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Abstract

Though introduced recently, complex networks research has grown steadily because of its potential to represent,
characterize and model a wide range of intricate natural systems and phenomena. Because of the intrinsic complex-
ity and systemic organization of life, complex networks provide a specially promising framework for systems biology
investigation. The current article is an up-to-date review of the major developments related to the application of com-
plex networks in biology, with special attention focused on the more recent literature. The main concepts and models
of complex networks are presented and illustrated in an accessible fashion. Three main types of networks are cov-
ered: transcriptional regulatory networks, protein-protein interaction networks and metabolic networks. The key role
of complex networks for systems biology is extensively illustrated by several of the papers reviewed.
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Introduction

While a great deal of the advances in physics and

chemistry have stemmed from reductionist approaches

where the subject of interest, such as an atom or particle, is

systematically isolated from the rest of the world in a

strictly controlled environment, biology defies such a para-

digm by encompassing the whole range of spatial and tem-

poral scales present in nature: ranging from the molecules

being observed to the observer built from molecules. Hav-

ing mapped the basic secrets of the genome - that big refer-

ence book for protein and RNA synthesis - biology now

progresses to the more integrative and dynamic aspects of

life along the road of development and evolution. How is

the synthesis of proteins affected by the surrounding anat-

omy, and vice-versa? How does the environment interfere

with the control of gene expression? How do species, prod-

ucts of genetic programs, interact with the environment?

How do cells, initially with identical molecular composi-

tion, ultimately differentiate to produce the myriad of tis-

sues and functions in an organism? To answer such

questions will correspond to ultimately unveiling the final

secrets of life.

However, while impressive experimental results have

been continuously obtained in biology, the challenge of in-

tegrating all such results into a coherent whole remains.

The integrative attempts at solving such a problem are now

part of the new area of systems biology. Three main prob-

lems to be addressed are: (i) to organize the ever increasing

experimental results from complex biological systems (e.g.

protein-protein interaction, gene expression profiles, meta-

bolic pathways) into suitable respective representations and

models; (ii) to be able to simulate the dynamics of such

models under varying conditions, so as to unveil important

biological patterns and structures; and (iii) to find the

means for effectively connecting such models at the several

spatial and time scales involved.

While the study of genes and proteins continues to be

important, looking at isolated components is not enough to

understand most biological processes. For instance, as dis-

cussed by Vogelstein et al. (2000), the analysis of the sig-

naling pathway involving the p53 tumor-suppressor gene is

more important than looking at this gene only. Indeed, a

combined attack on genes connected to p53 caused more

severe effects than the removal of the gene itself (Franklin

et al., 2000). Thus, the characterization of biological net-

works should be similar to that for other types of complex

systems, such as the Internet, the World Wide Web

(WWW) and society. The recent theory of complex net-

works constitutes a particularly promising possibility to

characterize and model the intricate structures and dynam-

ics that govern the biological process.

The beginning of complex network theory can be

traced back to the first work on graph theory, developed by

Leonhard Euler in 1736 but, stimulated by works such as

those by Barabási and Albert (1999), research on complex

networks has only recently been applied to areas such as bi-

ology, economics, linguistics, medicine, social sciences,
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technology and transport. Though formalized recently

complex networks research (Boccaletti et al., 2006;

Newman, 2003; Costa et al., 2007) has progressed steadily

to become one of the most promising and dynamic scien-

tific areas. Representing an extension of graph theory (see,

for example, Chartrand and Lesniak, 1986), complex net-

works research focuses on the characterization, analysis,

modeling and simulation of complex systems involving

many elements and connections, examples being the in-

ternet, gene regulatory networks, protein-protein networks,

social relationships and the WWW. In complex networks

research special attention is given not only to trying to iden-

tify special patterns of connectivity, such as the shortest av-

erage path between pairs of nodes (Newman, 2003), but

also to considering the evolution of connectivity and the

growth of networks, an example from biology being the

evolution of protein-protein interaction networks in differ-

ent species (Vázquez et al., 2003b).

More recently, growing attention has also been fo-

cused on the investigation of dynamic unfolding in systems

underlain by specific types of networks, an example being

how neuronal activity depends on specific types of connec-

tivity between neurons (Costa and Sporns, 2005). Ulti-

mately, efforts will converge on the consideration of the

interplay between such dynamics and the dynamics of the

evolution of the networks. One of the reasons for the im-

pressive advance and popularization of complex networks

research in the brief period since the application of this

methodology to science and technology consists of their in-

trinsic potential to represent virtually any system composed

of discrete elements. Fortunately, most natural and biologi-

cal systems are indeed discrete in nature and can be repre-

sented as networks. For instance, in a protein-protein

interaction network, each protein is represented as a node,

or vertex, while the possible interactions between proteins

are expressed as links, or edges, between respective nodes.

Similarly, metabolic pathways can be represented as net-

works formed by metabolites, reactions and enzymes con-

nected by two types of relationship, mass flow and catalytic

regulation (Jeong et al., 2000), while transcriptional regula-

tions can be naturally represented by complex networks

where vertices represent genes and directed edges denote

regulatory effects on the target genes (Balazsi et al., 2005).

In order to understand complex biological systems,

the three following key concepts need to be considered

(Aderem, 2005): (i) emergence, the discovery of links be-

tween elements of a system because the study of individual

elements such as genes, proteins and metabolites is insuffi-

cient to explain the behavior of whole systems; (ii) robust-

ness, biological systems maintain their main functions even

under perturbations imposed by the environment; and (iii)

modularity, vertices sharing similar functions are highly

connected. All these three features have been widely stud-

ied in complex networks research, as, for instance, in the

case of the Internet (Albert et al., 2000) and protein-protein

interaction networks (Jeong et al., 2001). Therefore, com-

plex networks theory can be largely applied for developing

systems biology research because many tools for network

characterization, modeling and simulation are already

available.

This review will start by presenting an accessible in-

troduction to the basic concepts of complex networks, in-

cluding their definition, measurement and traditional

models, and will go on to review the main developments in

the application of complex networks to systems biology,

with special attention given to more recent and comprehen-

sive articles, thereby complementing and extending previ-

ous reviews of this area such as that by Barabási and Oltvai

(2004).

