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SELECTION  IN  SEVERAL  ENVIRONMENTS  BY  BLP  AS  AN  ALTERNATIVE
TO  POOLED  ANOVA  IN CROP BREEDING

Seleção em diversos ambientes pelo BLP como alternativa à anava conjunta

Júlio Sílvio de Sousa Bueno Filho1, Roland Vencovsky2

ABSTRACT
Plant breeders often carry out genetic trials in balanced designs. That is not always the case with animal genetic trials. In plant

breeding is usual to select progenies tested in several environments by pooled analysis of variance (ANOVA). This procedure is based
on the global averages for each family, although genetic values of progenies are better viewed as random effects. Thus, the appropriate
form of analysis is more likely to follow the mixed models approach to progeny tests, which became a common practice in animal
breeding. Best Linear Unbiased Prediction (BLUP) is not a “method” but a feature of mixed model estimators (predictors) of random
effects and may be derived in so many ways that it has the potential of unifying the statistical theory of linear models (ROBINSON,
1991). When estimates of fixed effects are present is possible to combine information from several different tests by simplifying
BLUP, in these situations BLP also has unbiased properties and this lead to BLUP from straightforward heuristics. In this paper
some advantages of BLP applied to plant breeding are discussed. Our focus is on how to deal with estimates of progeny means and
variances from many environments to work out predictions that have “best” properties (minimum variance linear combinations of
progenies’ averages). A practical rule for relative weighting is worked out.

Index terms: BLP, plant breeding, statistical genetics.

RESUMO
Os melhoristas de plantas em geral conduzem testes genéticos em delineamentos balanceados, ao contrário do que ocorre com

o melhoramento animal. É possível selecionar progênies pela ANAVA conjunta, com base nas médias gerais de cada família. Sabe-se,
no entanto, que os valores genéticos de progênies são melhor representados por efeitos aleatórios. As formas de análise dos testes de
progênie que parecem mais apropriadas são as que seguem a metodologia de modelos mistos, como no melhoramento animal. Segundo
Robinson (1991) o Melhor Preditor Linear Não-Viesado (do inglês, BLUP) não é um método, mas uma propriedade dos estimadores
(preditores) dos efeitos aleatórios e pode ser derivada de tantas maneiras diferentes que tem o potencial de unificar as teorias
estatísticas de modelos lineares. A presença de bons estimadores para os efeitos fixos e componentes da variância torna possível
combinar informações de diferentes testes por algumas simplificações do BLUP. Este trabalho exemplifica as vantagens do Melhor
Preditor Linear (BLP) aplicado ao melhoramento de plantas. Procurou-se ilustrar como proceder com estimativas de médias e de
variâncias de progênies obtidas em diferentes ambientes para produzir preditores que tenham propriedades “melhor” (no sentido de
variância mínima entre todas as combinações lineares entre as médias de progênies). Derivou-se uma regra prática para a produção dos
pesos relativos de cada ambiente. O BLP, em alguns casos, é também não-viesado produzindo BLUPs a partir de lógica mais direta.

Termos para indexação: BLP, genética estatística, melhoramento de plantas.
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INTRODUCTION

One of the most typical features of plant genetical
essays is the high level of balance and the better
precision of variance component estimates compared
with animal counterparts. Plant breeders do not always
keep accurate records of genetic relatedness, in some
allogamous species, for instance, open pollinated
families are taken as half sib progenies for selection
purposes. However, this is compensated by the large
number of progeny and the replications of the trials in
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same locations and years, conditions often impossible
to attain with animal trials.

The usual analysis that guides plant breeders in
selecting progenies tested in several environments is the
pooled ANOVA, based on marginal averages of each family
tested. The underlying assumption for this approach being
that for each genetic value there is a constant effect. This
is the heuristics of the fixed statistical modelling.

On the other hand, breeders know that the genetic
values of individuals measured by the performance of their
progenies are better viewed as random effects, representing
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small samples of the possible genotypes being tested. This
way, the genetic value of a family in each environment can
be viewed as one of the possible realizations of an
unobservable random variable (the “true” breeding value).
The intraclass correlation of those different realizations
reflects the heritability for the selection based on progeny
means. Thus, the appropriate form of analysis is more likely
to follow the mixed model approach to progeny tests, which
is a common practice in animal breeding after Henderson’s
lifework.

