
NP-complete. There are many approaches for the CLSP 
with a single item, with multiple items and with only one 
or multiple production centers. Usually these problems 
are tackled heuristically [24, 12, 5], though exact solution 
methods exist to solve them [4], [19] and [2]. 

The multi-plant capacitated lot sizing problem 
(MPCLSP) with multiple items and periods is composed 
of multiple production centers that produce all the same 
items as well as enabling transfers amongst the plants. 
Sambasivan and Schimidt [17] solved this problem with a 
heuristic based on transfers of production lots between the 
periods and the plants, while even better results were ob-
tained by Sambasivan and Yahya [18] using a Lagrangian 
relaxation. Nevertheless, Nascimento et al. [14] intro-
duced a GRASP (Greedy Randomized Adaptive Search 
Procedures) heuristic as well as a path relinking intensifica-
tion procedure that outperformed the heuristic proposed 
in [18]. 

There have been few studies on MPCLSP and no ap-
proach with setup carry-over was presented until now. The 
problem with setup carry-over considers two additional
possibilities: to conserve the setup for one item along two 
consecutive periods, i.e., the setup carry-over occurs when 
the last item of a certain period is the first item to be pro-
duced in the next period; to allow using the idle capacity 
in one period in order to make the setup of the first item 
to be produced in the next period. Besides reducing setup 
cost, this strategy provides additional capacity with the 
lack of setup time between consecutive periods. As can be 
observed, it is necessary to judge which items are the first 

Abstract 

This paper addresses the capacitated lot sizing problem
(CLSP) with a single stage composed of multiple plants, 
items and periods with setup carry-over among the periods. 
The CLSP is well studied and many heuristics have been 
proposed to solve it. Nevertheless, few researches explored the 
multi-plant capacitated lot sizing problem (MPCLSP), which 
means that few solution methods were proposed to solve it. 
Furthermore, to our knowledge, no study of the MPCLSP 
with setup carry-over was found in the literature. This paper 
presents a mathematical model and a GRASP (Greedy 
Randomized Adaptive Search Procedure) with path relinking 
to the MPCLSP with setup carry-over. This solution method 
is an extension and adaptation of a previously adopted 
methodology without the setup carry-over. Computational
tests showed that the improvement of the setup carry-over is 
significant in terms of the solution value with a low increase 
in computational time. 

Keywords: GRASP, path relinking, lot sizing, multiplant,
carry-over. 

1. INTRODUCTION

The capacitated lot sizing problem (CLSP) is a tacti-
cal production problem which consists in deciding when 
and how many items to produce minimizing the produc-
tion costs assuring the demand constraints. According 
to Maes et al. [13] the decision problem to determine if 
there is a feasible solution to the CLSP with setup time is 
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and the last to be produced along the periods. In addition 
to this, it is important to know what is the setup state of 
the machine at the end of a period, i.e., what item is that 
the machine is ready to produce. The setup carry-over has 
had widespread success in the single-plant lot sizing prob-
lem as can be seen in [10, 20, 9, 16, 21, 3]. 

This paper presents a mathematical model and a 
GRASP heuristic embedded with a path relinking strat-
egy to approximately solve the MPCLSP with multiple 
items and multiple periods. The solution method is an 
extension of previous research of Nascimento et al. [14] 
on the same problem without the setup carry-over. To 
treat the setup carry-over we modified the local search of 
the GRASP heuristic adding some moves in its neighbor-
hood. The moves used were based on a modified version 
of the approach of Gopalakrishnan et al. [9] to consider 
the various plants. In order to test and evaluate the ef-
ficiency of the proposed heuristic with setup carry-over 
considering a single plant, we compared it with the single-
plant tabu search heuristic proposed by Gopalakrishnan 
et al. [9]. For such, we applied our heuristic to the single-
plant instances from [24], i.e., the same set of instances 
used by Gopalakrishnan et al. [9] in their tests. We also 
compared the solutions of the heuristic without setup 
carry-over with the solutions of the Lagrangian heuristic 
proposed by Trigeiro et al. [24]. Regarding the multi-plant 
experiment, tests were performed using the data set pro-
posed in [14], that is based on the instances from [23] 
for the CLSP with parallel machines. Computational tests 
indicate that the setup carry-over showed good perform-
ance for both the single-plant and the multi-plant prob-
lems with a slight increase of computational time in the 
latter case. Moreover, in both cases the strategy achieved 
better solutions for all instances. 