Basic Concepts of Complex Networks

The structure of complex networks can be repre-

sented as a graph, which is an ordered pair G = (V, E)

formed by a set V ≡ {1, 2, i, , N} of vertices, or nodes, con-

nected by a set E ≡ {e1, e2, , eM} of edges, or links,

(Bollobás, 1998; Diestel, 2000; West, 2001) (Figure 1).

Each edge represents a link between two vertices, i.e.,

ep = (i, j) indicates the connection between the vertices i and

j. If the edges have direction, the graph is said to be a di-

rected graph and G is an ordered pair G = (V, E→), where V

is the set of vertices and E→ is the set of ordered pairs of
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Figure 1 - Examples of (a) an undirected network (graph) and its mapping on an adjacency matrix A; and (b) a directed weighted network (weighted di-

graph) and its respective mapping on a weight matrix W. Each element of the adjacency matrix represents a connection between two nodes. For instance,

as the vertex 1 is connected to the vertices 3 and 5, we have a13 = a31 = a15 = a51 = 1. In case (b), the elements of the matrix W represent the strength of each

connection s. For instance, the directed connection from the node 2 to 6 (w26 = 3) is weaker than the directed connection from the node 4 to 6 (w46 = 5).

Since the network in (b) is directed, note that wij ≠ wji. The degree k of the vertices is given by their number of connections. In (a), k1 = 2, k2 = 2, and k5 = 4.

In (b), the strengths are s1
out = 1 and s1

in = 3, s4
out = 6 and s4

in = 0.



arcs, or arrows. In this case, each arc ep = (i, j) is a directed

edge extending from node i, called the head, to j, called the

tail.

Figure 1 shows an undirected and a directed network

and their respective adjacency matrices. A network can be

represented by its adjacency matrix A (Figure 1a). The ele-

ments aij are equal to 1 whenever there is an edge connect-

ing the vertices i and j, and equal to 0 otherwise. When the

graph is undirected, the adjacency matrix is symmetric, i.e.,

the elements aij = aji for any i and j.

The networks studied some decades ago included a

few dozen vertices and could even be drawn on a piece of

paper. However, real networks can now be composed of

thousands or millions of vertices and their quantitative

analysis cannot be performed using drawings and visual

analysis. In order to characterize such complex networks, it

is necessary to take topological measurements into account,

which can provide valuable insights about the structure of

networks (Costa et al., 2007). Basic network measurements

are related to vertex connectivity, occurrence of cycles and

the distances between pairs of nodes, among other possibil-

ities. The most elementary characterization of a node i can

be obtained in terms of the degree of vertices (Figure 1).

Although the vertex degree is a very simple measurement,

it is particularly meaningful for network characterization.

For instance, in protein-protein interaction networks,

highly connected proteins tend to be essential for the sur-

vival of the organism (Jeong et al., 2001). The average de-

gree, corresponding to the average of the degrees of all

vertices, is a global measurement of the connectivity of the

network. The most highly connected nodes are called hubs,

which are fundamental for several important properties of

networks, such as resilience against random failures (Al-

bert et al., 2000). Note that the concept of resilience in com-

plex network theory cannot be immediately extended to

biological networks, since, compared to other types of net-

works, organisms can be much more sensitive to small

changes such as a missing gene or a defective protein.

The degree distribution of a network, P(k), gives the

probability that a chosen vertex has degree k. It is obtained

by counting the number of nodes with a given connectivity

and dividing by N. This measurement provides an easy way

to infer the overall connectivity and can be used for net-

work classification. If most vertices have a similar degree,

P(k) will be a peak distribution (Figure 2a). However, most

biological networks are scale-free, implying that their dis-

tribution of connections is uneven and approximating a

power-law P(k) ≈ k-γ, where γ is a constant. In this case,

while most vertices are little connected, a huge number of

edges is concentrated in a small number of nodes. It can

also be shown that scale free networks have higher proba-

bility of exhibiting hubs (Barabási and Albert, 1999).

In most complex networks, it is important to quantify

how vertices with different degrees are connected. The de-

termination of the degree correlation can be achieved by

considering the Pearson correlation coefficient (r) between

the degrees at both ends of the edges (-1≤ r ≤ 1). Such a

measurement is called assortativity (Newman, 2002). If

r > 0 then vertices with similar degrees tend to be connected

and the network is assortative but if r < 0 highly connected

vertices tend to connect to vertices with few connections

and the network is disassortative, while if r = 0 there is no

pairwise correlation between vertex degrees and the net-

works is non-assortative. Disassortative networks are

known to be resilient to simple target attack, in other words

when some hubs are removed the network does not in-

stantly fragment into many disconnected components

(Vázquez and Moreno, 2003). Most biological networks

are disassortative, examples being neural networks

(r = -0.226; Watts and Strogatz, 1998), metabolic networks

(r = -0.24; Jeong et al., 2000) and protein-protein interac-

tion networks (r = -0.156; Jeong et al., 2001).

Another important property of networks relates to the

distances between pairs of vertices, which is measured by

the path length, i.e., the number of edges needed to be

crossed while going from one vertex to another in such a

way that each node is visited only once. The shortest path

length (�) between two vertices i and j is given by the length

of the shortest path that connects i and j. For instance, in

Figure 1, the shortest path length between vertices 1 and 6

is �
16

3= . The average shortest path length is computed by

considering the distance matrix L, in which the entry � ij

represents the length of the shortest paths between the

nodes i and j. A general feature of biological networks is

their small-world property in which any two nodes in the

system can be connected by relatively short paths along ex-

isting edges. For example, the value of the average shortest

path length in the protein-protein interaction network of

Saccharomyces cerevisiae is � ≈ 7 (Jeong et al., 2001) and

in metabolic networks is � ≈ 3(Jeong et al., 2000). In meta-

bolic networks, the paths correspond to the biochemical

pathways connecting two substrates. A more formal defini-

tion of small-worldness, considering the increase of the

shortest paths with the size of the network, can be found in

Newman (2001).
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Figure 2 - Degree distributions for (a) random and (b) scale-free networks.

While random networks present a peak distribution, scale-free networks

present a straight line in the log-log plot.



Biological networks can also be characterized in

terms of the subgraphs and cycles present in their topology

(Figure 3). Some subgraphs are called motifs, correspond-

ing to patterns of connectivity which are statistically more

abundant in real networks than in their respectively random

versions (Milo et al., 2002). Motifs are associated with spe-

cific functions in different networks (Wuchty et al., 2003).

The simplest motif is composed of three fully connected

vertices (triangles).