In particular, Best Linear Unbiased Prediction
(BLUP) has been considered as the most appropriate form
in the analysis of genetic data in animal breeding trials.
Following Robinson (1991) this BLUP is not a “method”
but a feature of estimators (predictors) of random effects
and can be derived in so many ways that has the potential
of unifying the statistical theory of linear models.

However, the presence of fair estimates of fixed
effects, coupled with a large amount of historical of data
on variance components and heritability estimates makes
it possible to combine information from several different
tests by relaxing some BLUP assumptions. The purpose
of this work is to introduce and exemplify the advantages
of Best Linear Prediction (BLP) applied to plant breeding.
Our focus is on how to deal with estimates of progeny
means and variances from many environments to work out
predictions that have “best” properties (in the sense of
being minimum variance linear combinations).

In analogy with Robinson (1991), we think that if
breeders can obtain good estimates of fixed effects, the
BLP “method” will have also unbiased properties and we
produce BLUPs from straightforward heuristics.

Statistical steps to establish BLUP as a reasonable
classical predictor of genetic values may be found in some
seminal papers since Henderson et al. (1959). In particular,

for BLP derivation and features like maximization of correct
ranks (under normality assumptions), see Henderson
(1963). For forestry breeding purposes, White & Hodge
(1988) was the pioneer BLP work, and White & Hodge
(1989) comprehensively covers both BLUP and BLP
subjects. In forestry breeding, Resende et al. (1993) were
the first Brazilian researchers to introduce BLP (and soon
other mixed model techniques). Although these techniques
are straightforward we have found no works in which BLP
was applied to crop species.

METHODOLOGY

A progeny trial is a way to predict the breeding
value of parents from realizations of its progeny phenotype.
To make comprehensive selection decisions, plant breeders
usually run the same trials in multiple environments
(locations or years), Table I being a schematic
representation of such trials.

The statistical model for each realization is:

Table 1 – Scheme for a multi-environment progeny test in which yij are phenotypic values of phenotypic progeny
means calculated for each environment.
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In this model, m is the general mean, A
j
 is the fixed

effect of environment j,  p
i
 is the random effect of breeding

value of progeny i; (pA)
ij
 is the random effect of interaction

of ith breeding value with jth environment and  .e ij  is the
mean experimental error.

The underlying assumptions for BLP purposes are
that the fixed effects and variance components of random
effects of each level of the model are known. Then:

E( y ij ) = m + A
j 
;

And the following variance component estimates
are taken as true variance parameters:
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p
2  : progeny variance; y

2 : phenotypic variance
among overall means of  progenies, a function of progeny
and (average) error variances; y j

2 : phenotypic variance
among local means of progenies for environment j, that is
a function of all the random term variances.

Note that this is a usual set of assumptions if the
objective is selection. In this situation, all nuisance
parameters are taken as fixed, as in animal breeding
literature - for a comprehensive justification see White &
Hodge (1988, 1989).

In this case BLP is calculated considering usual
selection as a special case of BLP in which only one
parameter (the global means in the right column of Table 1)
is available for guiding the selection process.

At the next hierarchical level, with one progeny mean
per environment (as displayed in Table 1) another set of
breeding values with more general BLP properties may be
calculated as weighted averages of environmental means. In
this case, the weights are in some way inversely proportional
to environmental (and non-additive genetical) variances.

When there are no population differences (fixed
effects) among genetic values of progenies, the breeding
values may be predicted by the following ĝ vector, that
has BLP properties (SEARLE et al., 1992):

in which C is the covariance matrix between genetic
values and its phenotypic realization (t stands for a
transposition operation); V-1 is the inverse of the
covariance phenotypic data matrix; y is the phenotypic
data vector and E(.) stands for mathematical expectation.

