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Expression of SMAD proteins,  
TGF-beta/activin signaling 
mediators, in human thyroid tissues
Expressão de proteínas SMAD, mediadores da sinalização 
de TGF-beta/activina, em tecidos de tiroide humana
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absTRacT 
Objective:	To	 investigate	 the	 expression	 of	 SMAD	 proteins	 in	 human	 thyroid	 tissues	 since	
the	inactivation	of	TGF-β/activin	signaling	components	is	reported	in	several	types	of	cancer.	
Phosphorylated	SMAD	2	and	SMAD3	(pSMAD2/3)	associated	with	the	SMAD4	induce	the	signal	
transduction	generated	by	TGF-β	and	activin,	while	SMAD7	inhibits	this	intracellular	signaling.	
Although	TGF-β	and	activin	exert	antiproliferative	roles	in	thyroid	follicular	cells,	thyroid	tumors	
express	high	levels	of	these	proteins. Materials and methods:	The	protein	expression	of	SMADs	
was	evaluated	 in	multinodular	goiter,	 follicular	adenoma,	papillary	and	follicular	carcinomas	
by	 immunohistochemistry. Results: The	 expression	 of	 pSMAD2/3,	 SMAD4	 and	 SMAD7	 was	
observed	 in	 both	 benign	 and	 malignant	 thyroid	 tumors.	 Although	 pSMAD2/3,	 SMAD4	 and	
SMAD7	exhibited	high	cytoplasmic	staining	in	carcinomas,	the	nuclear	staining	of	pSMAD2/3	
was	not	different	between	benign	and	malignant	lesions.	Conclusions: The	finding	of	SMADs	
expression	in	thyroid	cells	and	the	presence	of	pSMAD2/3	and	SMAD4	proteins	in	the	nucleus	
of	tumor	cells	indicates	propagation	of	TGF-β/activin	signaling.	However,	the	high	expression	
of	the	inhibitory	SMAD7,	mostly	in	malignant	tumors,	could	contribute	to	the	attenuation	of	the	
SMADs	antiproliferative	signaling	in	thyroid	carcinomas.	Arq Bras Endocrinol Metab. 2010;54(4):406-12	
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Resumo 
Objetivo: Investigar	a	expressão	de	proteínas	SMAD	em	tecidos	de	tiroide	humana	desde	que	
a	inativação	dos	componentes	da	sinalização	de	TGF-β/activina	é	relatada	em	diversos	tipos	de	
câncer.	SMAD	2	e	SMAD3	fosforilados	(pSMAD2/3)	associados	com	SMAD4	induzem	a	trans-
missão	do	sinal	gerado	por		TGF-β	e	activina,	enquanto	SMAD7	inibe	essa	sinalização	intracelu-
lar.	Embora	TGF-β	e	activina	exerçam	efeitos	antiproliferativos	nas	células	foliculares	da	tiroide,	
tumores	de	tiroide	expressam	altos	níveis	dessas	proteínas.	Materiais e métodos:	A	expressão	
proteica	de	SMADs	foi	avaliada	em	bócio	multinodular,	adenoma	folicular,	carcinomas	papilífero	
e	folicular	por	imuno-histoquímica. Resultados:	A	expressão	de	pSMAD2/3,	SMAD4	e	SMAD7	foi	
observada	tanto	em	tumores	benignos	como	malignos	da	tiroide.	Embora	pSMAD2/3,	SMAD4	
e	SMAD7	exibissem	alta	positividade	citoplasmática	em	carcinomas,	a	positividade	nuclear	de	
pSMAD2/3	não	foi	diferente	entre	lesões	benignas	e	malignas	da	tiroide.	Conclusões: O	achado	
da	expressão	de	SMADs	em	células	tiroidianas	e	a	presença	das	proteínas	pSMAD2/3	e	SMAD4	
no	núcleo	de	células	tumorais	indicam	propagação	da	sinalização	TGF-β/activina.	Contudo,	a	alta	
expressão	de	SMAD7	inibitório,	principalmente	em	tumores	malignos,	poderia	contribuir	para	
atenuação	da	sinalização	antiproliferativa	de	SMADs	em	carcinomas	de	tiroide.	Arq Bras Endocrinol 
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inTRoDucTion 

Thyroid tumors are the most common neoplasms 
of the endocrine system (1). They are classified as 

benign tumors (adenomas and multinodular goiters) 
and malignant tumors, which are allocated as differen-
tiated (papillary and follicular carcinomas) and poorly 
differentiated (anaplastic carcinoma) (1). The thyroid 
malignant transformation is dependent on molecular 
alterations that result in a disruption of several intra-
cellular signaling, including the unbalance of TGF-β/
activin inhibitory pathway, by a mechanism not yet 
clarified (2,3).