The remainder of this paper is organized as follows. 
Section 2 provides a mathematical model for the MPCLSP 
with setup carry-over. Section 3 presents the solution ap-
proach while Section 4 shows the computational tests and 
its results. Finally, Section 5 concludes the paper with 
some remarks and future research directions. 

2. MATHEMATICAL FORMULATION

Follows the proposed representation of the MPCLSP 
in a mathematical model relating the carry-over con-
straints. This formulation was inspired by the multiplant
model presented in [17] without setup carry-over and 
by the capacitated lot sizing model presented in [16] for 
problems with setup carry-over. 

,

[

( )]

i NI j MI t TI ijt ijt ijt ijt

k MI k jijt ijt ijkt ijkt

min c x s y

h I r w

Subject to:

1
,

,
=

ijt ijt ijkt
k MI k j

iljt ijt ijt
l MI l j

I x w

w I d , ,i j t (1)

=
( )( )

T

ijt ijl ijt ijt
j MI l t

x d y u , ,i j t (2)

( )ijt ijt ijt ijt jt
i NI

b x f y C ,j t (3)

1ijt
i NI

u ,j t (4)

, 1 , 1ijt ij t ij tu y u , ,i j t (5)

, 1 , 11ijt ij t kj tu y y , , ,i j t k i (6)

0 = 0ijI ,i j (7)

1 = 0iju ,i j (8)

, 0ijt ijtx I , ,i j t (9)

0ijktw , , ,i j k t (10)

, {0,1}ijt ijty u , ,i j t (11)

Indexes 

T is the number of periods in the planning horizon;

N is the number of items in the planning horizon; 

M is the number of plants in the planning horizon; 

TI is the set composed of the elements 1,...,T ; 

NI is the set composed of the elements 1,...,N;

MI is the set composed of the elements 1,...,M;

Data

d
ijt
 is the demand of item i at plant j in period t;

C
jt
is the available capacity of production at plant j in period t;

b
ijt
 is the time to produce a unit of item i at plant j in period t;

f
ijt
 is the setup time to produce item i at plant j in period t;

c
ijt
 is the unit production cost of item i at plant j in period t;

s
ijt
 is the setup cost of item i at plant j in period t;

h
ijt
 is the unit inventory cost of item i at plant j in period t;

r
ijkt

 is the unit minimum transfer cost of item i from plant 

j to k in period t;

Variables

x
ijt
 is the quantity of item i produced at plant j in period t;

I
ijt
 is the quantity of item i stored at plant j at the end of period t;

w
ijkt

 is the quantity of item i transferred from plant j to plant k
in period t;
y

ijt
 is a binary variable that assumes value 1 if there is setup of 

item i at plant j in period t, and 0, otherwise; 
u

ijt
 is a binary variable that assumes value 1 if a setup carry-over 

of item i at plant j came from period t – 1 to period t, and 0, 
otherwise. 
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The objective function aims to minimize the produc-
tion, setup, inventory and transfer costs, subject to the 
problem constraints. Constraints (1) ensure that the de-

mand d
ijt

d  is satisfied by production at plant 
t

j in period j
t or by inventory from the previous period in the same t
demanded plant or by production transfers from another 

plants. Constraints (2) ensure that if x
ijt

 is positive, one
t

of y
ijt

 and u
ijt

 variables assumes the value 1, i.e., there is
t

no setup to the production in period t only if the setupt
carry-over from the previous period occurs. Furthermore, 
constraints (3) restrict the capacity of each plant and each 
period, while the constraints (4) limit to one the number 
of setup carry-over for each period and plant. Constraints 

(5) force u
ijt

= 0 if both there was not setup of item i ini

period t – 1 at plant t j (j y(
ij,t-1

 = 0) and the setup of item i was

not carry-over in this plant from period t – 2 (t u
ij,t-1

= 0).
Constraints (6) allow a setup carry-over of item i in periodi

t at plantt j, i.e, u
ijt

 = 1, only if there was setup of such item in 
t

the previous period (y(
ij,t-1

 =1) or the plant did not produce 
any item different than i in the previous period and the i

setup carry-over came from period t – 2 (t y((
kj,t-1

= 0 k and

u
ij,t-1

 = 1).
Constraints (7) and (8) assume, respectively, null ini-

tial inventory and no initial setup carry-over to period 1, 

while the constraints (9) and (10) ensure that x
ijt

, I
ijt

I  and

w
ijkt

 variables of the problem are all positives. Finally, the
t

constraints (11) assume that y
ijt

 and u
ijt

 and z
ijt

 are bina-
ries.