Following White & Hodge (1989), both variance
among the predictions and covariance between the
predicted and true breeding values may be calculated by:

A “goodness of fit” measure for the prediction
process could be calculated by the correlation between
the true and predicted genetic values:

in this expression 2
g is the true genetic variance

(assumed as known) of breeding values. This square root
of the coefficient of genotypic determination is the so called
“accuracy” and in our context will be used for comparison
purposes.

RESULTS  AND DISCUSSION

For the global means we can derive the result:
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Using all the elements in Table 1, for more than 2
environments, we get:
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2 2

1

2 2

2 2

1
2 2

1

.

.

.

J

y p
j

J

y p
j

p

J

y p
j

j

j

j

b
V

in the above expression V  is the determinant of V
matrix:
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Note that ˆ 2
iy includes progeny variance plus

progeny-environment interaction variance as well as
the environmental error variance estimate, although
for only two environments it is not possible to separate
these variance component estimates into distinct
fractions.

Example

Let us take four environments with variance
component estimates given by:

10ˆ 2
p ; y1

2 15 ; y2
2 16; y3

2 18   and 
y4
2 18 .

 



Ciênc. agrotec., Lavras, v. 33, n. 5, p. 1342-1350, set./out., 2009

Selection in several environments... 1345

The breeding value of i progeny can more realistic
be calculated from:

The relative weights being 1.000, 0.833, 0.625 and
0.625.

The global mean approach in this case corresponds
to rank genetic values with the same weight for each
environment, regardless of the differeces in precision of
the estimated means. For the estimation of breeding
progress by selecting the ith progeny, the deviance of the
progeny mean must then be multiplied by the heritability
of the selection based on global progeny means. The
relative weights in this case are all 0.25.

As a practical rule - derived in Bueno Filho (1997),
proofs shown in apendix - the relative weights of each
environmental mean are in fact products of the differences
between the phenotypic variances and the common
progeny variance for the other environments.

In the example described in Table 1 we get the
following weights (Table 2):

Plant breeders are often interested in selecting
progenies tested in different locations and years, but in
general each progeny is not tested in all environments.

Selection based on average environmental
conditions is the most common objective, although in some
special cases “target environments” are elected either by
being the most (or least) productive locations, or by some
desired (or undesired) climate, soil features, typical years
with particular experimental properties, etc.

Although pooled ANOVA is a well-known
technique, it is not designed to handle unbalanced data of
this type which shows dependencies between factor levels.
However, the application of more general BLP to such
situations is straightforward, as highlighted in the example
of Table 3, that shows experimental means from the

Table 2 – Relative weights for BLP selection based on environmental means of progenies:

experiments described in Table 2, and Table 4 that shows
the correspondent breeding values predictions.

The most important factor in determining relative
weights for selection is the similarity of the progeny
performance in both tested and target environment. For
example, in Table 4 selection for A

1
 uses the specific means

of progenies in environment A
1
 weighted by the progeny

variance in environment A1 (that includes progeny by
environment interaction variance), while selecting for
average environment this interaction is not included in the
weighting process.

It is remarkable in Table 4 that progeny 3 has a
positive predicted genetic value for environment A

1 
that

may lead it to be selected, although not tested! In
conventional pooled ANOVA we do not even use the means
of untested progeny and the target environment approach
is unthinkable...

One of the most interesting features of best linear
unbiased predictors (BLUP) is thier ability to maximize the
true ranks for normal populations. This is a theoretically
proven fact which is well established by some 40 years of
mixed model studies including Monte Carlo simulations.
This means that rank differences between global means
and BLP must lead to greater errors when using ANOVA,
because the first, being more similar to BLUP, has less
strong assumptions on the covariance structure. Examples
that are sometimes given in which wrong ranking results
from poor variance component estimates are insignificant
for practical plant breeding purposes.

Registers on pedigree and molecular data
information on genetic relatedness great increases the
superiority of BLUP and BLP over pooled ANOVA.

