Quim. Nova, Vol. 33, No. 9, 1887-1891, 2010

INTERPRETAÇÃO DO MECANISMO DE DIFUSÃO NO PROCESSO GÁS-SÓLIDO DA REAÇÃO DE DESSULFURIZAÇÃO

Daniela Andresa Mortari*, Paula Manoel Crnkovic, Ivonete Ávila e Fernando Eduardo Milioli

Departamento de Engenharia Mecânica, Escola de Engenharia de São Carlos, Universidade de São Paulo, CP 780, 13560-970 São Carlos – SP, Brasil

Recebido em 20/1/10; aceito em 16/6/10; publicado na web em 22/9/10

INTERPRETATION OF THE MECHANISM DIFFUSION IN THE GAS-SOLID PROCESS OF THE DESSULFURIZATION REACTION. The present paper aims to interpret the SO_2 diffusion mechanism process for two different limestones: a calcite and a dolomite. In previous study, the apparent activation energies for sulfation reaction were between 3.03 and 4.45 kJ mol⁻¹ for the calcite, and 11.24 kJ mol⁻¹ for the dolomite. Using nitrogen porosimetry it was possible to observe that the dolomite presents mesopores of 0.03 μ m, while the calcite presents mesopores of 0.01 μ m. The evaluation of limestones porous structure together with their kinetic parameters, allowed concluding that the diffusion mechanism follows Fick law and Knudsen law for dolomite and calcite, respectively.

Keywords: diffusion mechanism; limestone; dessulfurization.

INTRODUÇÃO

O crescimento contínuo do consumo de energia está diretamente relacionado com a estrutura produtiva do país e o adequado suprimento de energia pode também levar a um avanço tecnológico e melhoria da qualidade de vida.

No Brasil, a partir da década de 90, o crescimento da oferta de energia se tornou insuficiente para fazer frente ao crescimento da demanda, especialmente em algumas importantes regiões do país. Embora a matriz energética brasileira seja majoritariamente de hidroelétrica, estes recursos se aproximam da exaustão ou se mostram ambientalmente inviáveis em algumas regiões.¹

Dentro deste contexto, o carvão mineral, utilizado com as devidas precauções e tecnologias adequadas, pode ser uma alternativa para o problema energético brasileiro, pois segundo o Ministério da Ciência e Tecnologia (MCT) o Brasil possui reservas de aproximadamente 31 bilhões de toneladas de carvão mineral. Porém, os carvões brasileiros possuem teores de cinza que variam de 40 a 60% e altos índices de enxofre (de 1 a 6%).²

A queima de combustíveis fósseis para a produção de energia é considerada uma das principais fontes de emissão de SO_2 e o acúmulo deste gás na atmosfera aumenta a acidez da água da chuva, acarretando no rompimento do equilíbrio ambiental. Contudo, há uma crescente preocupação em relação à preservação do planeta e a poluição atmosférica é ponto crucial neste contexto.

A combustão de carvões que possuem altos teores de enxofre e cinza é problemática em plantas convencionais. Assim, a possibilidade de se utilizarem reatores de leito fluidizado se torna promissora e este é um assunto que tem sido estudado por vários autores e com mais intensidade a partir da década de 1970.³ Neste processo, considerado tecnologia limpa do carvão, é possível se obterem significativas reduções de emissões poluentes, pois permite a adição de calcários, que além de serem eficientes sorventes de SO,, apresentam um baixo custo.

Outra possibilidade é a adição de biomassa em processos de combustão, porém sua adição isoladamente pode não ter as propriedades combustíveis adequadas devido a vários fatores como, por exemplo, o baixo poder calorífico, em função de sua própria natureza. Entretanto, pode ser empregada em misturas com carvão mineral, denominadas *blends*, que nas proporções adequadas poderão apresentar bons resultados energéticos.⁴

A combustão de carvões ou *blends* de carvão/biomassa em reatores de leito fluidizado pode ocorrer entre 800 e 900 °C.⁵ Nesta faixa de temperatura se evita a formação de óxidos de nitrogênio (NO_x) e também permite que ocorra a calcinação completa de calcários, formando óxidos de cálcio (CaO) e de magnésio (MgO) (Equação 1).

$$CaMg (CO_3)_2(s) \rightarrow CaO (s) + MgO (s) + 2CO_2(g)$$
(1)

Neste processo há a liberação de dióxido de carbono (CO_2) fazendo com que a estrutura física do calcário calcinado se torne mais porosa, aumentando a área superficial e, consequentemente, maior quantidade de reagente sólido disponível.