The clustering coefficient of a node i (cci) is given by

the following ratio,

cc
i

i = Number of edges among neighbors

Max. possible number of edges among neighbors
(1)

Examples of three configurations resulting in differ-

ent respective clustering coefficient values are given in Fig-

ure 4. The average clustering coefficient is computed by

adding the values of the clustering coefficient of all nodes

and dividing by N. Some biological networks tend to pres-

ent high clustering coefficient values. For instance, in the

protein-protein interaction network of S. cerevisiae,

<cc> ≈ 0.18 (Costa et al., 2007).

The characterization and classification of complex

networks (Costa et al., 2007) can also be achieved by con-

sidering measurements related to community structure, hi-

erarchies, centrality and motifs.

Complex Networks Models

The simplest complex network model was proposed

by Paul Erdös and Alfred Rényi in 1959 (see also Flory,

1941). This model is called the random graph of Erdös and

Rényi and is constructed in the following way. Starting with

a set of N disconnected vertices (nodes), edges (links) are

added according to a fixed probability p (Erdös and Rényi,

1959; Erdös and Rényi, 1960). The distribution of connec-

tions of networks generated by this model follows a Pois-

son distribution for large N (Figure 2a). An intrinsic feature

of such a model is the highly homogeneous number of con-

nections at each vertex, which results in networks which

can be well characterized by their average node degree.

Because its simplicity, the random model is not suit-

able to represent most real networks. In 1998, Watts and

Strogatz observed that, unlike random networks, real-world

networks tended to present many third-order cycles. Watts

and Strogatz (1998) therefore proposed a model called the

small-world network model, which starts with a fully regu-

lar network of N vertices in which each vertex is connected

to its κ nearest neighbors. Next, each edge is randomly re-

wired with probability p. This model lies between regular-

ity and randomness. When p = 0, the structure is ordered

with high number third-order cycles (high average cluster-

ing coefficient) but large average shortest path length. Oth-

erwise, when p → 1, the network becomes a kind of random

graph. However, this model produces networks whose de-

gree distribution is still homogeneous.

It has been shown that the connectivity of the World

Wide Web is far from regular because a few vertices tended

to concentrate a large fraction of the network connections

(Barabási and Albert, 1999) and the same structure has

been found in the Internet (Faloutsos et al., 1999), meta-

bolic networks (Jeong et al., 2000), protein-protein interac-

tion networks (Jeong et al., 2001) and in networks of

scientific collaboration (Barabási et al., 2002). The pres-

ence of hubs is directly related to the scale-free distribution

of node degrees, where a straight line is obtained in log-log

plots of the node distribution (Figure 2b).

To explain the uneven distribution of connectivity in

several real networks, the so-called scale-free network

model has been developed (Barabási and Albert, 1999),

which is based on two basic rules: (i) growth, in which the

network evolving process starts with a set of m0 vertices

and grows at each subsequent step by the addition of a new

vertex with m links; and (ii) preferential attachment, in

which the vertices receiving the new edges are chosen fol-

lowing a linear preferential attachment rule, where the

probability of the new vertex i connecting with an existing

vertex j is proportional to the degree of j. In this model, the

most connected vertices have a greater probability of re-

ceiving new links. Despite the success in reproducing the

scale-free degree distribution, the scale-free network model

generates non-assortative networks with small average

clustering coefficients. Thus, this model is not suitable for

representing some real networks (Costa et al., 2007). Other
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Figure 3 - The original network (a) and three possible subgraphs com-

posed by three, four and six vertices (b).

Figure 4 - Example of three networks and respective clustering coeffi-

cients (see Eq. (1)). In (a), cci = =
10 2

5 4
1

( )

( )
(the vertices around i are fully

connected), (b) cci = =
3 2

5 4
0 3

( )

( )
. and (c) cci = =

0 2

5 4
0

( )

( )
. The maximum

number of edges among the neighbors of i is given by ki(ki - 1)/2.



complex network models have been developed for specific

applications (Boccaletti et al., 2006).

Biological Networks

The availability of completely sequenced genomes

and the development in molecular biology of high-

throughput techniques such as microarray technology

(Schena et al., 1995; Ren et al., 2000) and two-hybrid sys-

tems (Fields and Song, 1989) have allowed genome-wide

studies of biological processes that arise from complex in-

teraction between genetic entities, such as proteins, RNAs

and DNA (Lockhart and Winzeler, 2000; Uetz and Hughes,

2000). These cellular entities interact with one another ac-

cording to their functional roles. For instance, protein-

protein interactions, related to cellular communication by

signal transduction, activate or repress the transcription of

genes, changing the molecular composition of the cell.

These separate modules are ‘building blocks’ of the biolog-

ical systems, working together to shape the phenotypic pat-

tern of the cells and organisms (Hartwell et al., 1999).

Mapping out all these interconnected modules helps to un-

derstand and model their topological and dynamical prop-

erties (Barabási, 2007).

The most critical networks for controlling cellular

systems are those related to transcription, protein-protein

interaction and metabolism (Barabási and Oltvai, 2004).

Despite the great diversity of networks in cell biology, they

share several global properties. For instance, most net-

works within the cell are characterized by (i) a scale-free

degree distribution (also called power-law), (ii) a small av-

erage shortest path length between any two nodes (small-

world), (iii) a disassortative nature, (iv) a modular organi-

zation and (v) a structural and dynamical robustness (Bara-

bási and Oltvai, 2004; Albert, 2005).

One limitation in biological networks analysis is the

incomplete/noisy data sampling characterized by missing

edges and/or vertices or the presence of links and nodes that

do not exist in a real system (Figure 5). These errors usually

constitute experimental artifacts or noise, caused by human

error or technical limitations. A typical example of sam-

pling limitations is found in methods for the detection of

protein-protein interaction. The most commonly used

methods are co-affinity purification followed by mass

spectrometry (co-AP/MS; Gavin et al., 2002) and the yeast

two-hybrid assay (Y2H; Fields and Song, 1989). Both

methods have limitations that can influence the definition

of network structures. Currently, such maps should be

viewed as hypotheses pending validations by an appropri-

ate biological assay. Even so, they can be useful as a partial

description of protein-protein interactions (Walhout et al.,

2000). Therefore, in the meantime as the databases get

more complete, it is important to develop methods to quan-

tify the completeness of networks and study the implica-

tions of errors resulting from data sampling. Novel and

relevant information and insights can be obtained by apply-

ing complex networks concepts to model biological sys-

tems despite some incompleteness. Although sampling re-

mains an important issue, current databases offer an

unprecedented opportunity to study regulatory organiza-

tion of the cell from the perspective of complex networks.