The TGF-β superfamily is comprised of related 
proteins including the TGF-βs, activins and bone 
morphogenetic proteins which affect a wide variety of 
biological processes, regulating cell proliferation and  
differentiation, apoptosis and development (4,5).  
TGF-β acts by binding to specific serine/threonine 
kinase transmembrane receptors, which induce intra-
cellular signaling mediated by SMAD proteins. The 
receptors complexed to TGF-β phosphorylate and 
activate the receptor-regulated SMADs (R-SMAD), 
SMAD2 and SMAD3. The activation of SMAD2/
SMAD3 allows their interaction with common-me-
diator SMAD (co-SMAD), SMAD4, and then this 
complex moves to the nucleus where it regulates gene 
transcription. Although activin binds to its own spe-
cific receptors, the same set of SMADs is recruited 
for its signal transduction (6-10). This TGF-β/acti-
vin signaling is attenuated by SMAD7, an inhibitory 
SMAD (I-SMAD) that prevents phosphorylation of 
SMAD2/3 and interferes with the formation of com-
plex SMAD2/3 and SMAD4 (11,12). 

TGF-β and activin are proliferation-inhibitory fac-
tors for epithelial cells, such as hepatic, intestinal, mam-
mary, pancreatic and prostatic cells including thyroid 
follicular cells (13-19). Although both TGF-β and acti-
vin exert inhibitory effects on the proliferation of nor-
mal thyroid follicular cells, we have previously repor-
ted that thyroid tumors express the TGF-β isoforms, 
TGFβ-1, TGFβ-2 and TGFβ-3 as well as activin iso-
forms, activin A and activin B (20,21). An impairment 
of signal transduction has been identified in the deve-
lopment and progression of several epithelial cancers 
(17,22). Therefore, in this study, we investigated the 
integrity of TGF-β/activin signaling by analyzing the 
expression of SMAD2/3, SMAD4 and SMAD7 pro-
teins in thyroid tumors.

maTeRials anD meTHoDs

We analyzed the expression of SMAD4, phosphoryla-
ted SMAD2/3 and SMAD7, in normal and tumoral 
thyroid tissue by immunohistochemical method. 

Paraffin sections from human thyroid of normal tis-
sue (N, n = 12), multinodular goiter (MNG, n = 10), 
follicular adenoma (FA, n = 5), follicular carcinoma 
(FC, n = 4) and papillary carcinoma (PC, n = 9), were 
submitted to deparaffinization in xylene and hydration 
through a series of decreasing alcohol concentrations. 
The immunohistochemical procedure was performed 
by an indirect 3-stage immunoenzymatic method as 
described previously (23). Briefly, after endogenous 
peroxidase activity was blocked with 3% hydrogen pe-
roxide for 15 minutes, tissues were washed in phospha-
te-buffered saline (PBS) and were incubated with goat 
polyclonal anti-phosphorylated SMAD2/3 antibody 
(sc-11769, Santa Cruz Biotechnology, Santa Cruz, 
CA) or rabbit polyclonal anti-SMAD4 (sc-7154, Santa 
Cruz Biotechnology) or goat polyclonal anti-SMAD7 
antibody (sc-7004, Santa Cruz Biotechnology) over-
night. The primary antibodies were diluted at 1:100 in 
Tris-buffered saline and 0.05% albumin. Between the 
antibodies incubation the tissues were washed in PBS. 
After incubation with biotin-streptavidin-peroxidase, 
the reaction was revealed by a mixture of 3,3’-diamino-
benzidine with hydrogen peroxide. The sections were 
then counterstained with Gill’s hematoxylin. The im-
munopositivity of the reaction was detected as brown 
staining observed by light microscopy. The intensity 
of immunostaining of follicular cells was evaluated and 
classified as weak, moderate and strong. Due to variable 
intensity of positivity seen even in the same tissue, we 
considered the staining intensity present in more than 
50% of positive cells. The percentage of pSMAD2/3 
immunopositive cells was determined by counting 3 
areas randomly chosen in the tissue in a total of 900 
cells. The percentage of nuclear stained cells for pS-
MAD2/3 was also determined.

The negative control was performed omitting the 
primary antibody (SMAD4) and incubating tissues with 
primary antibody preabsorbed with corresponding pep-
tide, pSMAD2/3 (sc-11769 P, Santa Cruz Biotechno-
logy) and SMAD7 (sc-7004 P, Santa Cruz Biotechnology) 
peptides (antibody/peptide: 1/5) overnight. 

