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ABSTRACT: The study of pest distributions in space and time in agricultural systems provides important
information for the optimization of integrated pest management programs and for the planning of
experiments. Two statistical problems commonly associated to the space-time modelling of data that
hinder its implementation are the excess of zero counts and the presence of missing values due to the
adopted sampling scheme. These problems are considered in the present article. Data of coffee berry
borer infestation collected under Colombian field conditions are used to study the spatio-temporal
evolution of the pest infestation. The dispersion of the pest starting from initial focuses of infestation
was modelled considering linear and quadratic infestation growth trends as well as different combinations
of random effects representing both spatially and not spatially structured variability. The analysis was
accomplished under a hierarchical Bayesian approach. The missing values were dealt with by means of
multiple imputation. Additionally, a mixture model was proposed to take into account the excess of
zeroes in the beginning of the infestation. In general, quadratic models had a better fit than linear models.
The use of spatially structured parameters also allowed a clearer identification of the temporal increase
or decrease of infestation patterns. However, neither of the space-time models based on standard
distributions was able to properly describe the excess of zero counts in the beginning of the infestation.
This overdispersed pattern was correctly modelled by the mixture space-time models, which had a better
performance than their counterpart without a mixture component.
Key words: Markov chain Monte Carlo methods, risk maps, mixture model, zero inflated model, multiple
imputation

MODELAGEM ESPAÇO-TEMPORAL DO PADRÃO DE INFESTAÇÃO
DA BROCA DO CAFÉ LEVANDO EM CONSIDERAÇÃO EXCESSO DE

ZEROS E DADOS FALTANTES

RESUMO: O estudo da distribuição de pragas em espaço e tempo em sistemas agrícolas fornece
informação importante para a otimização de programas de manejo integrado de pragas e para o planejamento
de experimentos. Dois problemas estatísticos comumente associados à modelagem espaço-temporal
desse tipo de dados que dificultam sua implementação são o excesso de zeros nas contagens e a
presença de dados faltantes devido ao esquema de amostragem adotado. Esses problemas são
considerados no presente artigo. Para estudar a evolução da infestação da broca do café a partir de
focos iniciais de infestação foram usados dados de infestação da praga coletados em condições de
campo na Colômbia. Foram considerados modelos com tendência de crescimento da infestação linear e
quadrática, assim como diferentes combinações de efeitos aleatórios representando variabilidade
espacialmente estruturada e não estruturada. As análises foram feitas sob uma abordagem Bayesiana
hierárquica. O método de imputação múltipla foi usado para abordar o problema de dados faltantes.
Adicionalmente, foi proposto um modelo de mistura para levar em consideração o excesso de zeros nas
contagens no início da infestação. Em geral, os modelos quadráticos tiveram um melhor ajuste que os
modelos lineares. O uso de parâmetros espacialmente estruturados permitiu uma identificação mais clara
dos padrões temporais de acréscimo ou decréscimo na infestação. No entanto, nenhum dos modelos
espaço-tempo baseados em distribuições padrões descreveu, apropriadamente, o excesso de zeros no
início da infestação. Esse padrão de sobredispersão foi corretamente modelado pelos modelos de mistura
espaço-tempo, os quais tiveram um melhor desempenho que seus homólogos sem mistura.
Palavras-chave: Métodos Monte Carlo via cadeias de Markov, mapas de risco, modelo de mistura,
modelo inflacionado de zeros, imputação múltipla
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INTRODUCTION

The coffee berry borer, Hypothenemus hampei
Ferrari (Coleoptera: Scolytidae), has been considered
as the most important pest of the coffee growing in
the world (Jaramillo et al., 2006). That insect attacks
directly the fruit of coffee in development making its
entire biological cycle inside of them. It uses the fruit
as a refuge to reproduce and to feed its offspring, and
as shelter from predators and from adverse weather
(Le Pelley, 1968) causing severe losses in the grains
production and quality. This pest was registered for
the first time in Colombia in 1988 and it is present
nowadays in more than 700 thousand hectares (85%
of the planted area). It has been estimated that the costs
of the borer control in Colombia are around of U$100
million a year representing about 10% of the total cost
of the coffee production (source: http://
pest.cabweb.org/Archive/ Pestofmonth/pest9710.htm.
Accessed 10 Jan. 2008).