A combustão do carvão mineral promove a geração do gás SO_2 e na presença do calcário calcinado ocorre a reação heterogênea gás-sólido, produzindo os sulfatos de cálcio (CaSO₄) e de magnésio (MgSO₄). Esta reação é denominada sulfatação e está apresentada na Equação 2.

$$CaO(s) + MgO(s) + 2SO_2(g) + O_2(g) \rightarrow CaSO_4(s) + MgSO_4(s)$$
 (2)

A reação de sulfatação resulta em um produto sólido $(CaSO_4/MgSO_4)$ com volume cerca de três vezes maior que os respectivos reagente CaO e MgO e este processo leva a um bloqueio parcial ou total do interior das partículas, impedindo a completa conversão.⁶

A compreensão do mecanismo e do fator limitante das taxas de reação entre o CaO e SO₂ tem sido objeto de muitas pesquisas. No início da década de 70 foram feitos os primeiros trabalhos demonstrando a influência da estrutura interna dos poros das partículas de CaO na reação com SO₂. Com isso, passou-se a considerar aspectos físicos intrínsecos, e não apenas efeitos superficiais externos como até então considerados.⁷ Vários trabalhos são reportados na literatura relacionados a estudos de sorção de SO₂ por calcários em sistemas termogravimétricos.

Dam-Johansen e Ostergaard⁸ estudaram a relação entre a compactação dos calcários e o seu tempo de calcinação e notaram que os calcários mais porosos são mais reativos, devido à facilidade de liberação do CO_2 , indicando que o transporte intrapartícula de CO_2 é o determinante da taxa no processo de calcinação. Além da porosidade e estrutura física dos sorventes, parâmetros cinéticos também são relevantes em estudos envolvendo difusão. Iisa e Hupa¹⁰ apresentaram um estudo cinético da reação de sulfatação empregando termogravimetria. Concluíram que para as partículas maiores, a sulfatação é limitada pela difusão através das camadas de produto, enquanto para as partículas menores, a sulfatação é controlada pela cinética da reação química.

Estudos previamente realizados pelo Núcleo de Engenharia Térmica e Fluidos - NETeF (EESC-USP), apresentam resultados de energia de ativação relacionando com o tipo de difusão do gás reagente (SO₂) que ocorre nos poros das partículas dos calcários calcinados.^{11,12}

Em complemento aos estudos anteriores do NETeF, o presente trabalho tem como objetivo apresentar uma interpretação do mecanismo de difusão do processo heterogêneo gás-sólido envolvido na reação de dessulfurização.

Fundamentos de transferência de massa

A sulfatação é um processo que envolve uma reação heterogênea em que o reagente gasoso se difunde da superfície externa para o interior da partícula de calcário e a reação ocorre na superfície de contato. A força motriz da difusão é originada pelo gradiente de concentração, que faz com que um componente da mistura de uma região de alta concentração se difunda para uma região de baixa concentração.

O fluxo molar total W_A de uma espécie (mol/µm² s), no caso o gás SO₂ é denominado nesta descrição como espécie A, é resultado de duas contribuições: do fluxo de difusão molecular (J_A), relativo ao movimento produzido por um gradiente de concentração (mol/µm² s), e do fluxo resultante do movimento da mistura gasosa B_A (mol/µm² s) (Equação 3).¹³

$$W_A = J_A + B_A \tag{3}$$

O fluxo molar total do gás também pode ser expresso em termos da concentração C_4 (mol/µm³) (Equação 4).

$$W_A = J_A + C_A V \tag{4}$$

sendo V a velocidade molar média (µm/s).

O fluxo molar total também pode ser expresso em termos de fração molar de *A* (Equação 5).

$$W_A = J_A + y_A \left(W_A + W_B \right) \tag{5}$$

sendo y_A a fração molar da espécie A.

 W_A pode ser dado pelo produto $(C_A V_A)$, sendo (V_A) a velocidade da espécie química A. W_B representa o O₂ envolvido na reação de dessulfurização, como descrito na Equação 2.

