some
degree of arbitrariness, which can explain the contrasting re-
sults of ∆E(0) obtained with from the different experimental
procedures. Therefore, the results of Johnson et al [27] al-
lowed us confirm the non-linear temperature dependence of
the GaAs energy gap at high temperature. So, our findings
indicate that more systematic experimental studies searching
the high temperature region (T >> ΘD) must be performed
in order to obtain a precise description of the dependence of
the energy gap with temperature.

V. CONCLUSIONS

In this work we analyzed the temperature dependence of
the GaAs energy gap using different sets of experimental
data. We performed fits of Eg(T ) versus T in different do-
mains of temperature defined by different upper temperatures.
We were able to make a systematic comparison of the fit-

ting parameters obtained with three theoretical models in a
large temperature range (12 K to 974 K / 957 K). The values
obtained for the zero point renormalizations energy - ∆E(0)
- from different experimental data groups and from differ-
ent theoretical models for fitting the temperature dependence
of GaAs obtained extrapolating the linear dependence of the
gaps at high T to T = 0 K varying between 64.1 meV (Viña
model) and 84 meV (Pässler-p model).

Using absorption experimental data measured in tempera-
tures higher than the room temperature we were able to ob-
serve the non-linearity of Eg(T ) as already reported in the lit-
erature, with a quite large value for dEg(T )/dT in the range
280 K < T < 957 K. We believe that a more realistic de-
scription of Eg(T ) can only be obtained if the effects of the
non-linearity at high temperatures are included in the theoret-
ical models describing the dependence on temperature of the
energy gap.
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