A detailed description of the coffee berry
borer space-time dispersion in commercial fields is
important for the better use of control agents in in-
tegrated pest management programs, for the devel-
opment of sampling plans and for the planning of field
experiments, among other applications. Some aspects
of the dispersion pattern and of sampling strategies
for this pest were studied in several countries, show-
ing that the pest has an aggregated distribution pat-
tern in the field (e.g. Ruiz et al., 2000 and references
therein).

Although these reports suggested the presence
of a spatial pattern in the dispersion of the pest, they
did not take into account either the samples spatial lo-
cation or the spatial scale effect. In fact, the spatio-
temporal pattern of insect populations in commercial
fields has rarely been studied due to the required in-
tensive sampling effort to obtain spatial information and
the limitations of the available statistical methodology
until few years ago.

In this study the spatio-temporal variation of
the coffee berry borer infestation is analysed under
field conditions in Colombia. Statistical models that
describe properly the dispersion of the pest in a cof-
fee plot are used, starting from initial focuses of in-
festation. These methods take into account two diffi-
culties that are common in the practice of spatial data
analysis. One is the presence of an excessive number
of zero counts with respect to what can be modelled
by the usual discrete probability distributions. The other
difficulty is the presence of missing values which
makes the space-time dispersion modelling more com-
plicated. Based on the results maps are made to iden-
tify infestation trends through time.

MATERIAL AND METHODS

Spatio-temporal Statistical Models
There are many deterministic models for

insect's spatial and temporal ecological distribution pro-
cesses, frequently focused on issues of epidemics on
large spatial scales (e.g. Rudd & Gandour, 1985;
Brewster & Allen, 1997). However, this type of mod-
els is not appropriate for studies in small geographical
scales, as those frequently observed in experimental
systems (Gibson & Austin, 1996), and there are few
attempts of modelling spatial and temporal dispersion
of pests at a local level (e.g. Winder et al., 2001).

In recent years, new methodologies have been
developed for modelling disease incidence and mortality
rates in space and time under a hierarchical Bayesian
approach (Waller et al., 1997; Knorr-Held & Besag,
1998; Knorr-Held, 2000; Pickle, 2000; Sun et al, 2000;
Assunção et al., 2001). The applications of those meth-
ods in human epidemiology have been numerous, par-
ticularly in disease mapping, to study variations in the
risk of diseases in space and time and to visualize
trends through time at a regional level (Kleinschmidt
et al., 2002; Nobre et al., 2005; Chen et al., 2006;
Mabaso et al., 2006). In an ecological context, Baye-
sian approaches based on the autologistic model
(Besag, 1974) have been proposed to predict the pres-
ence-absence of a species in a certain area based on
sample information (Huffer & Wu, 1998; Hoeting et
al., 2000). In a non Bayesian context, a temporal com-
ponent was added to the autologistic model to create
a spatio-temporal Markov random field, which was
used by Zhu et al. (2005) to study the outbreaks of
the southern pine beetle in North Carolina.

The spatio-temporal distribution of pests and
diseases in fruits of perennial agricultural systems could
be modelled in a similar way as for geographical varia-
tion of disease rates in human epidemiology. Each plant
can be considered as equivalent to a small area or dis-
trict, with the total number of fruits of that plant cor-
responding to its population under risk, while the num-
ber of affected fruits corresponds to the number of
diseased human cases. However, there is an additional
complication for the application of those models to the
problem considered here. Maps of the observed infes-
tation of the borer (Figure 2) showed that, at the be-
ginning, the process of dispersion of the pest in the
field presents an aggregated spatial pattern, typical of
many arthropods. Therefore, when the infestation pro-
cess starts it is common to have some plants with
relatively high levels of infestation while most of the
other plants stay healthy with zero infested fruits. This
generates a spatial pattern with a very large number
of zero counts combined with few large counts and
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this pattern cannot be properly fitted by the usual dis-
ease mapping models.

