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ABSTRACT: Onion (Allium cepa) is one of the most cultivated and consumed vegetables in Brazil
and its importance is due to the large laborforce involved. One of the main pests that affect this crop
is the Onion Thrips (Thrips tabaci), but the spatial distribution of this insect, although important, has
not been considered in crop management recommendations, experimental planning or sampling
procedures. Our purpose here is to consider statistical tools to detect and model spatial patterns of
the occurrence of the onion thrips. In order to characterize the spatial distribution pattern of the Onion
Thrips a survey was carried out to record the number of insects in each development phase on onion
plant leaves, on different dates and sample locations, in four rural properties with neighboring farms
under different infestation levels and planting methods. The Mantel randomization test proved to be
a useful tool to test for spatial correlation which, when detected, was described by a mixed spatial
Poisson model with a geostatistical random component and parameters allowing for a characterization
of the spatial pattern, as well as the production of prediction maps of susceptibility to levels of
infestation throughout the area.
Key words: Poisson distribution, spatial statistics, randomization tests, geostatistics

DETECÇÃO DE PADRÕES ESPACIAIS NA OCORRÊNCIA DO
TRIPES (Thrips tabaci) NA CULTURA DA CEBOLA

RESUMO: A cebola é uma das hortaliças mais cultivadas e consumidas no Brasil e sua importância
social se deve à grande demanda por mão-de-obra. Uma das principais pragas que afeta essa cultura
é o tripes do prateamento (Thrips tabaci) e sua distribuição espacial, embora importante, não tem sido
considerada nas recomendações de manejo da cultura, planejamento de experimentos ou estudos
amostrais. O objetivo desse artigo foi considerar métodos estatísticos para detectar e modelar padrões
espaciais na ocorrência do tripes do prateamento da cebola. Para caracterizar o padrão espacial da
dispersão do tripes do prateamento da cebola foi feito um levantamento anotando-se o número de
insetos por fase de desenvolvimento em folhas de plantas de cebola, em diferentes datas e pontos
amostrais dentro de quatro propriedades com fazendas vizinhas apresentando diferentes níveis de
infestação e métodos de plantio. O teste de aleatorização de Mantel mostrou-se útil para testar a
presença de padrão espacial, que quando detectado foi descrito por um modelo de Poisson misto
espacial com componente aleatório geoestatístico com parâmetros que possibilititam a caracterização
do padrão espacial, bem como a obtenção de mapas de predição dos níveis de susceptibilidade à
infestação na área.
Palavras-chave: distribuição de Poisson, estatística espacial, testes de aleatorização, geoestatística

INTRODUCTION

Onion (Allium cepa) is one of the most culti-
vated and consumed vegetables in Brazil. The social
importance of the crop is due to the large laborforce
involved. It is estimated that 70% of the production is
obtained under small scale, because it is typically

grown in small and medium sized properties. It is an
annual plant for bulb production, biannual for seed pro-
duction, and propagated by direct sowing, bulbs or
seedlings planted in beds and transplanted to the field.

One of the main pests that affects onion crops
is the Onion Thrips (Thrips tabaci), which in high in-
festation levels can damage the crop (Workman &
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Martin, 2002), with reductions in the production up
to 80% during hot and dry periods (Sato, 1989). The
insect is typically found at the base of the leaves. It
feeds from the sap and the leaf parenchyma causing
gray spots which gradually change to silver as a re-
sult of the external tissue damage of the leaves. Mas-
sive attacks on the aerial part of the plant cause loss
in bulb production, which reduces their size and qual-
ity, damaging the commercial value and creating ob-
stacles to exports. When an attack is very intense, the
leaves become yellowish, dry and with wrenched tips,
causing wilting and death of the plant (Sato, 1989),
and also allowing for the entrance of water to the bulb,
which turns  rotten. The insect is also considered a
vector of a phytopathological agent with the capacity
to transmit virus to the plant.