Another very important fact about BLP (WHITE &
HODGE, 1989) is that linear combinations of BLP have
BLP properties. This suggest that to work out BLUP values
rather than local means could lead to BLUP properties of
breeding values, and these can be calculated in a BLP like

Environmental 
Phenotypic 
Variance 

Differences 
(Phenotypic-Progeny) Variances 

for remainder environments 

Product 
b.|V| 

Relative  
weight 

A1: 
y1
2 15

  

6 8 8 384 1.000 

A2: 
y2
2 16

 

5  8 8 320 0.833 

A3: 
y3
2 18

 

5 6  8 240 0.625 

A4: 
y4
2 18

 

5 6 8  240 0.625 

 

+ 0.1744 ][ 33 yyi + 0.1744 ][ 44 yyi .

 
iĝ + 0.2791 ][ 11 yyi + 0.2326 ][ 22 yyi +
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- represent untested situations
* RCB is the “randomized complete blocks” experimental design
** let 12ˆˆˆ 2

1
22

1 pEpp  be the variance of the progeny by environment interaction.

Table 4 – Estimated means from 10 progenies; predictions of breeding values for 2 targets of selection: average environment
and selection for environment 1, with ranks for selection.

Progenies 
(ranked by global 

means) 
Global Mean 

BLP1 (average 
environment) 

Rank by        
BLP1 

BLP2 (target 
environment A1) 

Rank by        
BLP2 

1 6.29 0.16 1 0.08 1 
2 6.26 0.15 2 0.05 2 
3 6.16 -0.05 6 -0.05 8 
4 6.16 0.10 3 0.01 4 
5 6.11 0.05 4 -0.03 6 
6 6.10 0.02 5 -0.69 10 
7 6.03 -0.06 8 -0.01 5 
8 6.02 -0.06 7 0.02 3 
9 5.99 -0.18 10 -0.62 9 

10 5.97 -0.13 9 -0.03 7 

 
Table 3 – Estimated means from 10 progenies in four environmental situations.

 
Environment and Experimental Design 

Progeny A1: simple 
lattice 

A2: RCB* with 
4 replications 

A3: RCB with 
3 replications 

A4: RCB with 
3 replications 

Global         
Mean 

1 5.6 7.2 6.2 6.1 6.29 
2 5.8 7.1 6.1 6.1 6.26 
3 - 7.1 6.0 5.4 6.16 
4 5.9 7.2 6.0 5.5 6.16 
5 5.9 6.9 6.0 5.6 6.11 
6 5.9 6.6 - 5.8 6.10 
7 5.4 6.9 5.9 5.9 6.03 
8 5.2 7.4 5.9 5.6 6.02 
9 5.0 6.8 6.1 - 5.99 

10 5.3 6.7 6.6 5.4 5.97 
E(y) (estimated by 

Environmental mean) 
5.54 7.00 6.10 5.70  

Weights b' (target: average) 0.2791 0.2326 0.1744 0.1744  
Weights b' (target: E1**) 0.5674 0.1395 0.1047 0.1047  

 

approach. This is as valid for multivariate analysis as for
any other technique involving BLUP.

In the example given in this paper, it is possible to
calculate BLUP values for all progenies and any target
environment by using BLUP of progeny breeding values
calculated independently in each environment. This
potentially simplifies the computational task in calculating
BLUP in a single model and allows simpler estimates that
concatenates different years, locations, experimental
designs, generations, types of progeny, relatedness of
genetical material, etc.

Restricted Expectation of Maximum Likelihood
(REML) is becoming a standard in likelihood-based
analysis of linear mixed models (SEARLE et al., 1992).
Although much of the previous BLP work demonstrates
the readiness for its use at the operational level, statistical
analysis of genetic trials is mainly concerned with
producing complex models to manage REML like estimates
and predictions directly.

However, a robust handling of progeny breeding
values of progenies as random variables can be easily
managed using BLP techniques from usual tables that
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contains information from several environments in pooled
annalysis. To ignore these facts, results in greater
estimation (prediction) errors and could increase progeny
misclassification in selection trials.
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APENDIX

Derivation of b’

We will consider the covariance matrices in a more amenable form without generality losses. This is achieved by
taking a single vector of constants from C’ and the following form for V:

J1' xnc in which  J
nxp

 is the matrix that has only 1 as its elements;