A natural approach to model this situation is
to partition the population of plants into two or more
groups and to use mixture models, particularly zero
inflated models. In these models, besides the count-
ing of zeroes coming from a distribution such as Pois-
son, that affects a part of the population, there also
exists an additional number of zeroes from individuals
belonging to a group of “non susceptible”. A literature
review and a discussion on a general methodology to
model zero inflated count data is presented in Ridout
et al. (1998), with emphasis in applications in horti-
culture. Some models for zero inflated data of propor-
tions with applications to biological control assays are
also presented in Vieira et al. (2000). Other recent ap-
plications of non spatial Poisson and binomial zero in-
flated models can be found for instance in Hall (2000)
and in a Bayesian context in Angers & Biswas (2003);
Rodrigues (2003) and Ghosh et al. (2006).

Very little effort has been devoted to the mod-
elling of these zero inflated models in a spatial con-
text. Exceptions are the papers by Agarwal et al.
(2002) and Gschlößl & Czado (2006). However, we
have no knowledge of models that consider zero in-
flated count data structured in space and time.

The Colombian Coffee Berry Borer Infestation
The Colombian National Center of Coffee Re-

searches, CENICAFE, carried out a large study on the
population dynamics and the development of sampling
techniques for the coffee berry borer. As part of this
project, one of us was involved with the analysis of
the first ten months of evaluation (July/1995 to April/
1996) of a borer infestation experiment. During this
period the pest was dispersed starting from initial fo-
cuses until almost colonizing the totality of an experi-
mental area with 2214 plants of coffee (Coffea arabica
var. Colombia).

These plants were distributed in an area of ap-
proximately 0.5 ha located in the experimental station
“La Catalina” in the Pereira Colombian municipality
(4°45’ N, 75°45’ W), 1350 meters above sea level,
with an average temperature of 21.6°C, rainfall of
1978 mm/year, and sunlight of 1606 hours/year. The
plot had a slope between 40% and 60%, typical of
many coffee plantations of the central Colombian coffee
area, and shared no boundaries with other coffee plots.
The plot was selected nine months after the planting
in the field when the coffee plants presented their first
flowerings. The spacing among plants was of 1.5 m
× 1.5 m.

The locations (coordinates X-Y) of the 2214
plants were referenced in a Cartesian plan starting

from an arbitrary origin. Due to the large size of the
dataset and the high computational cost required to
model the information, this study considered the analy-
sis of a representative sub-area composed of a sample
of 392 plants within the available 2214.

The pest was left uncontrolled during the ex-
perimental period besides the permanent collection of
ripe, overripe and dry fruits. The information consid-
ered for analysis started to be collected monthly starting
in July/1995, three months after the registration of the
first important flowering stage, ending in April/1996.
It began with an inspection of each plant observing
the presence or absence of the borer. If there was at
least one fruit infested by the borer in a plant, all fruits,
healthy and infested, were counted. Otherwise, the
plant was simply registered as not infested (0% of in-
festation) and the total number of fruits was not
counted. This saving of sampling effort generated the
missing value problem for the estimation in our mod-
els, which is the subject of the next subsection.

Estimation of Missing Values
The total number of fruits in healthy plants had

to be estimated in order to implement the spatio-tem-
poral modelling of the infestation process. We used the
multiple imputation method (Rubin, 1987) which is
based on the substitution of each missing value for m
≥ 2 values sampled from a distribution of probability
that describes as best as we can the data generating
mechanism of the true unknown and missing values.
With the m imputations for each missing value, it is
possible to create m complete datasets and each of
them is analyzed using statistical procedures as if the
imputed data were real. Next, we summarize in some
way the inferences from the m analyzes in each com-
plete dataset undertaken to represent the final inference
for the original dataset.

In a Bayesian context, these imputations are
obtained through the usual Bayesian predictive distri-
bution by treating the missing data as extra parameters
to be estimated. We chose the multiple imputation tech-
nique because it is simple to be implemented and the
missing data prediction is made separately from the in-
festation risk modelling. It makes possible the subse-
quent analysis of the complete spatio-temporal
datasets.

An initial analysis made of the total number of
fruits on those plants where this information was col-
lected, detected an increasing trend over time of the
number of fruits (Figure 1). Considering the months
of March and April of 1996, we found no evidence of
significant spatial dependence between the total num-
ber of fruits on each plant. We chose these two par-
ticular months because that was when most of the
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plants (58% and 70%, respectively) had their total num-
ber of fruits counted. The absence of spatial correla-
tion was verified through the calculation of the Moran’s
index (Moran, 1948). These two aspects motivated the
model specification, as we explain next.