The insect development occurs in the four
phases of egg, nymph, pupa and adult, with the nymph
and adult stages damaging the production, because the
pupal phase is restricted to the soil. The nymph has
low mobility, whereas the adult, although winged, has
restricted movement. The development cycle varies
typically from 14 to 30 days, changing to 10 and 11
days when the temperature is over 30°C.

The spatial distribution of thrips in commer-
cial fields is important for the efficient application of
insecticides. However, this has not been considered in
crop management recommendations, experiment plan-
ning and sampling plans. Considering the low mobil-
ity of nymphs and adults it is reasonable to assume
that the wind is the main dispersion factor for the thrips
that potentially determines the spatial pattern.

A spatial pattern can be classified as random,
aggregate or uniform. The random pattern occurs
when there is a constant and independent probability
of infestation for all the plants, while the aggregate pat-
tern is associated with low insect mobility. The uni-
form pattern rarely occurs naturally but can be in-
duced, for instance, by alternated planting of resistant
and susceptible plants. In order to study whether in-
fant leukemia cases tend to be close in space and time,
Mantel (1967) proposed a randomization test, based
on matrices of time and space distances between ob-
servations. This test can be used to look for spatial
correlation in an insect distribution, but its usage has
not been considered in practical applications, and in
particular, in studies of the spatial distribution of the
Onion Thrips.

It is common in insect distribution studies, to
find the use of indices based on the relationship be-
tween the variance and the mean, such as David &
More index, the Taylor power law, and the aggregate
indices of Lloyd and Iwao, among others (Ruiz-
Cárdenas et al., 2003). However, these indices ignore

the spatial location of the samples, have limited capacity
to describe spatial patterns, and strongly depend on the
size of the sample unit.

Geostatistical methods (Isaaks & Srisvastava,
1989; Goovaerts, 1997) have been used to describe
spatial patterns of insects as, for instance, in Grego
et. al. (2006). Such methods were originally developed
for continuous response variables, with several com-
putational implementations available for data analysis.
The insect counts are discrete and typically distributed
in clusters, with many zero counts. Therefore, the
data cannot have a covariance structure of the type
assumed by traditional methods of geostatistical analy-
sis, with a stationary spatial covariance structure in the
study area (Ruiz-Cárdenas, 2002).  For this reason it
is appropriate to use models that incorporate explic-
itly a data generating mechanism such as the Poisson
distribution, combined with structures that describe the
spatial pattern of the counts. These kinds of models
have been proposed in the statistical literature (Diggle
et al., 1998) but have had few practical applications.

This paper describes a study of the spatial dis-
tribution of the Onion Thrips with data from surveys
of four different properties with different infestation
levels and planting methods. We aimed to detect spa-
tial patterns in the occurrence of the Onion Thrips at
different production fields and propose an statistical
model for such patterns. We adopt the Mantel random-
ization test (Manly, 2006) to decide for the presence
of spatial autocorrelation which when detected was
modeled by a mixed spatial Poisson model with a ran-
dom term given by a geostatistical component. This
model allows the characterization of the spatial pattern
as well as the production of maps of levels of sus-
ceptibility to infestation in different areas.

MATERIAL AND METHODS

Data description
This work is motivated by a set of data origi-

nated from a study involving sampling onion thrips in
onion crops of four different farms, located in the
municipality of São José do Rio Pardo, São Paulo
State, Brazil (21°36’S, 43°53’W; altitude 705 m), from
June to September, 1996. The aim is to study the spatial
and temporal distribution of thrips. The four chosen
properties used the onion hybrid Granex 33 and the
seedling planting method. The trial areas were chosen
with neighbors who adopted different kinds of plant-
ing techniques and had different infestation levels.

Details referring to the kind of planting in the
neighborhood and collection dates and numbers of
samples collected in the different farms are shown in
Table 1. The São Paulo farm is located at a high el-
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evation of the region and the nearest neighboring on-
ion crop is situated over one kilometer away. The
neighborhood of Estância Bela Vista had already had
some crops attacked by the onion thrips pest.

