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Dependence of the Crossover Exponent with the Diffusion Rate
in the Generalized Contact Process Model

W. G. Dantas∗ and M. J. de Oliveira†

Universidade de São Paulo, Caixa Postal 66318 05315-970 São Paulo, SP, Brazil

J. F. Stilck‡

Instituto de Fı́sica, Universidade Federal Fluminense, 24210-340, Niterói, RJ, Brazil
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We study how the crossover exponent, φ, between the directed percolation (DP) and compact directed per-
colation (CDP) behaves as a function of the diffusion rate in a model that generalizes the contact process. Our
conclusions are based in results pointed by perturbative series expansions and numerical simulations, and are
consistent with a value φ = 2 for finite diffusion rates and φ = 1 in the limit of infinite diffusion rate.
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I. INTRODUCTION

The research of the critical properties of nonequilibrium
systems that undergo a phase transition between an active
and an absorbing phase has been increasing in the last decade
[1, 2]. Although many aspects of these transitions already
have been well established in the literature [3], the absence of
a general theory for such systems leads to many open ques-
tions. These questions, in general, only can be answered par-
tially and these answers are obtained, among other approaches
through numerical simulations, a very useful tool in this task
[4], and perturbative series expansions [5, 6], a powerful tech-
nique that, in some situations, may lead to good numerical
precision of the estimates for critical properties.

One main challenge in this field is determine, as precise
is possible, a separation scheme of the models with the same
critical properties or, using other words, determine the univer-
sality classes for these phase transitions [7]. Although we do
not have a systematic way to accomplish this task, one conclu-
sion that seems to be correct is that all systems with a scalar
order parameter, local interactions and without conservation
laws belong to the same universality class called as Directed
Percolation (DP) class. This statement is known as DP con-
jecture [8]. The vast majority of the models which exhibit a
phase transition between an active and absorbing state belong
to this class, indicating that it is very robust. Thus, it is impor-
tant to study different models and determine their universality
class and it is essential to use approaches that permit us to es-
timate, as precisely as possible, the critical exponents for each
model.

In a recent paper, we estimated the crossover exponent be-
tween the DP and DCP classes [9]. Using the perturbative
supercritical series expansion formalism, proposed by Dick-
man and Jensen [5], we obtain a very precise estimates for
this exponent in a generalized contact process (CP) model,
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which lead us to conjecture that φ = 2, in accordance with
upper bound estimates [10] and simulational results for the
Domany-Kinzel cellular automaton [11], which may indicate
that this exponent is the same for similar models with paralell
and sequencial updates. However, in an extended version of
the generalized model (including a diffusion process) we were
not be able to determine the behavior of the crossover expo-
nent φ as a function of the diffusion rate in the limit of high
diffusion rate [12]. Our results show only that, in a region of
weak diffusion, the crossover exponent still is φ = 2. In this
work, using numerical simulations to estimate this exponent
we expect answer the question if the crossover between the
DP and CDP classes changes with the diffusion rate.

This work is organized as follows. In section II, we present
the model and discuss mean-field and perturbative series re-
sults of the reference [12]. In section III we describe the nu-
merical simulational scheme and show the new results that
we obtained through it. Finally, conclusions and perspectives
may be found in section IV.

II. MODEL

In a one-dimensional lattice with periodic boundary condi-
tions each site is empty or occupied by one particle. Thus,
a configuration of the system at time t is given by the vector
|η〉 = |η1,η2, ...,ηN〉, where ηi = 0,1 if the site is empty or
occupied, respectively. The markovian evolution of the sys-
tem is given by the following rules:

• We choose, randomly, a site i.

• If this site is empty, then it becomes occupied with a

transition rate equal to pan/2, where n is the number of

the particles in the first neighbor sites of i.

•◦◦ pa/2→ ••◦
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• If the site i is occupied, it may become empty by two
processes:

1. Spontaneously, independently of its neighbor-

hood, with rate pc.

• pc→◦
2. Through contact with first neighbor empty sites

with a rate pb(2−n)/2.

◦•◦ pb→◦◦◦
• Finally, we have a diffusive process for the particles,

occurring with a rate D̃.

•◦ D̃→◦•
We define the parameters in such way that pa + pb + pc = 1
and 0 < D̃ < ∞. For convenience, we will discuss our results
in the space (pa, pc, D̃). This model reduces to the CP model
with diffusion if we put pb = 0 and to the voter model or linear
Glauber model at zero temperature for pa = pb and pc = 0. In
the first case we have exponents that belongs to the DP uni-
versality class and in the last case the phase transition belongs
to the CDP universality class. Thus, in the neighborhood of
pc = 0, we have a crossover between these classes.