We assumed that the total number Nit of fruits
of the i-th tree in month t followed a Poisson distri-
bution with expected value µit and the counts were in-
dependently conditioned on their means. To allow for
the temporal increase of Nit and heterogeneity between
trees, we adopted a log-linear model with a specific

Figure 1 - Average number of total (healthy and infested) fruits in
each plant in the period from July 1995 to April 1996.
It is based on plants with at least one fruit infested by
the borer.

Figure 2 - Coffee berry borer infestation levels in the experimental
plot during the period from July, 1995 to April, 1996.
Map (a) represents the locations of the 392 trees. In
maps (b) to (f) the size of the black circles is
proportional to the magnitude of the infestation of
each plant. Non infested plants are not drawn in maps
(b) to (f) to facilitate the visualization of the infestation
spread of the pest.

intercept and growth trend for each plant. In other
words, we assumed that

Nit ~ Poisson(µit),  with log(µit) = αi + βi t , i = 1, …,
392; t = 1, …, 10,  (1)

where αi represents the overall mean of Ni0, the total
number of fruits of the i-th plant at t = 0 and the pa-
rameter βi is the growth rate of µit. Additionally, we as-
sumed that, a priori, the parameters α1 , … , α392 and
β1 , … , β392 are independent and normally distributed,
with αi ~ Normal(λα , τα) and βi ~ Normal(λβ , τβ).
The parameters of these priors were assumed to be
λα = 4.6, τα = 1.6, λβ = 0.1, and τβ = 83, where τα
and τβ correspond to the precision (inverse of the vari-
ance) of each normal distribution.

These values were based on previous knowl-
edge of the expected number of fruits at different plant
ages. For instance, for the intercept αi, it was assumed
that a plausible value to represent the overall mean of
the number of fruits at t = 0 would be 100 fruits (that
is, ln(100) = 4.6), but this value could vary between
a minimum of four fruits and a maximum of 2500
fruits. So, in a logarithmic scale, the width between
the average and the ends (|7.8 – 4.6| = |4.6 – 1.4| =
3.2) would be approximately equal to four times the
standard deviation (that is, 3.2 = 4σ), giving a preci-
sion τ = 1/ σ2 = 1.6. A similar reasoning provides the
values for the prior distribution for βi.

Using Bayes theorem it is possible to use the
observed data nobs to update the knowledge on the vec-
tor of parameters (α1 , … , α392 , β1 , … , β392), as
well as on the missing data nmiss. This updating is ex-
pressed by the joint posterior probability distribution
f(α, β, nmiss | nobs) which is proportional to
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The updating was made numerically via simu-
lation through Markov chain Monte Carlo methods
(MCMC). A Gibbs sampling algorithm (Gelfand &
Smith, 1990) was used to generate a sample of the
posterior distribution of the parameters of interest. The
method was implemented through the software
WinBUGS version 1.3 (Spiegelhalter et al., 2000). Only
one Markov chain of the Gibbs sampler was gener-
ated, with a pre-convergence cycle (burn-in) of 5000
iterations, following by 25000 iterations, of which we
kept one in every five, giving 5000 values for the cal-
culation of the posterior statistics of interest. The con-
vergence of the simulations was tested following sev-
eral criteria through the program CODA version 0.3
(Best et al., 1996).
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The model for equations (1) and (2) was imple-
mented ten times, using different groups of initial val-
ues to form m = 10 groups of imputed values, that
represent a distribution of plausible values of the miss-
ing total number of fruits in each plant, at every time.
The imputed values were the last Gibbs sampler itera-
tion values for nmiss, and not their posterior mean, to
account for the sampling variability on the true and
unknown values to be predicted.

Space-time Modelling
Because the first seven evaluation months (from

july/95 to january/96) had low infestation levels, with a
great number of plants with completely healthy fruits
(see Figure 2), it was decided to restrict the spatio-tem-
poral analysis to the last four months (from january/96
to april/96), which summarize the period of fastest dis-
persion of the pest in the experimental area, starting
from localized focuses at low infestation levels.