3. SOLUTION METHOD

In this paper, we propose a GRASP heuristic designed
to deal with the requirements and constraints of the 
mathematical model of Section 2. GRASP is a semi-greedy 
metaheuristic proposed in [7] and [15]. It is a two phase 
metaheuristic in which the first one consists of the semi-
greedy constructive phase and the second one is the local 
search. For each solution built in the constructive phase,
is applied the local search. In the proposed GRASP, a path 
relinking intensification strategy was incorporated. Many 
researchers have exploited GRASP and its hybridization 
with path relinking ([11]). 

Path relinking is a metaheuristic proposed in [8] 
which looks for a better solution in the path between two 
solutions, the initial solution and guide solution. The goal 
is better explores the search space. The basic idea behind 
our solution method is to find the initial solutions as in 
[14], and then to apply the local search in each one of 
them. If the resulting solution is not feasible, then a fea-
sibility phase is applied to it. In case that the resulting so-
lution of this feasibility phase is feasible, it will pass by 

the local search procedure in order to improve its quality. 
During the GRASP, a pool with the best solutions is kept. 
After GRASP to be finished, the path relinking phase is 
performed. The GRASP with path relinking proposed in 
this paper consists of the flow chart presented in Figure 1. 
Let MAX be the number of the initial solutions generated 
by GRASP constructive phase. 

The description of the proposed solution method does 
not use the carry-over variables of Section 2.

3.1. INITIAL SOLUTION

We obtain an initial solution for the problem by re-
laxing the capacity constraints (3) and setup carry-over
constraints (4)-(6). It is easy to see that the relaxed pro-
blem can be decomposed into n independent uncapacita-
ted lot sizing with multi-plant subproblems one for each 
item i. If we sum up the demands of all plants for each  

period (d’
it

= ÓM
j=1

d
ijt

d ), this problem can be viewed as its 
uncapacitated lot sizing problem with parallel machines, 

jj j

which consists of minimizing a concave function over a 
convex set (see [22]). It is well known that the minimum 
occurs in a extreme point that, in the case of a polyhedral 
set, has at most the number of constraints (T) nonzeroTT

variables. If d’
it

d  > 0, then either
t

I
ijt

I  > 0 or x
ijt

 > 0 for some
j 1, ..., M}. Thus, every extreme point must satisfy the 

j j
MM

following property:

I
ij,t-1

I x
ijt

 = 0 j = 1...j M,MM t = 1...t T.TT (12)

START k = 1

Constructive
phase

Local
search

k = k + 1

Feasibility
phase

Read data

Is the solution
feasible?

Is the solution
feasible?

Is the solution
one of the 20 best? Is k MAX?

Update the elite
solution pool

Path relinking
phase

Print the best
solution

Yes

Yes

Yes

Yes

No

No

No

No

Figure 1. Flow chart of the hybrid heuristic. This figure shows a scheme 
of the proposed heuristic.
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This property is a generalization of the single machine 

system studied by Wagner and Whitin [26] (see also [1], 

[6] and [25]). This subproblem can be solved by the dy-

namic programming algorithm proposed in [22] using the 

following recursive equation:

0 <
1

{ } for =1, , ,min
=

for = 0

ik ijkt
k t

j Mit

t T

t0 (13)

where

'
, 1 , 1

= 1

1
'

= 1 = 1

=
t

ijkt ij k ij k ir
r k

t t

ijl ir
l k r l

s c d

h d (14)

To solve these subproblems, as in [14], we used a 

semi-greedy adopted version of the dynamic programming 

forward recursion (13) as described in Procedure 1. The 

initial solution is obtained by applying Procedure 1 for all 

items using a parameter [0, 1] adopting the same idea 

to find initial solutions of the original GRASP. 

For the resulting initial solution we set the setup 

carry-over parameters as described in Procedure 2. These 

parameter settings are different from Gopalakrishnan et al. 