A velocidade da espécie química *A* é calculada pela Equação da teoria cinética (Equação 6).

$$V_A = \sqrt{\frac{8RT}{\pi M}} \tag{6}$$

A velocidade média molar V é dada pela Equação 7.

$$V = y_A V_A + y_B V_B \tag{7}$$

A equação constitutiva para J_A , que é o fluxo difusional resultante de uma diferença de concentração, está relacionada ao gradiente de concentração pela primeira lei de Fick (Equação 8):

$$J_A = -c \ D_{AB} \ \nabla y_A, \tag{8}$$

sendo *c* a concentração total (mol/µm³), D_{AB} a difusividade de *A* em *B* (µm²/s).

PARTE EXPERIMENTAL

Estudo cinético empregando termogravimetria

Foram estudados dois tipos de calcário nacionais: calcítico e dolomítico – denominados por CI e DP, respectivamente. A Tabela 1 apresenta a composição química para ambos os calcários.

 Tabela 1. Composição química (% massa/massa) dos calcários calcítico (CI)

 e dolomítico (DP)

Calcário	Ca	Mg	Fe	Al	Sr	Κ	Mn
CI	35,34	0,35	2,45	0,25	0,14	0,09	0,52
DP	17,07	11,73	0,32	0,42	0,08	0,13	0,09

A granulometria média de 545 µm dos calcários foi obtida por meio de seleção entre duas peneiras sucessivas da série ASTM, de modo a compor a faixa mais estreita possível e minimizar o efeito da distribuição granulométrica.

Os valores de energia de ativação (E_a) foram obtidos em trabalho anterior, ¹¹ por meio de ensaios termogravimétricos (TG). Nestes testes as amostras do calcário natural foram inseridas em suporte de alumina e introduzidas no forno da balança termogravimétrica. Inicialmente foi feita a calcinação da amostra em atmosfera dinâmica de ar sintético (80 mL min⁻¹), com razão de aquecimento de 30 °C min⁻¹ até a temperatura desejada, ou seja, a temperatura na qual se realiza o teste de sulfatação. Para isto foram selecionadas quatro temperaturas diferentes: 750, 800, 850 e 900 °C.

Após o aquecimento e atingida a temperatura do teste, a amostra encontrou-se calcinada. Nesta temperatura aplicou-se uma condição isotérmica de 30 min. Após os 5 min de estabilização, o gás SO_2 foi injetado no forno da balança com vazão de 20 mL min⁻¹, conferindo uma fração de SO_2 de 20% da atmosfera total. O emprego de alta concentração de SO_2 , condição denominada diferencial, é aplicada de modo a considerar os efeitos intrínsecos do processo, eliminando as limitações difusivas.

A partir destes testes, calculou-se a energia de ativação para os calcários utilizando-se a Equação de Arrhenius (Equação 9).

$$k(T) = A \exp\left(-\frac{E_a}{RT}\right) \tag{9}$$

sendo A o fator pré-exponencial ou fator de frequência, E_a a energia de ativação aparente (kJ mol⁻¹), R a constante universal dos gases (J K⁻¹mol⁻¹) e T a temperatura (K).

Empregando-se as curvas derivadas (DTG) obtidas para todas as condições estudadas na balança termogravimétrica, se obtém o valor de dm/dt (pico da curva DTG), ponto onde a taxa de reação é máxima.

Foi determinado o coeficiente de taxa de reação máxima (k_{max}) , de acordo com a Equação 10.

$$k_{\max} = \frac{1}{m} \frac{dm}{dt} \tag{10}$$

da espécie B.

sendo *m* a massa transiente correspondente às frações de Ca e Mg disponíveis no calcário para a reação, sendo obtida por meio da Equação 11.

$$m = M_{A} \left(Y_{Ca} + Y_{Mg} \right) - \left\{ \left(M - M_{c} \right) \left[\frac{\left(W_{Ca} Y_{Ca} + W_{Mg} Y_{Mg} \right)}{\left(W_{SO_{2}} + \frac{1}{2} W_{O_{2}} \right) \left(Y_{Ca} + Y_{Mg} \right)} \right] \right\}$$
(11)

sendo M_A a massa inicial da amostra (calcário natural), M a massa transiente da amostra durante a sulfatação, M_c a massa do calcário calcinado, Y a fração em massa de Ca e Mg no calcário natural, W a massa molar de cada um dos componentes (Ca, Mg, SO₂ e O₂).