Let nit and yit be the total and infested number
of fruits observed in plant i = 1,..., 392 and time t =
1,..., 4, respectively. We assume that the number of
infested fruits, Yit, follows a binomial distribution with
parameters nit and πit with a logistic link function, logit
(πit) = ηit. To describe the temporal trend in the infes-
tation rates we followed Assunção et al. (2001), using
as linear predictor polynomials of first (ηit = δi + γi t),
or second order (ηit = δi + γit + νit

2 ).
For the linear trend model, the parameter γi de-

termines how the levels of infestation of the borer in
each plant change over time. The posterior distribu-
tion of these parameters, perhaps summarized by the
posterior mean, allows for spatial visualization of re-
gions with different regimes such as increasing, sta-
tionary or decreasing infestation rates. For the mod-
els with a quadratic term, the growth rate is not con-
stant in time, with its acceleration determined by νi.
As models for time series, polynomial growth models
are just a crude approximation. However, given the

small number of time points for each plant, there were
not enough measurements to experiment more sophis-
ticated models.

The coefficients δi , γi , and νi of the growth
models are random effects at the plant level, allowing
for space-time interactions, that is, each plant has its
own temporal regime of the infestation rate, and there-
fore, the temporal trend is possibly different for dif-
ferent plants. Several alternatives were considered to
model these random effects a priori, as summarized
in Table 1. The simplest choice is to assume a priori
that all of random effects are distributed independently
with a normal distribution with mean zero and un-
known variance (models 1 and 5 of Table 1), that is,
to assume that a priori the risk of infestation occurs
independently among the plants.

A second option is to consider that neighbor-
ing plants tend to have similar values for the infesta-
tion risk. For that, we assume a conditional
autoregressive Gaussian prior (CAR) for the random
effects (Besag et al., 1991). If θ stands for any of the
random effects, the CAR prior assumes that θi | θ–i ~
Normal r , where θ–i is the vector of all θ 's

excluding θi,  is the average of θ 's in the
neighborhood ∂i of each plant i, and ri is the number of
those neighbors. Due to risk factors spatially shared but
unmeasured, we expect a random effect θi to be cen-
tered around the values of its neighbors θj. This prior
spatial dependence can be induced only on the intercept
of the model (models 3 and 6 of Table 1), only on the
random effects that are interacting with time (models 2
and 7) or in all coefficients of the model (models 4 and
8). For each random effect with spatial dependence
there is a global, fixed effect with a “flat” prior distri-
bution. This parameterization is necessary to ensure that
the models are identifiable because the CAR prior is im-
proper (for details, see Best et al., 1999).

Table 1 - Models and prior distributions evaluated in the initial spatio-temporal analysis.

*The prior distribution for ξ, ω and ε is Uniform(-∞, +∞). **CAR(τ) is a conditional autoregressive Gaussian prior with precision τ.
***The distribution for τδ, τγ and τν is gamma(0.001, 0.001) for all the models.

Model*
Prior distributions***

δ γ ν
(1) η it = δ + γ it Normal(0, τδ) Normal(0, τγ) -
(2) η it = δ + (ξ + γ i)t Normal(0, τδ) CAR(τγ)** -
(3) η it = (ω + δ i) + γ it CAR(τδ) Normal(0,τγ) -
(4) η it = (ω + δ i) + (ξ + γ i)t CAR(τδ) CAR(τγ) -
(5) η it = δi + γ it + νit

2 Normal(0, τδ) Normal(0,τγ) Normal(0,τν)
(6) η it = (ω + δ i) + γ it + νit

2 CAR(τδ) Normal(0,τγ) Normal(0,τν)
(7) η it = δi + (ξ + γ i)t + (ε + νi)t2 Normal(0, τδ) CAR(τγ) CAR(τν)
(8) η it = (ω + δ i) + (ξ + γ i)t + (ε + νi)t