[9]. We also tested their initial parameter settings, however 

the proposed strategy performed better. In Procedure 2, a
jt

and b
jt
 denote, respectively, the first and last items pro-

duced in period t at plant j. Let e
jt
 be the state of the ma-

chine in the end of period t at plant j.
Most of the initial solutions are infeasible because 

of the unrestricted capacity of the procedure. To evalu-

ate the solution in this case, the total overtime is multi-

plied by a penalty which is added to the solution value. 

The local search performs a search for a feasible and 

good solution in the neighborhood of the solution 

found. 

3.2. LOCAL SEARCH PROCEDURE

After the seed solution has been constructed, it is 

improved with the local search. In this paper, the local 

search has a different structure from the one presented 

in [14] because here the carry-over moves were added to 

its neighborhood. In the following, we describe all the 

moves which compose the neighborhood of the local 

search procedure. These moves are based on the study 

of Gopalakrishnan et al. [9] extended here to multiple 

plants. 

Procedure 1 Initial Solution (i )

1: Calculate d’
it
, for t = 1...T ; 

i0
 = 0

2: for t =1,...,T do

3: Calculate 
ijkt

 for t =1...T , k = 0...t – 1 and j = 1...M;

4: Let S be composed by the elements s with the values

g(s) {
ik

 +
ijkt

}, where k = 0...t – 1 and j =1...M;

5: gmin  min {g(s)};
                  s S

6: gmax  max {g(s)};
                   s S

7: Build the RCL (restricted candidate list)
 using the elements of S such that 
g(s)  [gmin, gmin + (gmax – gmin)] with s S;

8: Choose randomly one element s  RCL and 

let 
it

g(s);

9: end for

10: Set the transfer variables; 

Procedure 2 Initial Carry-over parameters(Sol)

1: Initiate the carry-over parameters a, b and e with zero;

2: for j = 1...M and t = 1...T – 1 do

3: S  {i|i NI and y
ijt

 = y
ij,t + 1

 = 1};

4: if S Ø then

5: b
jt
, e

jt
, a

j,t+1
 min{i|i S};

6: end if

7: end for

8: for t = 1...T do

9: if b
jt
 = 0 then

10: b
jt
, e

jt
 min {i|y

ijt
 = 1 and a

jt
i};

1 i N

11: end if

12: if a
jt
 = 0 then

13: a
jt

 min {i|y
ijt

 = 1 and b
jt

i};
1 i N

14: end if

15: if b
jt
 = 0 and a

jt
 0 then

16: b
jt
, e

jt
a

jt
;

17: end if

18: if a
jt
 = 0 and b

jt
 0 then

19: a
jt

 b
jt
;

20: end if

21: if a
jt
 = 0 and b

jt
 = 0 and t > 0 then

22: a
jt
, b

jt
, e

jt
b

jt –1
;

23: end if

24: end for
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of production of an item to the same plant in 
another period or to another plant. Depending 
on the origination and destination periods, just 
a determined amount of production can be 
transferred. Suppose that you want to transfer 
a certain quantity of item i from plant j in the 
period t to the plant k in the period r. Then if 
r t, i.e., you want to anticipate the production 
of item i, it is possible to transfer at maximum 
x

ijt
. If t < r, i.e., you desire to postpone the pro-

duction of item i, then the maximum quantity is 

allowed to transfer is min I
iju

, i.e., the minimum
       t u r–1

inventory between periods t and r 1. For this 
move, we also tested two others quantities to 
transfer. The quantity that would finish with the 
overtime of period t at plant j if this quantity is 
lower than the maximum possible, and the maxi-
mum quantity that would not cause overtime in 
period r at plant k also if this quantity is lower 
than the maximum quantity allowed. Therefore, 

to be produced in a certain period t is different 
from the first one to be produced in the period 
t +1, with 1 t T –1. It consists in swapping the 
last item produced in period t with other item i to 
be produced in the same period which is also to 
be produced in period t +1. Furthermore, if such 
item i exists, then the first item in period t + 1
also must be changed to i

of the first item to be produced in period t + 1
to the end of period t, with 1 t T –1. By this 
move, we try to provide more capacity in period 
t +1 as we use idle capacity in period t. The saving 
comes from the overtime reducing. 