The statistical analysis was made using the semi-
quantitative results of immunohistochemical staining. 
The data are presented as the mean ± standard devia-
tion (SD) and were submitted to analysis of variance 
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followed by the Student Newman-Keuls test to compa-
re results between samples. Differences were conside-
red significant at P < 0.05.

This study was approved by the Ethical Committee 
for Human Research of the Biomedical Sciences Insti-
tute, University of Sao Paulo, Brazil.

ResulTs

The expression pattern of SMADs in the neoplastic 
cells of papillary carcinoma was predominantly homo-
geneous and strong. In MNG, heterogeneous positi-
vity of SMADs was observed in the same tissue with 
a given follicle displaying positive and negative cells. 
Phosphorylated SMAD2/3 was detected in all tissues, 
however its expression is stronger in carcinomas (folli-
cular and papillary) (Figure 1). The analysis of immu-
nohistochemical staining in the normal and neoplastic 
tissues is summarized in table 1.

To further investigate the integrity of SMAD signa-
ling in thyroid tumors, we evaluated the percentage of 
pSMAD2/3 positive cells and the localization of this 
protein at the subcellular level in thyroid tumor tissues 
(Figure 2A). The immunohistochemical analysis of pS-
MAD2/3 expression showed that the number of posi-
tive cells for pSMAD2/3 was higher in tumoral samples 
when compared with normal tissue (Figure 2B). Im-
munopositive cells were more abundant in carcinomas 
and adenomas than in MNG tissues (P < 0.05). When 
we analyzed the nuclear staining of pSMAD2/3, posi-
tivity was about 30% and was similar in MNG, adenoma 
and carcinoma tissues (Figure 2B). We also detected 
nuclear positivity of SMAD4 in both benign and malig-

nant lesions, whereas the immunostaining of SMAD7 
was predominantly cytoplasmic.

Discussion

TGF-β and activin exert antiproliferative effects in epi-
thelial cells, including follicular thyroid cells (24). Ho-
wever, TGF-β and activin are overexpressed in several 
carcinomas (17,19,25). Similarly, we have previously 
shown high TGF-β and activin protein expression in 
thyroid cancer, while the expression in normal tissue is 
predominantly negative (20,21). Despite the increased 
expression of these proteins in neoplastic cells, loss of 
TGF-β/activin responsiveness is frequently observed in 
cancer (2). In human goiter samples, proliferation was 
not inhibited in the presence of TGF-β (26), proving 
that even cells derived from benign lesions became ir-
responsive to TGF-β. Conversely, we have shown that 
a papillary thyroid carcinoma cell line is still sensitive 
to the antiproliferative effect generated distinctly by 
TGF-β1 and activin, possibly mediated by a functional 
Smad pathway (27). SMAD2, SMAD3 and SMAD4 
are TGF-β/activin intracellular mediators, represen-
ting the stimulatory SMADs of this signaling pathway, 
while SMAD7 is an inhibitory SMAD for this pathway 
(6-8). In the present study, to verify the integrity of 
the SMAD pathway, we investigated the expression of 
SMAD4, pSMAD2/3 and SMAD7 in thyroid tumors. 
As illustrated in figure 2, SMAD4 and pSMAD2/3 as 
well as inhibitory SMAD7 are expressed in all of tumo-
ral stages of thyroid from benign to malignant lesions, 
whereas these proteins are rarely detected in normal 
thyroid tissue. SMAD proteins mediate antiproliferative 

Table 1. Immunohistochemical analysis of SMAD4, pSMAD2/3 and SMAD7

smaD4 psmaD2/3 smaD7

- + ++ +++ - + ++ +++ - + ++ +++

Normal  (n = 12) N
%

9 
75

3 
25

  3 
25

9 
75

7 
58

3 
25

2 
17

MNG (n = 10) N
%

2 
20

8 
80

6 
60

2 
20

2 
20

8 
80

2 
20

FA  (n = 5) N
%

2 
40

2 
40

1 
20

2 
40

3 
60

1 
20

3 
60

1 
20

FC (n = 4) N
%

1 
25

3 
75

1 
25

3 
75

1 
25

3 
75

PC (n = 9) N
%

  3 
33

2 
22

4 
45

1 
11

8 
89

2
22

4
45

3
33

Intensity: negative (-), weak (+), moderate (++), strong (+++).
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figure 1. Immunohistochemical staining for pSMAD2/3, SMAD4 and SMAD7 in human thyroid tumors by the peroxidase method. The positivity of 
immunoreaction is shown by brown staining in representative sections from normal tissue, multinodular goiter (MNG), follicular adenoma, papillary 
carcinoma and follicular carcinoma. Nuclei were counterstained with hematoxylin, which appear in blue. Bar = 50 mm.