2 CAR(τδ) CAR(τγ) CAR(τν)



Modelling of coffee berry borer infestation 105

Sci. Agric. (Piracicaba, Braz.), v.66, n.1, p.100-109, January/February 2009

For the spatial random effects, we adopted a
second order neighborhood as described in Besag
(1974). This choice was based on results of a pre-
liminary work of spatial modelling of the infestation
of the coffee berry borer, where different neighbor-
hood schemes were evaluated (for details, see Ruiz et
al., 2003). Each of the eight models shown on Table
1 was fitted ten times, one for each imputed complete
dataset. The MCMC procedure generated one chain of
30000 iterations, of which we kept 5000 (one in ev-
ery five) for the calculation of the posterior statistics
of interest, after discarding the first 5000 iterations.
Combined posterior estimates for each parameter of
interest were obtained as the arithmetic mean of the
ten replications of the posterior estimates obtained for
each model. The convergence of the chains was tested
with the same criteria used for the missing data analy-
sis.

Model Selection
The expected predictive deviance (EPD) cri-

terion (Gelfand & Ghosh, 1998) was adopted to
choose between the different models. This criterion
considers the creation of a new dataset from the pre-
dictive distribution

f (Yit.new | Yit) = ∫ f (Yit.new | πit) f (πit | Yit) dπit,

where Yit.new is a replicate of the observed data Yit. This
replicate was obtained sampling binomial random vari-
ables Yit.new, conditionally on πit values extracted from
their posterior distribution. The choice of the best
model is made comparing the posterior expectation of
the discrepancy between the observed and predicted
data through a loss function L(Ynew, Y). This poste-
rior mean gives the EPD for each model considered.
A quadratic loss function L(Ynew, Y) = (Ynew – Y)’(Ynew
– Y) was used, as suggested by Laud & Ibrahim
(1995), but other discrepancy functions are equally
plausible.

The EPD can be expressed as the sum of two
terms EPD = GM + PM as shown in Gelfand & Ghosh
(1998). The GM term is a goodness of fit measure
that is essentially a likelihood ratio statistic (Xia &
Carlin, 1998), while the PM term is a penalty factor
that penalizes very complex models. The smaller the
value of EPD, the better fitted is the model.

RESULTS AND DISCUSSION

Results of the Space-time Modelling
We consider initially the first four models of

Table 1, which assume a linear infestation rate for each
plant. The infestation level is determined by the param-
eter ηit = δi + γi t for models 1 and 3 and ηit = δi + (ξ

+ γi)t for models 2 and 4, which breakdown the pat-
tern into a plant-specific constant infestation rate δi and
a temporal effect represented by the parameter γi. The
first row of maps in Figure 3 shows the Bayesian es-
timates of the parameter γi given by the posterior
means obtained through the MCMC procedure applied
to the observed dataset. There is a clear difference be-
tween models 2 and 4, which assumed a spatial struc-
ture for the parameter γi, and models 1 and 3, which
did not. One striking difference is that models 1 and
3 predicted a spatial pattern that was not well defined,
alternating plants with positive and negative values of

îγ . Models 2 and 4, with spatial structure on γi,
showed a clear growth trend in the infestation levels
in the Eastern side of the map and of a decrease for
the Northwest area. This is reflected on the observed
pattern by Eastern plants starting in a relatively high
infestation level η but, as times passes, the negative
γ’s in this region bring this relatively high level towards
smaller levels. In contrast, plants on the Northeastern
part of the plot start with a low infestation level η but
their positive γ’s lead to continual increase with respect
to their initial values. This general behavior is similar
to the pattern shown by the observed data, presented

Figure 3 - Posterior mean maps for the parameters γ and ν in the
spatio-temporal models. Models 1 to 4 and 5 to 8
correspond to models with linear and quadratic trends
respectively (Table 1). The size of the black circles is
proportional to the value of these parameters for each
tree. Negative values for γ and ν are not drawn to
facilitate the visualization of regions where the
infestation level increases or decreases.



Ruiz-Cárdenas et al.106

Sci. Agric. (Piracicaba, Braz.), v.66, n.1, p.100-109, January/February 2009

in the Figure 2. In fact, the borer infestation started
in the Northwest area and spread towards the East un-
til almost all region was colonized in April/1996. How-
ever, the initial infestation in the Northeastern area de-
creases its relative incidence as the time passes. An-
other aspect that differentiates models 1 and 3 from
models 2 and 4 is that the first two had 130 and 122
plants, respectively, with > 1, while  + > 1 only
for three and six plants in models 2 and 4, respectively.
Values larger than 1 indicate an extremely fast increase
that we think is not really reasonable in practice. Be-
cause of these aspects, we believe that models with
spatially structured infestation rates reproduce better
the observed pattern than models with spatially un-
structured parameters.