-

postpones the setup of the first item to be pro-
duced in period t +1 to the beginning of period 
t +1 when this setup is programmed to be set at 
the end of the period t, with 1 t T –1. 

Procedure 3 shows the local search procedure. It 
uses five parameters in order to evaluate the moves of 
its neighborhood and it has one output parameter. The 
five parameters are: the item which will be evaluated for 
transfer (i); the plant (j) and the period (t) of transfer 
origination; the plant (k) and the period (r) of transfer 
destination. The output of this procedure is the resulting 
solution value. 

After the solution becomes feasible, it is not allowed 
moves which make the solution infeasible. If local search 
procedure does not find a feasible solution, we apply the 
feasibility phase proposed in [23] into the current solution. 

3.3. PATH RELINKING PHASE

The path relinking has emerged as a powerful method 
for improving both robustness and stability of the GRASP. 
This strategy may offer great flexibility and variety, afford-
ing higher quality solutions. At same time as producing 
the solutions of GRASP, we select the best solutions and 
proceed the path relinking with these solutions. At each 
step of the path relinking procedure, it looks for solutions 
between two solutions. The local search is also applied in 
this phase at each step of the path. The pseudo code of the 

path relinking phase is given in Procedure 4. Let Sol
0
 and 

Sol
f
 be, respectively the initial, and guide solutions and 

best_sol be the value of the current best solution. 
In our heuristic, every elite solution is considered to be 

the guide and the initial solutions, i.e., every combination 

Procedure 3 Local Search (Solution)

1: it  0;

2: while it MAX_ITERATIONS do
3:

Solution that enables the best so lution consi-
dering all combinations of (i, j, k, t, r) with i NI, j, k
MI and t, r T I;

4: if there is no move that save the Solution value 

then

5: return the Solution value; 

6: end if 
7: it it + 1; 

end while

return the Solution value;

Procedure 4 Path relinking (Sol
0
,Sol

f
 )

1: best_sol  min{Sol
0
 value, Sol

f
 value}

2: S = {1..N}

3: while S Ø do

4: Change in the Sol
0
 the item i S configuration 

by the item i Sol
f
 configuration that results in the

best solution value. 

5: S = S  {i};

6: new_sol  Local search(Sol
0
);

7: if new_sol value is better than best_sol then

8: Keep new_sol and let best_sol new_sol 
value;

9: end if 

10: end while

11: return best_sol;
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X set has 180 instances with 10 items, 180 instances with 
20 items and 180 instances with 30 items. In this set, every 
instance has 20 periods. The number of initial solutions of 
the heuristic we considered for the instances of E, W, F 
and G sets was 1000. Regarding the X set, the number of 
initial solutions was 50. These values were adopted to let 
the heuristic find the solution in a reasonable time. 

of initial and guide solutions in the elite solution pool is 
taken into account. 

4. COMPUTATIONAL TESTS

The heuristic was coded in C and all tests were per-
formed on a AMD Athlon 64 3000+ processor with 
1 GB RAM under the Microsoft Windows XP Professional 
v. 2002 operating system. For the purpose of comparison, 
we used the data set of [23] modified to multiple plants 
as in [14]. Furthermore, the data set of Trigeiro et al. [24] 
was used for a more comprehensive investigation of the 
heuristic’s behavior under single-plant problems. In or-
der to evaluate the described heuristic, we compare the 
GRASP with path relinking (GPR) with GRASP with 

The gap between the original heuristics without the 
setup carry-over and the heuristics considering the setup 
carry-over is given by the following equation: 

*100%h hco

h

z z
gap

z
(15)

where: 

z
h
 is the solution of the heuristic without setup carry-over; 

z
hco

 is the solution of the heuristic with setup carry-over. 
In order to compose the pool of solutions for the path 

relinking phase, we kept the 20 best solutions of GRASP. 
Regarding the local search, the number of iterations con-
sidered until we get a feasible solution is 1000 and a maxi-
mum of 200 iterations for the local search around the fea-
sible solution. Adopting  = 0.1, the method performed 
better, since the random parameter further diversification 
of solutions. The penalty value adopted was 50. These 
values of parameter settings were adjusted after some 
tests. Moreover, we have run the heuristic 10 times due 
to its random parameter. As result, the results were stable 
and every run was very close to the average, what shows 
the stability and robustness of the heuristic. Therefore, we 
have just reported the average of the results these runs. 