The sampling unit was a 1 m radius circle with
a center stake. One plant was then randomly selected
from within the circle. The position of the stakes in
the four farms, in general in a 10 × 10 m grid, with
some variations at Fazenda São Paulo, is shown in Fig-
ure 1. The measured variables were the stake location
on the coordinate axes, the number of nymphs, the
number of adult insects and the number of leaves per
plant. The number of samples and sampling times var-
ied from farm to farm as shown in Table 1. The re-
sponse variables are discrete as a result of counting.
In some cases, the counts are multiples of 5 or 10 and
some values over 100 were truncated to 100.

Figure 2 shows box-plots for the average num-
ber of insects per leaf, for the four farms as a func-
tion of sample time. There is a great variability among
the counts and some outliers are also present, not all
of them being influential to model fitting. At the São
Paulo farm the average number of insects and the vari-
ability increased with time, whereas at the other farms,
the average increased and then decreased. In all cases
the observations above the median are more variable
showing a positive asymmetry with some extreme val-
ues.

At the São Paulo farm the lowest average num-
ber of insects per leaf and also the lowest variance
were found at the date 07/31, with one insect per leaf
as the maximum value. In contrast on 09/04 this farm
had a much larger average number of insects per leaf
and a much greater variability. The percentage of in-

Figure 1- Localization of the stakes in each farm.

mraF doohrobhgieN setadgnilpmaS selpmasforebmuN
adnezaF
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morfdetalosI
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,12/80,41/80,70/80,13/70,42/70,01/70

40/90,82/80
,001,001,00189,001,001,001

001
aicnâtsE

atsiValeB
sbluB 90/90,41/80,80/80,10/80,11/70 99,99,48,001,001

oirásoRoitíS sgnildeeS
,82/70,12/70,41/70,70/70,92/60,12/60

30/90,52/80,81/80,11/80,40/80
,05,05,05,05,05,05,84,05,05

05,05

IIovoNoitíS sgnildeeS
,11/70,40/70,82/60,72/60,91/60,40/60

70/80,13/70,42/70
,001,001,001,001,001,001

001,001,001

Table 1 - Characteristics about the data precedence, types of neighbors, sample times and number of samples.
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fested plants ranged from 35% to 100%. For the
Estância Bela Vista, the lowest average number of in-
sects per leaf occurred on 07/11 and 08/14 with 89%
to 100% plants infested. The Rosário farm had only
50 plants sampled and the highest average number of
insects per leaf on 08/11 and 08/18. Sítio Novo II had
the least average for the number of insects per leaf
with low variability except for one outlier count of 30.

Mantel’s test for the detection of the spatial pattern
The non existence of a spatial pattern in the

dispersion of insects may be considered a randomiza-
tion hypothesis and the existence of a spatial pattern
can be tested through the randomization of the order
of the observed values (Manly, 2006). Randomization
tests are based on the fact that, if the null hypothesis
is true, then all of the possible orders of the data have
the same chance of occurrence. Therefore, the value
eo of a statistic E is calculated for a set of observa-
tions, and then a large number of randomizations are
made. For spatial data these randomizations are made
by randomly reordering the data. For each random-
ization a value ea is calculated and the set of the ea val-
ues generate an approximation of the randomization
distribution of E. Just as for classic statistical tests,
the decision is guided by a p-value, which in the case
of randomized tests is given by the proportion of the

ea values that are larger than or equal to eo, for a one-
sided test. For instance, if p < 0.05, it is concluded
that there is evidence that the null hypothesis is not
true (Manly, 2006).

Randomized tests have some advantage in
comparison to classic statistical tests. For example, the
statistics are usually easy to calculate relatively to the
classic statistical tests. They are based on non stan-
dard statistics and they do not need previous informa-
tion about the population from which the samples were
taken. Also, they can be applied with non-random
samples which can consist only of the data that need
to be analyzed (Manly, 2006). However, the random-
ization tests are easier to be justified when the ana-
lyzed samples are random or the experimental design
suggests a randomization test.