Consider now models 5 to 8 which have a
variable infestation rate due to the quadratic term t2

with coefficient νi. More specifically, the infestation
rate is given by γi + νit and therefore changes in time.
As before, the results for spatially structured γi in mod-
els 7 and 8 are quite different from models 5 and 6,
where γi had no spatial structure. Similar behavior was
observed for the parameter ν (see Figure 3).

More formally, the EPD statistics to compare
these eight models is presented in Table 2. The first
four models, with constant infestation rate, clearly
have a poorer performance as compared to the last four
models. Furthermore, under this criterion the models
with spatially unstructured parameters are slightly bet-
ter than their spatial correspondents. It should be noted
that all models had similar PM penalization factors with
the GM goodness of fit factor being responsible for
the differences between them.

However, models of Table 1 have a major
drawback. As stated above, they are not able to model
appropriately the number of not infested plants during
the pest diffusion. Compared to what is predicted by
these models, there is an excessively large number of

zero infested fruits in the observed data (Table 3). This
is especially true during the first two months of the
infestation. An alternative modelling strategy is to use
mixture models, such as zero inflated models, that al-
low for model infestation discontinuities and discrimi-
nate between infested and not infested plants, giving
a specific probability model for each group of plants.
Given that none of the models in Table 1 was able to
capture this over dispersion, we avoid a detailed dis-
cussion of further aspects of the estimated (linear and
quadratic) models at this point and postpone it to later,
when we present the results of the mixture modelling
approach, which is pursued next.

The Mixture Model
All coffee plant fruits in a not infested area can

be attacked by the insect but, in practice, factors such
as the aggregated character of the pest, small differ-
ences in microclimate inside the plantation, fertility gra-
dients, and plants at the plot borders and close to ar-
eas already infested can make some plants more at-
tractive than others for the borer at the beginning of
the infestation. These differences between plants are
likely to decrease as the pests spread and colonize the
plantation. Therefore, we consider a mixture model
where a proportion pt of the plants at every time t,
(t = 1, 2, 3, 4) is not attractive to the borer while the
remaining proportion 1 – pt has some infestation risk.
The number of infested fruits in the attractive sub-
population follows a binomial distribution with param-
eters nit and πit. Realizations of this model can gener-
ate a larger number of zero counts than a plain bino-
mial model.

Consider the binary indicator variable Zit, as-
suming the values Zit = 1, if the plant i is not attrac-
tive to the borer at time t, and Zit = 0, if the plant i
has a positive infestation risk at time t. Therefore, Zit

Model EPD PM GM
1 75775 24164 51611
2 76158 24103 52055
3 76247 24034 52213
4 77496 24763 52732
5 44281 26573 17708
6 44526 26274 18252
7 50933 27672 23261
8 52019 27700 24319

Table 2 - Statistics of the expected predictive deviance
criterion for the models. EPD = expected
predictive deviance (EPD = PM + GM); PM =
penalty term; GM = goodness of fit measure.

Table 3 - Number of plants with average posterior levels of
infestation smaller than  0.3%, classified in the
different space-time models. Obs = observed data.

Model
Month

January/96 February/96 March/96 April/96
1 247 196 152 123
2 252 196 148 121
3 250 186 147 123
4 254 193 154 122
5 254 209 167 122
6 260 204 160 122
7 270 207 151 121
8 273 205 150 122
Obs 329 280 175 120
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~ Bernoulli(pt). Given that Zit = 1 we have Yit = 0 while
if Zit = 0 we have Yit with binomial distribution. The
marginal distribution of Yit is called a zero inflated bi-
nomial distribution and it is given by:
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with 0 ≤ pt ≤ 1. When pt = 0, this model reduces to
the standard binomial distribution. The likelihood func-
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We assumed that the prior distribution for the
parameter pt was an independent beta distribution (at,
bt), t = 1, 2, 3, 4, with at = bt =1 for every t. The
choice of this prior was based on previous results ob-
tained for the purely spatial case by Ruiz et al. (2003).
They evaluated the effect of the choice of different
values for the hiper-parameters at and bt of the prior
beta distribution on the classification of the observa-
tions in each one of the components of the mixture,
without finding apparent differences between not in-
formative and highly informative priors.