Transcriptional Regulatory Networks

The great complexity of organisms arises more as a

consequence of elaborated regulation of gene expression

than from differences in genetic content in terms of the

number of genes (Carroll, 2000; Levine and Tjian, 2003).

The transcription network is a critical system that regulates

gene expression in a cell. Transcription factors (TFs) re-

spond to changes in the cellular environment, regulating the

transcription of target genes (TGs) and connecting func-

tional protein interactions to the genetic information en-

coded in inherited genomic DNA in order to control the

timing and sites of gene expression during biological devel-

opment. These regulators bind as complexes to specific

cis-elements near the start of the transcription site to in-

crease or decrease the rate of mRNA production via RNA

polymerase stabilization (Davidson et al., 2002; Wray et

al., 2003; Alon, 2007).

Transcription regulation maps have been constructed

for Escherichia coli (Huerta et al., 1998; Thieffry et al.,

1998; Shen-Orr et al., 2002; Gama-Castro et al., 2008) and

S. cerevisiae (Lee et al., 2002; Harbison et al., 2004;

MacIsaac et al., 2006). The interactions between TFs and

TGs can be represented as a directed graph. The two types

of nodes (TF and TG) are connected by arcs (Figure 6a, ar-

rows) when regulatory interaction occurs between regula-

tors and targets (Babu et al., 2004; Alon, 2007).

Transcriptional regulatory networks display interesting

properties that can be interpreted in a biological context to

better understand the complex behavior of gene regulatory

networks. At a global network level, when the out-degree

distribution of TFs is considered scale-free distribution is

observed while the in-degree distribution of TGs shows ex-

ponential distribution (Guelzim et al., 2002) (Figure 1b).

The scale-free network indicates that most TFs regulate a
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Figure 5 - The original network (a) and the sampled network (b). Nodes

only present in the original network are shown as white circles. Wrong

connections are indicated by dashed lines and wrong identified nodes by

black circles.



few TGs but a few TFs interact with many TGs, however in

the exponential network most TGs are regulated by the

same TF (Barabási and Oltvai, 2004; Albert, 2005).

At a local network level, these networks are orga-

nized in substructures such as motifs and modules. In this

case, motifs represent the simplest units of the network ar-

chitecture required to create specific patterns of inter-regu-

lation between TFs and TGs. Three most common types of

motifs can be found in gene regulatory networks: (1) single

input, (2) multiple input and (3) feed-forward loop (Babu et

al., 2004; Shen-Orr et al., 2002) (Figure 7). Target genes

belonging to the same single and multiple input motifs tend

to be co-expressed, and the level of co-expression is higher

when multiple transcription factors are involved (Yu et al.,

2003). Modularity in the regulatory networks arises from

groups of highly connected motifs that are hierarchically

organized, in which modules are divided into smaller ones

(Babu et al., 2004; Albert, 2005). Some modules can be as-

signed to particular biological processes, but there is no

consensus on the precise groups of genes and interactions

that form modular structure (Ihmels et al., 2002; Bar-

Joseph et al., 2003, Babu et al., 2004).

The evolution of gene regulatory networks mainly oc-

curs through extensive duplication of transcription factors

and target genes with inheritance of regulatory interactions

from ancestral genes (Teichmann and Babu, 2004; Babu et

al., 2004), while the evolution of motifs does not show

common ancestry but is a result of convergent evolution

(Conant and Wagner, 2003).

Protein-Protein Interaction Networks

The interactions between proteins are essential to

keep the molecular systems of living cells working prop-

erly. Protein-protein interaction is important for various bi-

ological processes such as cell-cell communication, the

perception of environmental changes and protein transpor-

tation and modification. Complex network theory is suit-

able to study protein-protein interaction maps because of its

universality and integration in representing complex sys-

tems. In complex network analysis each protein is repre-

sented as a node and the physical interactions between pro-

teins are indicated by the edges in the network (Figure 6b).

Jeong et al. (2001) showed that the structure of the

protein-protein interaction network of the yeast S.

cerevisae is completely heterogenous, questioning the pre-

vious belief that protein interactions were generated at ran-

dom. In this way, while few proteins have a huge number of

connections, most proteins have just one or two links. As

observed for yeast, the same type of topology was found in

the bacterium Helicobacter pylori (Rain et al., 2001) and in

the insect Drosophila melanogaster (Giot et al., 2003).

Such discoveries suggest that the scale-free nature of pro-

tein-protein interaction networks is a common property of

all organisms. A good review about the protein-protein net-

work characterization can be found in Colizza et al. (2005).

In addition to the scale-free structure, protein-protein

interaction networks also present the small-world effect,

modular organization (Barabási and Oltvai, 2004) and mo-

tifs (Milo et al., 2002). For the latter, not only individual

proteins should be conserved during evolution, but also

modules and specific motifs (Hartwell et al., 1999; Poyatos

and Hurst, 2004). Indeed, Wuchty et al. (2003) analyzed

the conservation of 678 yeast proteins with orthologs from

another five eukaryote species and showed that motifs can

be conserved from the simplest organisms to the most com-

plex ones. Although conservation of network motifs is seen

during evolution, it has been shown by Hormozdiari et al.
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Figure 7 - Three types of motifs found in transcriptional regulatory net-

works of S. cerevisiae and E. coli: (a) feed-forward loop, (b) simple input

module and (c) multiple input.

Figure 6 - The three main types of biological networks: (a) a transcriptional regulatory network has two components: transcription factor (TF) and target

genes (TG), where TF regulates the transcription of TGs; (b) protein-protein interaction networks: two proteins are connected if there is a docking be-

tween them; (c) a metabolic network is constructed considering the reactants, chemical reactions and enzymes.



(2007) that the duplication model, based on Ohno’s model

of genome growth (Ohno, 1970), can explain the emer-

gence of the most common properties as small-world effect

and power-law degree distribution, with a frequency com-

parable to that seen in real networks.