Das Equações 9 e 10 obtém-se:

$$\ln\left[-\left(\frac{1}{m}\frac{dm}{dt}\right)_{\max}\right] = \ln A - \frac{E_a}{R}\frac{1}{T}$$
(12)

A representação gráfica do conjunto de pontos obtidos para $\ln \left[-\left(\frac{1}{m} \frac{dm}{dt}\right)_{max} \right]$ em função do inverso da temperatura fornece os

parâmetros cinéticos de Arrhenius pelo ajuste da reta. Os valores do fator pré-exponencial A (s⁻¹) e da energia de ativação aparente E_a foram obtidos, respectivamente, pelo coeficiente linear e coeficiente angular. Os resultados obtidos, bem como a metodologia aplicada, foram apresentados em detalhes no trabalho de Ávila *et al.*¹¹

Determinação de área superficial específica e distribuição de diâmetro de poros

Dados das características físicas dos calcários foram determinados utilizando-se um porosímetro por adsorção de nitrogênio (N_2) da Micromeritics (ASAP 2020). Em todos os ensaios foram obtidos dados de: área superficial específica calculada pela equação de BET (Brunauer, Emmett e Teller), diâmetro médio de poros na etapa de adsorção e dessorção e volume médio de poros na etapa de adsorção e dessorção e volume total de poros e o diâmetro médio de poros fornecidos pelo software do equipamento foram calculados utilizando-se o algoritmo do método BJH (Barrett, Joyner e Halenda).

RESULTADOS

Quando o calcário (CaMg (CO₃)₂) é submetido a um aquecimento, é possível verificar uma perda de massa devido à calcinação, onde ocorre a liberação de CO₂ e a formação de óxido de cálcio (CaO) e óxido de magnésio (MgO) (Equação 1). Esse processo se inicia a uma temperatura de aproximadamente 650 °C sob as condições de 30 °C min⁻¹ em balança termogravimétrica e se completa a aproximadamente 850 °C. Com a adição de SO₂ para a etapa da sulfatação, verifica-se um ganho de massa devido à reação entre os óxidos e o gás SO₂ injetado no forno da balança TG (Equação 2). Os perfis das curvas TG e DTG também podem ser observados como previamente descritos em Ávila *et al.*.¹¹ Com base nesses valores de ganho de massa é possível avaliar a capacidade do calcário no processo de sorção do gás reagente.

A fim de avaliar a capacidade de sorção dos calcários, Ávila *et al.*¹¹ calcularam a conversão no processo de sulfatação a 850 °C, temperatura típica do processo de combustão em leito fluidizado. Este resultado pode ser evidenciado na Figura 1, que mostra a conversão percentual dos dois calcários estudados. O calcário DP foi aproximadamente 14% mais reativo quando comparado ao CI.

Com base nos resultados encontrados, supõe-se que a estrutura física do calcário DP é diferente da do CI. Esta suposição pode ser comprovada através das imagens obtidas por microscopia eletrônica de varredura (MEV), com ampliação de 5000 vezes, apresentadas nas Figuras 2 e 3. Observa-se que as estruturas morfológicas dos calcários

Figura 1. Conversão (X%) em função do tempo (s) do processo de sulfatação

apresentam-se diferentes quanto à compactação e porosidade.

A Figura 2 mostra as imagens dos calcários CI (a) e DP (b) na forma natural. Nota-se que o calcário DP apresenta uma estrutura mais porosa em relação ao calcário CI. Após a calcinação (Figura 3) observa-se que a estrutura morfológica do calcário DP (b) se manteve após a calcinação. Já no calcário CI (a), que quando natural apresenta uma estrutura mais compacta, após a calcinação nota-se uma estrutura superficial mais porosa, semelhante ao calcário DP.

IQSC EHT=20.00 kV WD= 23 mm Mag= 5.00 K X Detector= 3 1µm ⊣ Photo No.=3 6-Jun-2005

Figura 2. Estrutura porosa dos calcários calcítico (a) e dolomítico (b) na forma natural

a)

Q3U 1μm ⊣ Photo No.=4 6-Jun-3

Figura 3. Estrutura porosa dos calcários calcítico (a) e dolomítico (b) na forma calcinada

Embora estas imagens permitam visualizar a diferença de porosidade, elas são apenas qualitativas. Para uma determinação quantitativa, utilizou-se a técnica de porosimetria por adsorção de N₃.

As Figuras 4 e 5 apresentam as curvas (isotermas) de adsorção e dessorção de N₂ para ambos os calcários, na forma natural e calcinada. Dados de porosidade, como área superficial BET, diâmetro médio de poros nas etapas de adsorção/dessorção ($D_{P,Ads}/D_{P,Ds}$) e volume médio de poros nas etapas de adsorção/dessorção ($V_{P,Ads}/V_{P,Ds}$) são apresentados na Tabela 2.