4.1. SINGLE-PLANT CLSP EXPERIMENT

To better evaluate the proposed heuristic, we tested 
it with instances presented in [24] composed by just one 
plant. These instances includes the E, W, F, G and X sets 
which contain respectively, 58, 12, 70, 71 and 540  instances. 
In the E and F sets, all instances contain 6 periods and 
15 items. The W set has 6 instances with 4 items and 15 pe-
riods, and 6 instances with 8 items and 15 periods. The 
G set includes 46 instances with 6 periods and 15 items, 
5 instances with 24 periods and 15 items, 5 instances with 
6 periods and 30 items, 5 instances with 12 periods and 
30 items and 5 instances with 24 periods and 30 items. The 

Table 1. Comparision of three heuristics without setup carry-over. This 
table shows the average gaps of E, W, F, G and X set of instances with 
Trigeiro’s heuristic (TRI), GPR and the tabu search heuristic proposed 
in [9] (TABU) relating to the lower bound of the Lagrangian relaxation 
of Trigeiro et al. [24]. AG represents the average gap. 

Dataset EW FG X

AG (%) AG (%) AG (%) 

GPR 2.79 3.03 4.0

TRI 3.87 3.97 2.13 

TABU - 3.20 4.0

At first, we present in Table 1 the average gap between 
the lower bound of Lagrangian relaxation of [24] and the 
solutions of GPR for each instance without the setup carry-
over to estimate the effectiveness of setup carryover. So, we 
showed the average gaps relating to these same lower bounds 
of the Trigeiro’s heuristic (TRI) and the tabu search heuris-
tic (TABU) proposed in [9]. The presented results of TABU 
were obtained in [9]. As result, GPR obtained the lowest 
average gap in the E and W (EW) and F and G (FG) in-
stances. Regarding EW average gap, GPR presented 2.79% 
whereas TRI resulted in 3.87%. In [9] was not reported the 
values of these groups of instances, because the authors used 
them to adjust their heuristic parameters. Considering FG 
group, GPR presented an average gap of 3.03% while TRI and 
TABU achieved an average gap of, respectively, 3.97% and 
3.20%. Concerning the group X of instances, TRI achieved 
the best average gap with 2.13% against 4.0% from GPR and 
TABU. The average time of GPR to perform the heuristic was 
15 seconds for EW, 71 seconds for FG and 85 seconds for X. 
TRI took on average less than 1 second to find their solutions. 
TABU average times were around 20 seconds for FG and 81 
seconds for X. It is worthy to mention that TABU did not find 
feasible solutions for four instances from group X, while GPR 
and TRI found feasible solution for every instances. 

average time of each set of instances separately. The re-
sults show that, except for X set, the average gap belongs 
to the interval 15% to 21%, which shows a significant sav-
ing of the setup carry-over constraints in the model. The X 
set did not achieve a such considerable performance, but 
it presented a suitable saving of around 5%. 
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The set of instances are identified by the initial letters 
of the category of instances they represent according to 
their capacity which is normal (N) or tight (T), their setup 
cost which is divided in low (L) and high (H) and their 
setup time which embraces low (L) and high (H) (e.g., the 
class of instances THH has tight capacity, high setup cost 
and high setup time). 

Firstly, we test GPR in order to measure the effective-
ness of the solution without setup carry-over relating to its 
linearly relaxed model solution. This relaxation takes into 
account the variables y

ijt
 considering them in the range 

[0, 1]. The results are presented in Table 4. 
Table 3 presents the results of the setup carry-over 

that the single-plant instances with 15 periods and 6 items 
obtained a greater effectiveness measure gap with around 
20% on average, and this gap falls as well, as the number 
of items get higher. This fact happens for the gap between 

These values reveal the good performance of the setup car-
ry-over with these instances and, in a more general aspect, 
for the single-plant CLSP. Furthermore, Table 3 shows 
that for every set of instances, the tabu search proposed 

single-plant instances, with near results from TABU. 