 pSMAD2/3 SMAD4 SMAD7

Normal

MNG

Follicular
adenona

Papillary
carcinoma

Follicular
carcinoma
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figure 2. Immunohistochemical analysis of pSMAD2/3 expression in thyroid tumors. (a) Immunohistochemical localization of pSMAD2/3 in multinodular 
goiter (MNG), follicular adenoma (FA), follicular carcinoma (FC), papillary carcinoma (PC). The cytoplasmic and nuclear positivity of follicular cells is 
shown by brown staining. The sections were counterstained with hematoxylin and negative nuclei for pSMAD2/3 were stained blue. Bar = 25 mm. (b) Semi-
quantitative analysis of pSMAD2/3 immunopositivity. The graph shows the percentage of positive cells in normal tissue (N, n = 12), MNG (n = 10), FA (n = 5), 
FC (n = 4) and PC (n = 9). * P < 0.05 vs. normal. Black bars in the graph represent the percentage of nuclear positive cells.

150

100

50

0
N MNG FA FC PC

MNG

pSMAD2/3

%
 p
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 ce

lls

*

* * *

FA FC PC
a

b

effects by inducing the expression of the CDK inhibi-
tors, p15 and p21, and by inhibiting c-MYC expression 
in several epithelial cell lines responsive to TGF-β or ac-
tivin (22,28-30). The loss of TGF-β/activin responsi-
veness caused by inactivation of the signaling pathway’s 
components, such as deletions or mutations in either 
TGF-β or activin receptors and SMADs, has been iden-
tified in the development and progression of a variety of 
cancers, conferring a potential tumor suppressive role 
for the SMADs pathway (2,31,32).

Although the number of pSMAD2/3 positive cells 
was significantly higher in carcinomas (Figure 2B) 
compared with benign lesion (MNG), the percentage 
of nuclear positive cells for pSMAD2/3 expression was 
not different among tumors (Figure 2B). The presence 
of pSMAD2/3 in the nucleus of neoplastic cells indica-
tes that the TGF-β/receptor or activin/receptor com-
plex is intact and able to activate downstream mediators 
of the cascade such as SMADs.

SMAD4 is known as DPC4 (deleted in pancreatic 
carcinoma locus 4) due to high frequency of deletions 
in the gene encoding SMAD4 found in pancreatic carci-
noma. Inactivating mutations or deletions of this gene 
in others cancers such as colon carcinomas and, more 
recently, in thyroid tumors, were also reported (28,33). 
Differently from what is observed in pancreatic and co-
lon carcinomas, in our study, SMAD4 was expressed in 
most thyroid tumors, displaying high expression mainly 
in the carcinomas. 

SMAD7 inhibits the growth arrest and apoptosis 
induced by TGF-β and activin (34,35). The transcrip-
tion of SMAD7 is induced by either TGF-β or activin 
representing a negative feedback mechanism of TGF-β/
activin signaling (36). Unlike SMAD2, SMAD3 and 
SMAD4, display nuclear translocation induced upon 
ligand stimulus, SMAD7 accumulates in the cytoplasm 
upon TGF-β/receptor activation to inhibit signal trans-
duction (37). Up-regulation of SMAD7 is reported in 

SMADs expression in human thyroid



Co
py

rig
ht

©
 A

BE
&

M
 to

do
s o

s d
ire

ito
s r

es
er

va
do

s.

411Arq Bras Endocrinol Metab. 2010;54/4

several carcinomas and is implicated in cancer progres-
sion (38-40). In thyroid tumor, we detected increased 
expression of inhibitory SMAD7 in papillary and folli-
cular carcinomas, indicating that SMAD7 may be also 
involved in thyroid tumorigenesis. 

In this study, the presence of nuclear immunopo-
sitivity for the stimulatory SMADs, SMAD4 and pS-
MAD2/3 indicates that the TGF-β/activin signaling 
pathway is intact in thyroid tumors. This antiprolife-
rative signaling is critical to limit tumor progression. 
However, the antiproliferative SMADs signal induced 
by TGF-β/activin proteins could be attenuated by the 
high expression of an antagonist SMAD, SMAD7, ob-
served mostly in thyroid carcinomas.
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