 Tabela 2. Parâmetros físicos para os calcários calcítico (CI) e dolomítico (DP) natural e calcinado

	Calcário	o natural	Calcário calcinado		
Parametros físicos	CI	DP	CI	DP	
$\frac{1}{S_{BET}^{2}/m^{2}g^{-1}}$	2,86	2,78	13,28	8,98	
$D_{PAD}/\mu m$	0,0185	0,0179	0,0119	0,0309	
$D_{PD}/\mu m$	0,0121	0,0097	0,0107	0,0265	
$V_{p}/cm^{3} g^{-1}$	0,010493	0,007204	0,032251	0,0568	

Nota-se que após a calcinação houve um aumento significativo da área superficial BET dos calcários, de 364% para o CI e de 223% para o DP. Como esperado, estes resultados indicam que a calcinação promove um aumento significativo da área disponível para a reação, porém um parâmetro que se deve levar em consideração é principalmente o desenvolvimento dos poros.

Figura 4. Isotermas de adsorção para o calcário dolomítico (DP) na forma natural e calcinada

Figura 5. Isotermas de adsorção para o calcário calcítico (CI) na forma natural e calcinada

Comparando-se os dados apresentados na Tabela 2, nota-se que após a calcinação, enquanto no calcário CI há uma diminuição do diâmetro dos poros ($D_{P,AD}/D_{P,D}$), para o calcário DP há um aumento do diâmetro dos poros. Levando-se em consideração que o calcário DP é mais reativo que o CI, como mostrado na Figura 1, há uma indicação de que a estrutura morfológica desempenha um papel importante na intensidade da reação de sorção.

Quanto ao processo reativo da sorção de SO₂, os parâmetros de Arrhenius obtidos mostraram que a energia de ativação determinada para o calcário CI foi aproximadamente 4 kJ mol^{-1,11} De acordo com dados encontrados na literatura, este valor indica que a sulfatação do calcário CI é controlada por difusão de Knudsen. Em contrapartida, o valor de energia de ativação da ordem obtida para o calcário DP, de aproximadamente 12 kJ mol⁻¹, corresponde a um mecanismo satisfatoriamente explicado considerando a difusão molecular.¹⁴ O valor da E_a para o calcário DP foi 3 vezes maior que o obtido para o calcário CI, ou seja, o calcário DP necessita de aproximadamente 3 vezes mais energia para que a reação ocorra.

A diferença observada entre a conversão no processo de sulfatação e os valores encontrados para energia de ativação sugere que a estrutura física é um fator importante na reatividade do sorvente calcário no processo de sulfatação, afetando diretamente a cinética da reação gás-sólido. De acordo com os resultados referentes à estrutura porosa, pode-se dizer que o tamanho dos poros é um aspecto importante nesta variação de reatividade.

Na reação de dessulfurização, o reagente SO₂ se difunde nos poros do calcário, sendo que a concentração deste na entrada do poro é maior do que no seu interior. Como o mecanismo de difusão depende da estrutura porosa do sólido, em cada calcário com estrutura diferente a difusão seguirá uma determinada lei de mecanismo. No caso de calcários meso e macroporosos (> 0,002 µm), a difusão segue a lei de Fick – também conhecida como difusão molecular, descrita na Equação 8. Neste caso, as moléculas do gás colidem mais entre si do que com a parede do sólido, justificando um maior valor da energia de ativação (12 kJ mol⁻¹) quando comparado à energia de ativação determinada para o calcário CI (4 kJ mol⁻¹). No entanto, há uma indicação de que a mesoporosidade do calcário DP permite maiores conversões antes que ocorra o bloqueio dos poros.

No caso de calcários que apresentam majoritariamente microporosos em sua estrutura (< 0,002 µm), a velocidade da mistura gasosa é muito pequena, assim o termo B_A da Equação 3 é desprezível quando comparado a J_A , e a introdução do gás para o interior das partículas é mais significativa pelo processo da difusão e controlada cineticamente. Desta forma a Equação 3 é reduzida à Equação 13.

$$W_A = J_A \tag{13}$$

A difusão nestas condições, chamada de difusão de Knudsen, ocorre quando o livre caminho médio entre moléculas do gás é da mesma ordem do diâmetro de poros do sólido.¹³ Neste caso, as moléculas colidem mais frequentemente com as paredes dos poros do que entre si. Como a reação ocorre na superfície de contato, torna justificáveis os menores valores de energia de ativação para o calcário CI quando comparado ao calcário DP.