Usually, when considering spatial data, it is
desired to test the null hypothesis of a random spa-
tial pattern versus the alternative of a non-random spa-
tial pattern. A test for this hypothesis was proposed
by Mantel (1967). The test is implemented as follows.
Let a variable be observed in n locations. Two sym-
metric matrices A and B are obtained, each with n ×
n dimensions. The elements represent distances be-
tween the observations. These matrices can be de-
noted as

Figure 2 - Box-plots for the average number of insects per leaf.
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Elements of the matrix A are the Euclidian dis-
tances between the stakes with locations given by (x1i,
x2i) and (x lj, x2j) i.e., with elements of the form

2
2j2i

2
1j1i )()( xx+xx=aij −−  and B is the matrix with ele-

ments 2)( jiij zz=b − , where Z is the mean of the num-
ber of insects per leaf. The statistic test is given by
the Pearson correlation coefficient between the cor-
respondent elements of A and B, i.e.,
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which produces the r0 value when calculated for the
observed values. For the randomization test the rows
and columns of one of the matrices are permutated a
large number (N) of times, and the values rak   are ob-
tained, for k = 1, 2,…, N. The proportion p of values
rak > r0 is then compared with a pre-fixed significance
level α (for example, 0.05) and the null hypothesis is
rejected if p < α (Manly, 2006).

As the matrices A and B are symmetric, the cor-
relation amongst all the elements outside the main diago-
nal is the same as the correlation of the m = n(n+1)/2
elements in the upper or lower triangular part of the
matrix. Note that the only term of (1) that is altered by
changing the order of the elements in one of the two
matrices is the sum of products Z = Σ aij bij.

Other possible metrics used for the calculation
of the distances are Euclidian with standardized data,
Euclidian squared, Euclidian squared with standardized
data, proportional distance and sample difference. The
alternative is given by Snäll et al. (2003) who built a
randomized test using flexible forms for the relation
between the distance measurements, given by the
structure of additive generalized models.

When the Mantel test rejects the null hypoth-
esis there may be interest in knowing the kind of as-
sociation amongst the variables. This can be shown
by the graph of ijb  versus .ija  One of the possible
models of association is the simple linear regression,
in which the elements of the A matrix give an explana-
tory variable and the elements of the B matrix a re-
sponse variable, so that, bij = β0 + β1aij + εij,where β0

e β1 are parameters to be estimated and εij is the error
associated with the response assumed to be Gaussian,
independently and identically distributed. This assump-
tion is a pragmatic approach avoiding more complex
structures for the error term which would require fur-
ther modeling assumptions we wish to avoid at this
exploratory stage. Also, more complex forms of spa-
tial dependence than given by the linear relation can,
in principle, also occur. Our approach is to rely on
simple assumptions for the randomization tests and
leaving more complex structures to be considered by
the model discussed in the next Section.

In this study, the randomization test for spa-
tial pattern was carried out on the observations for
each sampling date. The test can be extended for the
detection of time patterns. However, this raises the
question of how to combine the information from sev-
eral units of observation. Although such alternative has
been studied for the data on thrips occurrences, it was
decided not to include here the results because of the
small number of observations in time and the lack of
a specific interest in testing for time patterns.

Modeling the spatial pattern
Having detected a spatial pattern, it may be of

interest to describe the pattern by means of a stochas-
tic model. Modeling allows not only the characteriza-
tion of the dependence pattern but also for the pre-
diction of quantities of interest such as a map of ex-
pected levels of infestation over the area, the propor-
tion of the area with infestation above or below a cer-
tain threshold, and areas with high and low infesta-
tion, among others possible quantities of interest.

One possible way of modeling the spatial dis-
tribution is by adopting the geostatistical framework,
which associates the level of spatial dependency with
distances between sampled plots. Usually the descrip-
tion of the spatial dependence assumes that the clos-
est sampled plots are more alike than those farthest
apart (Montagna, 2001). Diggle et al. (2003) uses the
term geostatistics to identify a part of the spatial sta-
tistical methods in which the used model describes a
continuous variation of the observations over space.