One of the greatest challenges in the post-genomic era

is the prediction of protein functions. Proteins that share

connections in a protein-protein interaction network tend to

have similar functions (Hishigaki et al., 2001). Empirical

observations have indicated that 70% to 80% of protein in-

teraction partners share at least one function (Schwikowski

et al., 2000). In this way, by analyzing the neighborhood of

known proteins, it is possible to infer some of the functional

roles of their direct neighbors. Such an approach, called

majority rule assignment, has been greatly improved by

considering higher neighborhood levels (Hishigaki et al.,

2001) and by minimizing the number of physical interac-

tions between different functional categories of proteins

and considering the connections between unknown pro-

teins (Vázquez et al., 2003a).

The importance of proteins can be inferred by analy-

sis of their local topological properties. For instance, be-

cause of the importance of hubs, Jeong et al. (2001)

investigated the relationship between lethality and connec-

tivity and found a positive correlation between the fraction

of lethal protein with a given degree k and the respective

protein degree, which seems to imply that proteins with

high degree, such as hubs, would tend to be essential. In this

way, the analysis of network structure can be useful to de-

termine the importance of proteins and to predict their func-

tions.

The models constructed to explain the evolution of

protein interaction networks are based on the hypothesis

that all proteins of a family evolved from a common ances-

tor (Ohno, 1970). Based on this concept, Vázquez et al.

(2003b) suggested a model in which each node in a network

represents a protein that is expressed by a gene, with the

network evolving by duplication and divergence. In the du-

plication step, a protein, i, in the network is randomly dupli-

cated and a new protein, i’, is created with links to each

neighbor j of i and an interaction between i and i’ is estab-

lished with probability p. In the divergence step, a node j

connected to i and i’ loses the connection (i, j) or (i’, j) ac-

cording to a probability q. It is interesting to note that this

model does not consider preferential attachment, even

though it generates networks with power-law degree distri-

bution. This model was later improved considering other

linking dynamics (Sole and Fernandez, 2003; Berg et al.,

2004) and empirical observations (Wagner, 2001; Wagner,

2003).

The interaction between proteins can also be analyzed

at the domain level. Protein domains are the basic structures

within a protein that are self-stabilizing and often self-

folding (Phillips, 1966). Such compact structures (Richard-

son, 1981) are related to the evolution and folding of pro-

teins (Bork, 1991). Domains join to form multi-functional

proteins (Chothia, 1992), where each domain can perform a

defined function either independently or with their neigh-

boring domains (George and Heringa, 2002). The function-

ality of proteins is defined by their specific domains.

Networks of domain interactions can be constructed

considering protein complexes, Rosetta Stone sequences or

protein-protein interaction networks, or all three of these

approaches (Wuchty, 2001; Wuchty, 2002; Ng et al, 2003).

Wuchty (2001) considered the first two approaches and

showed that protein domain interactions follow a power-

law distribution and present both small-world behavior and

a high average clustering coefficient. Costa et al. (2006)

studied the relationship between connectivity and lethality

at the domain level, but, since there are no databases on do-

main lethality, the criteria considered were domain lethality

in a weak sense, where a domain is lethal if it appears in a

lethal protein, and domain lethality in a strong sense, where

a domain is lethal if it only appears in a single-domain le-

thal protein. In this case, Costa et al. showed that the corre-

lations between connectivity and essentiality for domains,

in both the weak and strong sense, are significantly higher

than the correlations obtained for proteins. Therefore, do-

mains seem to be particularly important in defining protein

interactions and protein lethality.

Metabolic Networks

Metabolism is primarily determined by genes, envi-

ronment and nutrition. It consists of chemical reactions cat-

alyzed by enzymes to produce essential components such

as amino acids, sugars and lipids, and also the energy nec-

essary to synthesize and use them in constructing cellular

components. Since the chemical reactions are organized

into metabolic pathways, in which one chemical is trans-

formed into another by enzymes and co-factors, such a

structure can be naturally modeled as a complex network.

In this way, metabolic networks are directed and weighted

graphs, whose vertices can be metabolites, reactions and

enzymes, and two types of edges that represent mass flow

and catalytic reactions (Figure 6c). One widely considered

catalogue of metabolic pathways available on-line is the

Kyoto Encyclopedia of Genes and Genomes (KEGG, see

Internet Resources Section).

Jeong et al. (2000) characterized the metabolic net-

works of 43 organisms from all three domains of life, and

found that metabolic organization is not random, but fol-

lows the scale-free degree distribution. In this way, the

probability that a given substrate participates in k reactions

followed a power-law, P(k) ≈ k-γ, with γ ≈ 2.2 in all 43 or-

ganisms. Additionally, metabolic networks are small-world

(� ≈ 3), where two metabolites can be connected by a small

path - paths correspond to the biochemical pathway con-

necting two substrates. For example, Wagner and Fell

(2001) showed that the center of the E. coli metabolism
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map is glutamate and pyruvate, with a mean shortest path

length equals to 2.46 and 2.59, respectively. An interesting

finding by Jeong et al. (2000) is that the diameter of meta-

bolic networks is the same for all the 43 organisms ana-

lyzed, contrasting with the results obtained for other types

of networks where the diameter increases logarithmically

with the addition of new vertices. Indeed, as the complexity

of organisms grows, individual substrates tend to form

more connections in order to maintain a relatively constant

network diameter.

Since metabolic networks are scale-free, a few hubs

concentrate a high number of connections (Wagner and

Fell, 2001). This property makes such a type of network tol-

erant to random failures, but vulnerable to directed attacks.

So, the sequential removal of nodes in decreasing order of

degree increases the network diameter and quickly sepa-

rates the network into disconnected components. For in-

stance, in-silico and in-vivo mutagenesis studies of E. coli

has shown a metabolic network highly tolerant to removal

of a considerable number of enzymes (Edwards and Pals-

son, 2000). Another important discovery is that only 4% of

all substrates encountered in the 43 organisms were present

in all species and that such substrates are hubs (Jeong et al.,

2000).

The structure of metabolic networks is organized in a

modular and hierarchical fashion, and, indeed, many inves-

tigations involving metabolic networks functionality have

suggested the existence of modular organization (Schuster

et al., 2000). These modules are discrete entities composed

of several metabolic substrates densely connected by bio-

chemical reactions. Ravasz et al. (2002) have shown that

the average clustering coefficient of metabolic networks of

the 43 organisms studied by Jeong et al. (2000) is inde-

pendent of the network size. Also, this value tended to be

higher than those of scale-free networks of the same size.