For a certain fixed value of the diffusion rate, the behavior
of the any stationary density close to the multicritical point,
should be given by the scaling form,

g(∆pa,∆pc, D̃) ∼ ∆peg(D̃)
a F

(
∆pc

|∆pa|φ(D̃)

)
, (1)

where ∆pa = pa −1/2, ∆pc = pc, eg(D̃) is a critical exponent
related with the density g and φ(D̃) is the crossover exponent.
The scaling function F(z) is singular at a value z0(D̃) of its ar-
gument, which corresponds to the critical line for a certain dif-
fusion rate value, D̃. Using the scaling form (1), we obtain that
the critical line is asymptotically given by pc = z0(D̃)∆pφ(D̃)

a .
In a recent study [12], we have derived solutions for the

cluster dynamics approximation in the one-, two- and three-
site level. In the first case (simple mean-field approximation)
the critical line is pa = 1/2, independently of the diffusion
rate. Thus, the crossover exponent in this approximation is
φ = 0. In the two-site level, we have a solution that shows
three values of this exponent: φ = 2, if D̃ = 0, φ = 1, if 0 <
D̃ < ∞ and φ = 0 for the infinite diffusion rate. Finally, in the
three-site level of mean-field approximation, we obtain only
a numerical estimate of the critical line. In this calculation,
at sufficiently small diffusion rates, the crossover exponent
value is φ ≈ 2 but, in an intermediate region of the diffusion
rate, a slight deviation to smaller values appears, converging

to φ ≈ 1 at high diffusion rates. It is probable that, in mean-
field approximations of higher order, the interval of values of
D̃ for which φ ≈ 2 grows.

On the other hand, in the same work, a perturbative series
approach furnishes φ = 2, at least up to D̃ ≈ 0.3. Unfortu-
nately, we were not able to determine the crossover exponent
values for larger diffusion rates. Therefore, it would be inter-
esting to use a numerical simulational approach to investigate
how the crossover exponent behaves as a function of the dif-
fusion rate, paricularly for large values of this rate.

III. NUMERICAL SIMULATIONS

In order to reach higher values of the diffusion rate and de-
termine the behavior of the crossover exponent we use time-
dependent numerical simulations for the model. These sim-
ulations are carried out using a single seed in a lattice with
N = 10000 sites and periodic boundary conditions to avoid
finite-size effects. The simulation is done for discrete time,
and may be described by the following steps:

1. A list of all sites occupied by particles is stored, and at
each time step one of them is chosen randomly.

2. Once the site is chosen, a random number p uniformly
distributed in the interval [0, 1] is generated, if p <
D = D̃/(1 + D̃) a pair hole-particle of first neighbors
is switched, if possible. Otherwise, we choose a reac-
tion: creation or annihilation. With a probability pa an
empty site, in one of the first neighbors, is occupied, if
possible. Otherwise, a particle at the chosen site will be
annihilated either through the spontaneous or through
the autocatalytic process.

3. To define the process switching a particle to a hole, an-
other random number q is generated. If q < pc/(1− pa)
the change is spontaneous, otherwise it will happen
with a probability proportional to the number of empty
sites in first neighbors of the chosen site.

4. The time interval associated with the steps above is dt =
1/NA, where NA is the number of the sites occupied by
particles before the step. The process is repeated until
either a maximum number of steps nmax is attained or
the absorbing state NA = 0 is reached.

5. Several runs are done and mean values are calculated as
functions of time.

Typically, we use in simulations, nmax = 105 steps and 2000
runs. We estimated the critical line for some values of the
diffusion rate D as can be seen in the Fig. (1).
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FIG. 1: Critical line and crossover exponents estimated in the three-
site level mean-field approach (for D = D̃/(1 + D̃) fixed). At small
diffusion rate, the crossover exponent is φ ≈ 2.

FIG. 2: Spreading of particles with a single seed as initial condition.
The time arrow points down and this behavior is obtained for pc =
0.02 and pa > pc

a.

Our results suggest that the crossover exponent is φ = 2
up to D ≈ 0.9, with decreasing estimates at higher diffusion
rates. Although, we believe that this behavior is a numerical

artifact due to an imprecision estimate of the critical points
at this region, indicating a trend to vanishing φ in the infinite
diffusion rate limit. Therefore, our results seems indicate that
the crossover exponent between the DP and CDP universality
classes in the generalized contact process is

φ =
{

0 if D=1
2 otherwise.

The change in the crossover exponent value seems be re-
lated to the disapearance of compact clusters of particles. The
compact clusters are a signature of the CDP behavior. In the
Fig. (2) we show that these clusters are no longer present when
the diffusion rate is large.

We do not have a rigorous argument to relate the loss of the
compact cluster to the change of the crossover exponent. It
would be interesting study in a similar model if this apparent
connection is correct.

IV. CONCLUSIONS

In this work we study how the diffusion rate affects the
crossover exponent between the DP and CDP universality
classes. In a preliminar work [12], using perturbative series
approach, we determine the value φ ≈ 2 up to D ≈ 0.3 and
due to limitations in the series derivation, we were not able to
reach larger values for the diffusion rate.

However, the numerical simulation approach allows us to
obtain estimates for the crossover exponent in a region closer
to the limit where the diffusion rate diverges. Our results sug-
gested that the crossover exponent is φ = 2 for all finite dif-
fusion rates and φ = 0 at infinte diffusion rate, recovering the
simple mean-field result, as expected. Besides, the change
of the crossover exponent value in the infinite diffusion rate
limit could be related to the loss of compact clusters of parti-
cles, although this cannot be proven by our results, but only
suggested.

In a future work, we intend to realize quasi-stationary sim-
ulations, according the Oliveira and Dickman scheme [14],
trying to obtain better results for the region with D > 0.9.
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