The basic geostatistical data format is (xi, yi),
i=1, 2, ..., n, in which xi = (x1i, x2i) identifies the spa-
tial location, generally in the two dimensions and iy
is the measure of interest at the xi position of the ith
observation. The response variable can be potentially
measured at any point within the studied region (Diggle
& Ribeiro Jr, 2007).

The geostatistical model is specified by assum-
ing two processes over the study region (Diggle et al.,
1998; Diggle & Ribeiro Jr, 2007) described as follows.
{Y(x)}: x ∈ A is a measurement process within the



Spatial pattern detection modeling of thrips 95

Sci. Agric. (Piracicaba, Braz.), v.66, n.1, p.90-99, January/February 2009

study region A which is observed at a set of locations
x to obtain the yi’s of the observed data. This first pro-
cess is related to an underlying Gaussian process S =
{S(x): x ∈ R2} with mean µ, variance σ2 and correla-
tion function ϕ(µ), where µ is the distance between
pairs of observations. The values of S(x) are usually
not directly observed. Conditional independence is as-
sumed in the sense that the Y(x) are independent, con-
ditionally on the values of S(x) meaning all the spatial
dependency is modeled through S(x). The exact form
of the relation between the two processes may vary
according to the type of variable being measured. For
instance, when Y follows the Gaussian distribution, the
model can be written as Yi = S(xi) + Zi, in which the
Zi values are mutually independent and follow the nor-
mal distribution, with mean 0 and variance τ2 . In this
case the observations yi can be seen as a noisy ver-
sion of S(xi) at the location xi, and, for a finite set of
plots, the random vector Y follows a multivariate
Gaussian distribution. More generally, Y may follow
other distributions and Diggle et al. (1998) specify a
model within the class of the generalized linear model
(McCullagh &  Nelder, 1989) in which the S process
defines random effects with spatial dependence struc-
ture. Diggle & Ribeiro Jr (2007) call this a general-
ized linear geostatistical models (GLGM). This model
allows the explicit specification of a Poisson distribu-
tion for the observations, which is compatible with the
insect counting structure of the data considered here.

The GLGM is a special case of a mixed gen-
eralized linear model, in which the Yi, i=1, 2, …, n are
conditionally independent given S(x), with expected
values given by E[YiS(x)] = λi and linear predictor
h(λi) = S(xi), i=1, 2, …, n with a known link function
h(.), which, for the Poison model here considered is
typically given by a logarithm function. The model can
be extended allowing for covariates considering S(xi)
= S(xi) + d(xi)

T β , in which d(xi) is the observed
covariate value and β is the regression parameter vec-
tor (Diggle et al., 1998; Diggle et al., 2003).

Let Y(xi)S(xi) be the observed total number
of insects with a Poisson distribution with mean ti
exp[S(xi)], i=1, 2, …, n in which ti represents the num-
ber of leaves. Then the probability function is given
by
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The likelihood function is often considered for
inference about the model parameters within the con-
text of generalised linear models. However, in this case
the likelihood function does not have a closed form
and is given by
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where: R is the correlation matrix for S and with di-
mension equal to the number of observations which
cannot be solved by analytical or numerical methods.
Each element of R is given by the corresponding value
of the correlation function of the S process and there-
fore having model parameters within non-linear func-
tions which explains the lack of such solutions. A pos-
sible solution is to use Monte Carlo Markov Chain
(MCMC) methods and a computational implementation
is available through the package geoRglm (Christensen
& Ribeiro Jr, 2002) for the R statistical environment
(R Development Core Team, 2007).

For discrete random variables, the variogram
is not a natural summary of the data, but it may be
useful as a diagnosis tool, after fitting the mixed gen-
eralized linear model (Diggle & Ribeiro Jr, 2007). In
this case, the variogram obtained from the estimated
parameters can be compared to the experimental
variogram, obtained through the residuals from a GLM
model fit. The variogram is given by

)]()([)]([
2
1)]([

2
1)( h+xY,xYCovh+xYVar+xYVar=hγY −

 (5)

which can be written as

.)]}(exp[)exp(){2β(exp)
2

(exp)( 22
2

uρσσσ++σ+β=hγ 2
Y −

 (6)

However, this approach must be used with
caution because the variogram is even more erratic
then the one usually obtained for data with a symmet-
ric and continuous distribution, because of the asym-
metric data.