O calcário CI calcinado por apresentar mesoporos com diâmetro médio de 0,01µm, durante o processo de dessulfurização o bloqueio dos poros pode ocorrer mais rapidamente, consequentemente, são obtidas conversões mais baixas no processo de sorção de SO,.

CONCLUSÕES

A reação gás-sólido (SO_2 -CaO) é conduzida tanto por aspectos químicos quanto físicos e a energia de ativação é um parâmetro que indica a viabilidade da reação. No entanto, a reação química é limitada pela difusão do SO_2 e O_2 para o interior das partículas de calcário.

Na difusão, o fator limitante é a estrutura física do calcário e um fator relevante neste processo é o tamanho dos poros. Os resultados mostraram que para o calcário dolomítico calcinado (DP), por apresentar mesoporos na região entre 0,02 e 0,03 μ m, a difusão se comporta de acordo com a Lei de Fick, pois a energia de ativação foi da ordem de 12 kJ mol⁻¹. Para estruturas com poros menores que 0,01 μ m, apresentadas no calcário calcítico calcinado, a energia de ativação resultou em 4 kJ mol, portanto, seguindo a Lei de Knudsen.

MATERIAL SUPLEMENTAR

A curva termogravimétrica característica do processo calcinação seguida pela sulfatação do calcário está disponível, com acesso livre, na forma de arquivo PDF, em http://quimicanova.sbq.org.br.

AGRADECIMENTOS

À FAPESP (Processo 2008/07215 e 2008/54062-9) e a CAPES (Processo PNPD 34088) pelo apoio financeiro.

REFERÊNCIAS

- Vieira, J. M.; Sodré, E.; Leal, N.; Guedes, D. F.; Alves, F.; Melo, G. H. S.; Proceeding of XIII ERIAC - Décimo Tercer Encuentro Regional Ibero Americano de Cigré, Puerto Iguazú, Argentina, 2009.
- Süffert, T.; Carvão nos Estados do Rio Grande do Sul e Santa Catarina, CPRM: Porto Alegre, 1997.
- 3. Jacobs, J. P.; Chem. Eng. Sci. 1999, 54, 5559.
- 4. Biagini, E.; Lippi, F.; Petarca, L.; Tognotti, L.; Fuel 2002, 81, 1041.
- 5. Fuertes, A. B.; Marban, G.; Rubiera, F.; Trans. IChemE. 1993, 71, 421.
- 6. Zarkanitis, S.; Sotirchos, S. V.; AIChE J. 1989, 35, 821.
- 7. Borgwardt, R. H.; Bruce, K. R.; AIChE J. 1986, 31, 103.
- 8. Dam-Johansen, K. Ostergaard, K.; Chem. Eng. Sci. 1991, 46, 827.
- Adánez, J.; Fierro, V.; De Diego, J.A.; García-Labiano, F.; *Thermochim.* Acta **1996**, 277, 151.
- 10. Iisa, K.; Hupa, M.; J. Energy Inst. 1992, 65, 201.
- 11. Ávila, I.; Crnkovic, P. M.; Milioli, F. E.; Quim. Nova 2007, 30, 1275.
- Crnkovic, P. M.; Ávila, I.; Milioli, F. E.; Pagliuso, J. D.; Proceeding of International Mechanical Engineering Congress and Exposition, Boston, United States, 2008.
- Fogler H. S.; *Elementos da engenharia das reações químicas*, 3ª ed., LTC: Rio de Janeiro, 2002.
- Fuertes, A. B.; Velasco, G.; Fernandez, M. J.; Alvarez, T.; *Thermochim.* Acta 1994, 242, 161.

INTERPRETAÇÃO DO MECANISMO DE DIFUSÃO NO PROCESSO GÁS-SÓLIDO DA REAÇÃO DE DESSULFURIZAÇÃO

Daniela Andresa Mortari*, Paula Manoel Crnkovic, Ivonete Ávila e Fernando Eduardo Milioli

Departamento de Engenharia Mecânica, Escola de Engenharia de São Carlos, Universidade de São Paulo, CP 780. 13560-970 São Carlos – SP, Brasil

Figura 1S. Curva termogravimétrica da calcinação seguida de sulfatação do calcário DP a 850 °C