Furthermore, the average clustering coefficient followed a

scaling law with the number of links, c(k) ≈ k-1, indicating

hierarchical organization. This suggests that metabolic net-

works are characterized by a scale-free degree distribution

and have an average clustering coefficient independent of

network size and hierarchical and modular organization.

Ravasz et al. (2002) suggested a model of metabolic orga-

nization that reproduces these properties.

Other Biological Networks

Many other biological systems, at varying space and

time scales, can be represented and studied using complex

networks. For instance, food webs provide an example of

biological organization at the largest scale, namely that of

ecology. In this case, species are represented by vertices

and edges are directed from predator to prey (Cohen et al.,

1970), indicating energy flow. Differently from cellular

networks, food webs are not scale-free and do not present a

high average clustering coefficient, which is an indication

of absence of modularity (Garlaschelli et al., 2003; Garlas-

chelli, 2004). The importance of food webs is related to

species extinction and ecological disasters with potential

applications to environmental management. Other biologi-

cal networks include neural networks and society. Neural

networks are composed of neuronal cells connected by syn-

apses (Watts and Strogatz, 1998) or functional areas con-

nected by pathways (Costa and Sporns, 2005; Costa and

Sporns, 2006) while societies can be organized in terms of

interpersonal relationships such as collaborative work,

e-mails exchanges, friendship, sexual relations. etc. (New-

man, 2003; Boccaletti et al., 2006). Barabási recently sug-

gested that the spread of diseases can be studied in social

networks by looking at different complexity levels (Bara-

bási, 2007). In this case, the top level represents society, the

middle level represents the networks of diseases where two

diseases are connected if they have a common genetic or

functional origin and the lowest level consists of the com-

plex network connecting cellular components such as me-

tabolism, protein interaction and gene regulatory networks.

For instance, some genes or metabolic dysfunctions can be

of fundamental importance in obesity, which itself is re-

lated to diseases such as asthma, insulin resistance and dia-

betes. Furthermore, social interactions can be related to the

spreading of dietary habits and exercise patterns. Thus, the

understanding of the interactions between cellular, disease

and social networks can help in quantifying which factors

contribute the most to individual diseases.

Conclusion and Perspectives

Major changes have occurred in biological research

during the last few decades, progressing all the way from

genome sequencing to functional genomics, animal devel-

opment and even medicine and ecology. Such an evolution

has been largely characterized by not only increasing com-

plexity but also the need to integrate the dynamics of

processes over wider time and space scales. One of the prin-

cipal challenges in biological research concerns the integra-

tion of the different systems in an ordered and effective

manner, therefore increasing the chances of discovering

how important biological properties emerge. Although in-

troduced into the biological sciences only recently, com-

plex networks research provides a powerful tool not only

for organizing the complexity of biological data but also for

integrating the different subsystems involved and has been

wide and effectively applied to the representation, charac-

terization and modeling of several biological systems.

The current article provided an up-to-date review of

the major developments, while focusing on the most recent

advances. Continuing advances in the application of com-

plex networks in biology should be expected over the forth-

coming decades, representing one of the keys to a more

complete understanding of life. However, such perspec-

tives are still subjected to a few limitations. It would be in-

teresting to have larger databases with higher quality and
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confidence (Aderem, 2005). Furthermore, the wide appli-

cation of complex networks concepts and methods by biol-

ogists and physicians could largely benefit not only from

the development of database libraries and software applica-

tions but also from systematic collaboration between re-

searchers with complementary backgrounds. An important

related issue concerns the standardization of data formats,

which would allow smoother integration of the results in

the literature and the existing databases. Finally, because of

the intense multidisciplinary approach implied by the ap-

plication of complex networks to biology, it would be inter-

esting to invest in enhancing the multidisciplinary nature of

research teams. Provided such aspects are properly ad-

dressed, the perspectives are almost unlimited.

One of the most exciting prospects would be the com-

prehensive integration of the several biological subsystems

so that more realistic models and simulations could be ob-

tained. For instance, it would be possible to consider the

evolution of gene families under diverse environmental

changes and phylogenetic constraints, with possible impli-

cations for the development of new therapies. One particu-

larly interesting problem which may benefit from complex

networks research is the study of the gene regulatory net-

works of stem cells while trying to identify interactions

conserved throughout different species which can pinpoint

the basic framework of cell fate determination. All in all,

complex networks are poised to provide one of the most im-

portant keys to systems biology.

Acknowledgments

Luciano da F. Costa is grateful to the Brazilian agen-

cies FAPESP (05/00587-5) and CNPq (proc. 301303/06-1)

for financial support. Francisco A. Rodrigues acknowl-

edges sponsorship by FAPESP (07/50633-9) and Alexan-

dre S. Cristino is grateful to FAPESP (06/61232-2).

References

Aderem A (2005) Systems biology: Its practice and challenges.

Cell 121:511-513.

Albert R (2005) Scale-free networks in cell biology. J Cell Sci

118:4947-57.

Albert R, Jeong H and Barabási AL (2000) Error and attack toler-

ance of complex networks. Nature 406:378-382.

Alon U (2007) An Introduction to Systems Biology: Design Prin-

ciples of Biological Circuits. Chapman and Hall, Boca Ra-

ton, 320 pp.

Babu MM, Luscombe NM, Aravind L, Gerstein M and Teich-

mann SA (2004) Structure and evolution of transcriptional

regulatory networks. Curr Opin Struct Biol 14:283-91.

Balazsi G, Barabási AL and Oltvai ZN (2005) Functional organi-

zation of transcriptional-regulatory networks. FEBS J

272:103-103.

Bar-Joseph Z, Gerber GK, Lee TI, Rinaldi NJ, Yoo JY, Robert F,

Gordon DB, Fraenkel E, Jaakkola TS, Young RA, et al.

(2003) Computational discovery of gene modules and regu-

latory networks. Nat Biotechnol 21:1337-42.

Barabási AL (2007) Network medicine - From obesity to the

“diseasome”. N Engl J Med 357:404-407.

Barabási AL and Albert R (1999) Emergence of scaling in random

networks. Science 286:509-512.

Barabási AL and Oltvai ZN (2004) Network biology: Understand-

ing the cell’s functional organization. Nat Rev Genet 5:101-

113.

Barabási AL, Jeong H, Ravasz R, Néda Z, Vicsek T and Schubert

A (2002) On the topology of the scientific collaboration net-

works. Physica A 311:590-614.