After the choice of a specific model, a map
that describes the behaviour of the study variable over
the region can be obtained. Supposing that the param-
eters are known and that the interest is in the expected
insects number given by λ( x0) = exp[β + S(x0)], for
the location x0 = (x10, x20), from the S marginal distri-
bution and the YS  conditional distribution, it is pos-
sible to simulate the conditional distribution of [Sy],
using the MCMC method. The predicted surface is
given (Diggle et al., 1998) by

2
)()(ˆˆ xVar+xS+β ,  (7)

where β̂  is the process mean in this case because there
are no explanatory variables or trend, and ( )xŜ  is the
linear kriging predictor and Var(x) is the prediction vari-
ance.
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RESULTS AND DISCUSSION

Spatial pattern detection through Mantel’s ran-
domization test

The Mantel test was applied separately for each
sampling date and each farm, and the obtained p-val-
ues contrasted with the adopted 5% significance level.
For the Fazenda São Paulo, there was evidence of a spa-
tial pattern in the number of insects per leaf for the first
three data collections on 10th , 24th and 31th of July.
These patterns can be observed in Figure 3 where sym-
bol sizes are proportional to the number of insects per
leaf. In general, considering all the farms and dates, the
distribution of the mean number of insects per leaf is
asymmetric and does not show trends in relation to the
spatial coordinates. The linear regression between the
number of insects by leaf distances and the stake loca-
tion distances show that, for the above mentioned dates,
there is evidence of a positive association in conformity

with Table 2 which shows, as well, analogous results
for the dates that detected spatial pattern for the other
farms.

For Estância Bela Vista, the spatial pattern was
detected only for the third data collection on 8th of
August. The dispersion plot for this date are shown
in Figure 4. For Sítio Rosário, evidence of spatial pat-
terns was not found for any of the dates. Analysis for
Sítio Novo II, suggests presence of spatial pattern for
the 2nd, 4th and 6th data collections made on the 4th and
27th of June and for 4th of July, as shown in Figure 5.

Geostatistical generalized linear models with
Poisson distributions and logarithmic link functions
were used for the modeling of the data for farms and
dates that presented some evidence of spatial pattern.
Maximum likelihood parameter estimates were obtained
by the MCMC algorithm and results are summarized
in Table 3. A total of 120,000 iteration chains were ob-
tained, with a burn in cycle of 20,000, keeping the first

Figure 3 - Dispersion graphs for the mean number of insects, Fazenda São Paulo, for dates 07/10; 07/24 and 07/31 (symbol sizes are
proportional to the number of insects per leaf).

Table 3 - Point estimates and confidence intervals for the parameters of the geoestatistical model.

mraF etaD β σ2 φ τ2

oluaPoãSadnezaF

70/01 55.1- 51.0 33.03 74.0

70/42 11.1- 52.1 00.81 00.0

70/13 05.1- 51.0 52.3 00.0

atsiValeBaicnâtsE 80/80 53.2 91.0 51.81 59.0

IIovoNoitíS

60/40 37.0- 26.0 00.05 11.1

60/72 62.0 73.0 80.91 41.0

70/40 43.0 35.0 53.22 41.0

Table 2 - Regression models for the distance matrices from the randomization test.