DJ nnnV , in which D
ij
 = d

i
, if i=j and D

ij
 = 0, if i¹j. Thus d

i
 represents:

in which 2
pAi can be any linear combination of variance components in which other terms plus additive

genetical variance occurs (BUENO FILHO, 1997).
For any number (n) of environments, the determinant of V may be calculated as:

11 1

n nn

n i i
ji i

i j

V d d

2

22

p

ppAi

(equation 1)

This is a recurrencing relationship that may be proved by as follows. This relation is used to prove the analogous
relation for the b vector, that has the following elements:

1

1

1 n

j in
in
i j

b c d
VV

Equations (1) and (2) can easily be proved for special cases, e.g.:

1
2 1 2 1 2

2

1 1

1 1

d
V d d d d

d
2

12

1 d
b

dV

1

3 2 1 2 3 1 2 1 3 2 3

3

1 1 1

1 1 1

1 1 1

d

V d d d d d d d d d d

d

2 3

1 3
3

1 2

1
d d

b d d
V

d d

Let call V j
*

 the matrix that has element d
j
 = 0.

Taking equation (1) as true, it then follows that:

11 1

k kk

k i i
ji i

i j

V d d

and the same operations for including an environments in set k must be:

1 11

1
11 1

k kk

k i i
ji i

i j

V d d

Taking the last columns for calculating the determinants:

2 2 1 2 2 1* * * *

1 2 1 2 2 1
1 ... ...( 1) ( 1) ( 1) ( 1) ( 1)

n n n n j n

n n n n n j
V d V V V V V

(equation 2)

(equation 3)

(equation 4)
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in which V j
*  is the nucleus of coffactors for row j and column n of V

n
 matrix. These matrices may be obtained by

letting d
j 
= 0 as follows for V

2
 and V

3
:

*

1(2)
1V

* 2
21(3)

1 1

1 1

d
dV

* 1
12(3)

1 1

1 1

d
dV

It may be easily shown that for odd j values this expression will be negative and positive for even  j values.
So for any j this will be:

2 12 1* 2 1,1

1
1 11, 1

1

1( 1)
n nn n n

i in
i in

i n

V J
d d

JV

3 3,1 3,1 12 1*

1, 32
1

21, 3 1

1 1

1 1
( 1)

n n n nn

n in
i

i nn n

V J J

J d

J d
V

The negative signals result from combination of odd exponents of coffactors or by changing the assortment of
column J

n-1,1
 when taking determinants of minor order. So, this expression can be simplifyed to:

2 12 1* *

1 1
1

( 1)
n nn

i ij j
i i

i n

d dV V

and V
k+1

 determinant result in:

2 2

1 1
1 1

1 ( 1)
kkk

k k k i
j i

i j

V d V d

1 1
1 11 1 1

1
k k kk k

k k i i i
j ji i i

i j i j

V d d d d

1 1
1 1 11 1 1 1 1

k k k k kk k k

k i i k i i i
j j ji i i i i

i j i j i j

V d d d d d d

1 1

1
11 1 1

k k kk

k i i i
ji i i

i j

V d d d

1 1

1
11 1 1

k k kk

k i i i
ji i i

i j

V d d d

and

and so on...

(equation 6)
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1 11

1
11 1

k kk

k i i
ji i

i j

V d d

, that is the same of equation (1) q.e.d.
In an analogous way, b’ in equation (2) is calculated by sums of the coffactors for j columns as follows:

*

1
11

1 ( 1)'
k n j

kk j
jk

V
Vb V

*

1
1 11 11

1 ( 1)'
k kk k n j

i ik j
j ji ik

i j

d d
Vb V

*

1
1 11 11

1 ( 1)'
k kk k n j

i ik j
j ji ik

i j

d d
Vb V

1
1 11 1 11

1
'

k k kk k

i i ik
j ji i ik

i j i j

d d d
Vb

1

1
1 11 1

1

1 1
'

k k

i ik
i ik k

i k

d d
V Vb

 and by analogy, we get for the following  j  element:

1

11

1
'

k

ij
ik
i j

d
Vb

The target environment approach could be easily adapted by taking 1+d
i
 instead of 1 in the i element of the c’

covariance vector. This leads to an additional factor of d
i 
b’

j 
in the weighting for environment j.

    