Berg J, Lässig M and Wagner A (2004) Structure and evolution of

protein interaction networks: A statistical model for link dy-

namics and gene duplications. BMC Evol Biol 4:51.

Boccaletti S, Latora V, Moreno Y, Chaves M and Hwang DU

(2006) Complex networks: Structure and dynamics. Physics

Rep 424:175-308.

Bollobás B (1998) Modern Graph Theory, Graduate Texts in

Mathematics. Springer, New York, 184 pp.

Bork P (1991) Shuffled domains in extracellular proteins. FEBS

Lett 286:47-54.

Carroll SB (2000) Endless forms: The evolution of gene regula-

tion and morphological diversity. Cell 101:577-580.

Chartrand G and Lesniak L (1986) Graphs & Digraphs, Wads-

worth Publ. Co., Belmont, 359 pp.

Chothia C (1992) One thousand families for the molecular biolo-

gist. Nature 357:543-544.

Cohen J, Briand F, Newman C and Palka Z (1970) Community

Food Webs: Data and Theory Bio-Mathematics. Springer-

Verlag, Berlin, 220 pp.

Colizza V, Flammini A, Maritan A and Vespignani A (2005)

Characterization and modeling of protein-protein interac-

tion networks. Physica A 352:1-27.

Conant GC and Wagner A (2003) Convergent evolution of gene

circuits. Nat Genet 34:264-266.

Costa LF and Sporns O (2005) Hierarchical features of large-scale

cortical connectivity. Eur Phys J B Condensed Matter

48:567-573.

Costa LF and Sporns O (2006) Correlating thalamocortical con-

nectivity and activity. Appl Phys Lett 89:013903.

Costa LF, Rodrigues FA and Travieso G (2006) Protein domain

connectivity and essentiality. Appl Phys Lett 89:174101-1-

174101-3.

Costa LF, Rodrigues FA, Travieso G and Boas PRV (2007) Char-

acterization of complex networks: A survey of measure-

ments. Adv Physics 56:167-242.

Davidson EH, Rast JP, Oliveri P, Ransick A, Calestani C, Yuh

CH, Minokawa T, Amore G, Hinman V, Arenas-Mena C, et

al. (2002) A genomic regulatory network for development.

Science 295:1669-1678.

Diestel R (2000) Graph Theory. Springer-Verlag, Heidelberg, 431

pp.

Edwards J and Palsson B (2000) The Escherichia coli MG1655 in

silico metabolic genotype: Its definition, characteristics, and

capabilities. Proc Natl Acad Sci USA 97:5528-5523.

Erdös P and Rényi A (1959) On random graphs. Publ Math

6:290-297.

Erdös P and Rényi A (1960) On the evolution of random graphs.

Publ Math Inst Hung Acad Sci 5:17-61.

Faloutsos M, Faloutsos P and Faloutsos C (1999) On power-law

relationships of the Internet topology. Comp Commun Rev

29:251-262.

Complex networks 599



Fields S and Song O (1989) A novel genetic system to detect pro-

tein-protein interactions. Nature 340:245-246.

Flory PJ (1941) Molecular size distribution in three dimensional

polymers. II. Trifunctional branching units. J Amer Chem

Soc 63:3091-3096.

Franklin D, Godfrey V, O’Brien D, Deng C and Xiong Y (2000)

Functional collaboration between different cyclin-depen-

dent kinase inhibitors suppresses tumor growth with distinct

tissue specificity. Mol Cell Biol 20:6147-6158.

Garlaschelli D (2004) Universality in food webs. Eur Phys J B

38:277-285.

Garlaschelli D, Caldarelli G and Pietronero L (2003) Universal

scaling relations in food webs. Nature 423:165-168.

Gavin A, Boesche M, Krause R, Grandi P, Marzioch M, Bauer A,

Schultz J, Rick J, Michon A, Cruciat C, et al. (2002) Func-

tional organization of the yeast proteome by systematic

analysis of protein complexes. Nature 415:141-147.

Gama-Castro S, Jiménez-Jacinto V, Peralta-Gil M, Santos-Zava-

leta A, Peñaloza-Spinola MI, Contreras-Moreira B, Segura-

Salazar J, Muniz-Rascado L, Martinez-Flores I, Salgado H,

et al. (2008) RegulonDB (version 6.0): Gene regulation

model of Escherichia coli K-12 beyond transcription, active

(experimental) annotated promoters and textpresso naviga-

tion. Nucleic Acids Res. 36:D120-D124.

George RA and Heringa J (2002) An analysis of protein domain

linkers: Their classification and role in protein folding. Pro-

tein Eng 15:871-879.

Giot L, Bader J, Brouwer C, Chaudhuri A, Kuang, B, Li Y, Hao Y,

Ooi C, Godwin B, Vitols E, et al. (2003) A protein interac-

tion map of Drosophila melanogaster. Science 302:1727-

1736.

Guelzim N, Bottani S, Bourgine P and Kepes F (2002) Topologi-

cal and causal structure of the yeast transcriptional regula-

tory network. Nat Genet 31:60-63.

Harbison CT, Gordon DB, Lee TI, Rinaldi NJ, MacIsaac KD,

Danford TW, Hannett NM, Tagne JB, Reynolds DB, Yoo J,

et al. (2004) Transcriptional regulatory code of a eukaryotic

genome. Nature 431:99-104.

Hartwell LH, Hopfield JJ, Leibler S and Murray AW (1999) From

molecular to modular cell biology. Nature 402:C47-52.

Hishigaki H, Nakai K, Ono T, Tanigami A and Takagi T (2001)

Assessment of prediction accuracy of protein function from

protein-protein interaction data. Yeast 18:523-531.

Hormozdiari F, Berenbrink P, Prulj N and Sahinalp SC (2007) Not

all scale-free networks are born equal: The role of the seed

graph in PPI network evolution. PLoS Comput Biol 3:e118.

Huerta AM, Salgado H, Thieffry D and Collado-Vides J (1998)

RegulonDB: A database on transcriptional regulation in

Escherichia coli. Nucleic Acids Res 26:55-59.

Ihmels J, Friedlander G, Bergmann S, Sarig O, Ziv Y and Barkai

N (2002) Revealing modular organization in the yeast trans-

criptional network. Nat Genet 31:370-377.

Jeong H, Tombor B, Albert R, Oltvai ZN and Barabási AL (2000)

The large-scale organization of metabolic networks. Nature

407:651-654.