*loc = stakes location

mraF ataD ledoM p eulav-

oluaPoãSadnezaF

70/01 *col523200.0+2012.0=fael/stcesnI 5020.0

70/42 col612400.0+4206.0=fael/stcesnI 2200.0

70/13 col714000.0+2390.0=fael/stcesnI 4620.0

atsiValeBaicnâtsE 80/80 col730900.0+0812.6=fael/stcesnI 4330.0

IIovoNoitíS

60/40 col602700.0+5303.0=fael/stcesnI 2100.0

60/72 col430400.0+0181.1=fael/stcesnI 8520.0

70/40 col173300.0+0425.1=fael/stcesnI 5540.0
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of every 100 generated samples, amounting to a total
of 1,000 samples. The obtained chain for each param-
eter was analyzed to verify the convergence of the
MCMC algorithm. The estimates for the φ parameter
reflects the spatial correlation, and for the case of an
exponential correlation model the practical range of
spatial dependence corresponds to three times the pa-
rameter value. The interpretation of the extent of the
correlation also depends on the distances between
points within the area, which vary from 10 to 170

Figure 5 - Dispersion graphs for the mean number of insects, Sítio Novo II, for dates 06/04, 06/27 and 07/04 (symbol sizes are
proportional to the number of insects per leaf).

Figure 4 - Dispersion graphs for the mean number of insects,
Estância Bela Vista (symbol sizes are proportional to
the number of insects per leaf).

meters at Fazenda São Paulo, 10 to 200 at Estância
Bela Vista and 10 to 204 m at Sítio Novo II. There
were cases in which the estimate is smaller than the
minimum distance between sampled points, reflecting
short range correlation which would be better captured
with sampling points at closer locations.

The parameter β is associated with the link
function and σ2, φ and τ2 are parameters associated
with the surface S(x). Outlier values at a location on
the top right corner of the area were removed for
Fazenda São Paulo since this local feature was highly
influential on the global model. The negative values for
the estimates of the β parameter at the Fazenda São
Paulo reflect the fact that this farm was isolated from
other onion plantations, which resulted in low means
of infestation. High values of the estimates were ob-
served at the Estância Bela Vista, which was sur-
rounded by onion plantations infested by thrips. At the
Sítio Novo II estimates near zero were the result of
the low mean for the number of insects per leaf.

Prediction maps of the susceptibility of areas
to infestation were computed from the fitted models.
Comparing the prediction maps shown in Figures 6,
7 and 8 where the lighter colours indicate low infes-
tation and the dark colours indicate high infestation
with the dispersion plot in Figure 3, Figure 4 and Fig-
ure 5 it is possible to see a pattern in the second, as

Figure 6 - Prediction maps for Fazenda São Paulo.
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Figure 7 - Prediction maps for Estância Bela Vista.

Figure 8 - Prediction maps for Sítio Novo II.

the low and high infestation areas are the same. The
white points on the prediction map shown on the right
hand panel of the Figure 6 are centered on the sam-
pling points as an artefact of the fitted model.

Apparently there is some influence of the kind
of the plantation in the neighborhood on the number
of insects per leaf on plants. Estância Bela Vista had
as the neighborhood an area already infested with
thrips and showed the highest means for the number
of insects per leaf and the greatest proportions of in-
fested plants, whereas Fazenda São Paulo, isolated
from other plantations of onion, was the one with the
smallest proportion of infested plants, however in-
creasing with time. This conjecture cannot be tested
statistically with the available data, but can be consid-
ered for future studies.

CONCLUSIONS

The adopted methods allow testing for the
presence of spatial patterns in the distributions of on-
ion thrips using Mantel’s randomization test, as
well as suggest mechanisms for describing the pro-
cesses by means of the geostatistical generalized
linear model which provides a possible model for
the data which also allows for covariates that could
affect the insect distribution. The usage of such
methods is new in this context and it is recom-
mended that they should be considered for the de-
tection and description of spatial patterns of pests in
the field. The data analysis using the Mantel test sup-
ports the conjecture of the presence of spatial pat-
terns, although not consistently for all dates which
may be influenced by the high variability of the ob-
servations, with a possible effect of the imprecise re-
cording of high values. The effects of non-measured
covariates may also have generated heterogeneous con-
ditions of sampling, therefore hiding spatial patterns.
It is recommended that future samplings should be
carried out including some pairs of observations with
smaller spaces between them to allow a better descrip-

tion of the spatial patterns. This is especially relevant
when considering the limited mobility of this insect.
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