Table 2

(AG2) considering the E, W, F, G and X set of instances. Furthermore, 

Dataset AG1 (%) AG2 (%) AT (sec)

W
F
G
X

Table 3
and the tabu search heuristic proposed in [9]. These gaps are between 
the carry-over heuristics and the benchmark TRI heuristic. The tabu 
search average gaps are given in [9]. The dataset is represented by the 
number of items x number of periods, e.g., 6 x 15 represents all instances 
with 6 items and 15 periods. 

Dataset Gap of setup carry-over (%)

TABU 

6 x 15 20.37 27.34 

12 x 15 9.71 11.29 

24 x 15 3.84 5.59

6 x 30 18.43 23.19 

12 x 30 8.04 9.48

24 x 30 3.46 4.04 

10 x 20 9.21 14.57 

20 x 20 3.00 5.90

30 x 20 1.09 3.38

4.2. MULTI-PLANT CLSP EXPERIMENT

At this stage, we tested the heuristic with multi-plant in-
stances reported in [14] which consist of 8 sets composed 
by 120 instances each one resulting in 960 instances. Each 
set includes 5 instances for every combination of 3, 4, 5, and 
6 periods with 3 and 4 plants and with 5, 10 and 15 items. 
More details about these instances can be found in [14]. The 
number of initial solutions set for these instances is 1000. 

Table 4. Gaps between GPR and linear relaxed solution. The first column 
of this table presents the set of instances. The second to last columns 
present, respectively, the average gap between GPR and the linear re-
laxed solution and the average time of the heuristic. 

Dataset Average Gap (%) Mean Time (sec) 

THH 28.04 21.26 

THL 28.98 19.97 

NHH 24.91 15.62 

NHL 25.75 17.33 

TLH 8.66 31.76 

TLL 8.78 32.38

NLH 8.18 25.76 

NLL 8.25 27.95 

As expected, the results show that the average gaps for in-
stances with high setup time are greater than average gaps for 
instances with low setup time. This fact also happens for prob-

found a feasible solution for every solution for this dataset. 
Table 5 shows that in the first four classes of instances 

whose setup costs are high, the gain in gap comes around 
7.8% on average. Moreover, the instances with 5 periods 
achieved the largest gaps considering all sets of instances. 
This fact demonstrates that the setup carry-over is more 
effective with few periods obtaining a significant enhance-
ment mainly for the classes with high setup costs. The 
classes with low setup cost and 5 periods presented a av-
erage gap of 3.7%. In all cases, the computational time 

Then the carry-over showed a good performance for the 
MPCLSP even though for the low setup cost instances the 
improvement was not substantial. 

Regarding the optimality gap, we performed tests using 
CPLEX v.11 in order to obtain the optimal solutions for 
the linear relaxation of the mathematical model proposed 
in Section 2. This relaxation enables the binary variables 
to be any value in the interval [0, 1]. Then, for every multi-
plant instance, we calculate the gap relating to the optimal 
relaxed solution as showed in Table 6. 
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5. CONCLUSIONS

In this paper we presented a novel mathematical formu-
lation to the MPCLSP with setup carry-over. Furthermore, 
it addressed an extension of previous research of GRASP 
with path relinking to solve this problem. The setup carry-
over can avoid an extra capacity use through setup saving 
when the first item to be produced in a given period is the 
same last produced item in the previous period. Moreover, 
if a period has extra capacity use, we can transfer the setup 
of the first item to be produced in this period to the end 
of the previous period, enabling the saving of this extra ca-
pacity. The setup carry-over strategy has been investigated 
by many researchers and has achieved good results for the 
single-plant CLSP, even if until now no study for the multi-
plant CLSP was developed. Furthermore, the GRASP is 
potentially useful and one of the most appropriate tech-
niques for providing solutions to these models. 

To check the robustness of the setup carry-over to 
the multi-plant CLSP, we have tested different types of 
CLSP concerning the single and the multi-plant prob-
lems. From the results obtained for the MPCLSP with 
setup carryover, it is observed that the classes with low 
setup cost have, in general, performed less efficiently 
than the instances with high setup cost, whose saving 
was substantial mainly for few period instances. In con-
trast, the classes with a single-plant had performed better 
than the multiplant instances. 

Because of the promising results, the approach pre-
sented might have potential applications to a variety of 
lot sizing problems. Further research on the use of setup 
carry-over should be principally directed toward the CLSP 
with parallel machines which has similar properties to the 
MPCLSP. 
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