Jeong H, Mason SP, Barabási AL and Oltvai ZN (2001) Lethality

and centrality in protein networks. Nature 411:41-42.

Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, Gerber

GK, Hannett NM, Harbison CT, Thompson CM, Simon I, et

al. (2002) Transcriptional regulatory networks in

Saccharomyces cerevisiae. Science 298:799-804.

Levine M and Tjian R (2003) Transcription regulation and animal

diversity. Nature 424:147-51.

Lockhart DJ and Winzeler EA (2000) Genomics, gene expression

and DNA arrays. Nature 405:27-36.

MacIsaac KD, Wang T, Gordon DB, Gifford DK, Stormo GD and

Fraenkel E (2006) An improved map of conserved regula-

tory sites for Saccharomyces cerevisiae. BMC Bioinfor-

matics 7:113.

Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D and

Alon U (2002) Network motifs: Simple building blocks of

complex networks. Science 298:824-827.

Newman MEJ (2001) Scientific collaboration networks. II.

Shortest paths, weighted networks, and centrality. Phys Rev

E Stat Nonlin Soft Matter Phys 64:016132.

Newman MEJ (2002) Assortative mixing in networks. Phys Rev

Lett 89:208701.

Newman MEJ (2003) Structure and function of complex net-

works. SIAM Review 45:167-256.

Ng S, Zhang Z and Tan S (2003) Integrative approach for compu-

tationally inferring protein domain interactions. Bioinfor-

matics 19:923-929.

Ohno S (1970) Evolution by Gene Duplication. Springer-Verlag,

New York, 160 pp.

Phillips DC (1966) The three-dimensional structure of an enzyme

molecule. Sci Am 215:78-90.

Poyatos J and Hurst L (2004) How biologically relevant are inter-

action-based modules in protein networks? Genome Biol

5:R93.

Rain J, Selig L, De Reuse H, Battaglia V, Reverdy C, Simon S,

Lenzen G, Petel F, Wojcik J, Schaechter V, et al. (2001) The

protein-protein interaction map of Helicobacter pylori. Na-

ture 409:211-215.

Ravasz E, Somera A, Mongru D, Oltvai Z and Barabási A (2002)

Hierarchical organization of modularity in metabolic net-

works. Science 297:1551-1555.

Ren B, Robert F, Wyrick JJ, Aparicio O, Jennings EG, Simon I,

Zeitlinger J, Schreiber J, Hannett N, Kanin E, et al. (2000)

Genome-wide location and function of DNA binding pro-

teins. Science 290:2306-2309.

Richardson JS (1981) The anatomy and taxonomy of protein

structure. Adv Prot Chem 34:167-339.

Schena M, Shalon D, Davis RW and Brown PO (1995) Quantita-

tive monitoring of gene expression patterns with a comple-

mentary DNA microarray. Science 270:467-470.

Schuster S, Fell D and Dandekar T (2000) A general definition of

metabolic pathways useful for systematic organization and

analysis of complex metabolic networks. Nat Biotechnol

18:326-332.

Schwikowski B, Uetz P and Fields S (2000) A network of pro-

tein-protein interactions in yeast. Nat Biotechnol 18:1257-

1261.

Shen-Orr SS, Milo R, Mangan S and Alon U (2002) Network mo-

tifs in the transcriptional regulation network of Escherichia

coli. Nat Genet 31:64-68.

Sole R and Fernandez P (2003) Modularity “for free” in genome

architecture? Arxiv preprint q-bio/0312032.

Teichmann SA and Babu MM (2004) Gene regulatory network

growth by duplication. Nat Genet 36:492-496.

Thieffry D, Huerta AM, Perez-Rueda E and Collado-Vides J

(1998) From specific gene regulation to genomic networks:

600 Costa et al.



A global analysis of transcriptional regulation in Esche-

richia coli. Bioessays 20:433-440.

Uetz P and Hughes RE (2000) Systematic and large-scale two-hy-

brid screens. Curr Opin Microbiol 3:303-308.

Vázquez A and Moreno Y (2003) Resilience to damage of graphs

with degree correlations. Phys Rev E Stat Nonlin Soft Mat-

ter Phys 67:015101.

Vázquez A, Flammini A, Maritan A and Vespignani A (2003a)

Global protein function prediction from protein-protein in-

teraction networks. Nat Biotechnol 21:697-700.

Vázquez A, Flammini A, Maritan A and Vespignani A (2003b)

Modeling of protein interaction networks. Complexus

1:38-44.

Vogelstein B, Lane D and Levine AJ (2000) Surfing the p53 net-

work. Nature 408:307-310.

Wagner A (2001) The yeast protein interaction network evolves

rapidly and contains few redundant duplicate genes. Mol

Biol Evol 18:1283-1292.

Wagner A (2003) How the global structure of protein interaction

networks evolves. Proc Biol Sci 270:457-466.

Wagner A and Fell DA (2001) The small world inside large meta-

bolic networks. Proc Biol Sci 268:1803-1810.

Walhout A, Boulton S and Vidal M (2000) Yeast two-hybrid sys-

tems and protein interaction mapping projects for yeast and

worm. Yeast 17:88-94.

Watts DJ and Strogatz SH (1998) Collective dynamics of small-

world networks. Nature 393:440-442.

West DB (2001) Introduction to Graph Theory. Prentice Hall, Up-

per Saddle River, 588 pp.

Wray GA, Hahn MW, Abouheif E, Balhoff JP, Pizer M, Rockman

MV and Romano LA (2003) The evolution of transcrip-

tional regulation in eukaryotes. Mol Biol Evol 20:1377-419.

Wuchty S (2001) Scale-free behavior in protein domain networks.

Mol Biol Evol 18:1694-1702.

Wuchty S (2002) Interaction and domain networks of yeast. Pro-

teomics 2:1715-1723.

Wuchty S, Oltvai ZN and Barabási AL (2003) Evolutionary con-

servation of motif constituents in the yeast protein interac-

tion network. Nat Genet 35:176-179.

Yu H, Luscombe NM, Qian J and Gerstein M (2003) Genomic

analysis of gene expression relationships in transcriptional

regulatory networks. Trends Genet 19:422-427.

Internet Rescources

KEGG: www.genome.jp/kegg.

Associate Editor: Sandro José de Souza

License information: This is an open-access article distributed under the terms of the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Complex networks 601