A logistic link function was used for the bino-
mial distribution. The linear predictor ηit was modelled
in a similar way as for the models with the best per-
formance found in the previous section (i.e., models
1 and 5). Hence, we analyzed two models, one with a
linear trend (ηit = δ*

i + γ*
i t), and one with a quadratic

trend (ηit = δ*
i + γ*

it + ν*
it

2) for the infestation rate.
No spatial dependence was assumed a priori and there-
fore δ*

i ~ Normal (µ*
δ , τ*

δ), γ*
i ~ Normal (µ*

γ , τ*
γ) and

ν*
i ~ Normal (µ*

ν , τ*
ν). We adopted uninformative fully

specified hyper-priors: µ*
δ ~ normal (0 , 1.0E-6), τ*

δ ~
gamma (0.001 , 0.001), µ*

γ ~ normal (0 , 1.0E-6), τ*
γ

~ gamma (0.001 , 0.01), µ*
ν ~ normal (0 , 1.0E-6) e

τ*
ν ~ gamma (0.001 , 0.001).

We generated a chain of 20000 iterations of the
MCMC procedure discarding the first 5000 and keep-
ing one out of every 15 from the remaining 15000.
This produced a sample of 1000 values for the param-
eters. The convergence of the simulations was tested
following the same criteria of the previous models. As
before, each model was implemented ten times to ob-
tain combined estimates of the parameters of interest
based in the ten groups of imputed values previously

generated. The mixture models allowed taking into ac-
count the excess of zeroes at the levels of infestation
of the first months (Table 4). These results showed a
much better fit of the mixture models to the infested/
healthy classification than the models without mixture
evaluated previously (Table 3). Concerning the global
fit of the model, Table 5 shows the EPD statistics for
the mixture models. Once again the mixture models
had a better fit than their homologous without mix-
ture (Table 2). Therefore, the best model corresponded
to that with two mixed populations, of attractive and
non-attractive plants, and with a plant-specific qua-
dratic infestation rate.

CONCLUSIONS

The dispersion of the infestation of the coffee
berry borer had been previously modelled by Ruiz et
al. (2003) ignoring the time, by considering only spa-
tial approaches fitted to one month (March/1996), the
best fitted model being then replicated in the other time
periods. This is clearly, a crude way to analyze the in-
festation spread and the present study introduces a
more elaborate and integrated way to carry out this
task. We found that the mixture component is crucial
in the spatio-temporal infestation of the pest, perhaps
representing environmental heterogeneity in the borer
habitats.

Mixture Bayesian hierarchical models allow the
incorporation of covariates and random effects with
and without spatial dependence. In this work,
covariates possibly associated to spatial or temporal

Model
Month

January/96 February/96 March/96 April/96
MM1 329 269 150 122
MM5 329 265 148 121
Obs 329 280 175 120

Table 4 - Number of plants with average posterior levels of
infestation smaller than 0.3%, classified in the
mixture space-time models. MM1 and MM5
correspond to the mixture models constructed
from the space-time models 1 and 5 in Table 1,
respectively. Obs = observed data.

Model EPD PM GM
MM1 68515 24811 43704
MM5 43888 25977 17911

Table 5 - Statistics of the expected predictive deviance
criterion for the mixture models. EPD = expected
predictive deviance (EPD = PM + GM); PM =
penalty term; GM = goodness of fit measure.
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differences in the incidence of the berry infestation
were not available. In future experiments it will be im-
portant to collect information on environmental
covariates to explain better the phenomenon under
study. The best performance of the mixture models
in terms of fitting, compared to the models based in
just a standard distribution, emphasize the importance
of considering the excess of zeroes at the beginning
of the infestation for modelling properly the estimates
of the risk. Additional maps illustrating the posterior
mean of the infestation risk for all of the adjusted mod-
els, as well as the WinBugs routines, can be found at
the address http://www.lce.esalq.usp.br/clarice/
scientia_agricola.
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