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On the Application of Self-Organizing 
Neural Networks in Gas-Liquid and 
Gas-Solid Flow Regime Identification 
One of the main problems associated with the transport and manipulation of multiphase 
flow is the existence of flow regimes, which have a strong influence on important 
parameters of operation. An example of this occurs in gas-liquid chemical reactors in 
which maximum coefficients of reaction can be attained by keeping a dispersed-bubbly 
flow regime to maximize the total interfacial area. Another example is the pneumatic 
conveying of solids in which the regimes are associated with safety and energy 
consumption. Thus, the ability to identify flow regimes automatically is very important, 
specially to maintain multiphase systems operating according to design conditions. This 
work assesses the use of a self-organizing map (neural network) adapted to the problem of 
regime identification in horizontal two-phase flows. In order to achieve extensive results, 
two different types of two-phase flows were considered: gas-solid and gas-liquid. Tests 
were made to verify the performance of the neural network model, using data collected at 
the experimental facilities of the Thermal and Fluid Engineering Laboratory of the 
University of São Paulo at São Carlos. Results show that the neural network is capable of 
correctly identifying the regimes. The error percentage is bigger when analyzing the same 
regime with flow rates different from the one used as training data emphasizing the 
importance of training signals choice. 
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Introduction 
1The existence of characteristic dynamic patterns or regimes is, 

certainly, one of the most important subjects in multiphase flows. 
This justifies the large number of technical and scientific studies in 
this area, some of which focused on specific technological aspects 
such as models of pressure drop in specific situations and regimes 
and others on wider aspects, for example the construction of 
objective and universal criteria for the identification of multiphase 
flow regimes. In 1970, researchers in the petroleum industry began 
to identify certain basic physical mechanisms that could be used to 
distinguish regimes in liquid columns. Around this time, Taitel and 
Dukler (1976) published a model, which predicted flow regime 
transitions based of the physical relations between the following 
variables: gas and liquid superficial velocity, physical properties of 
the fluids and pipe geometry. The transition mechanisms are based 
on physical concepts adapted by experimental observations of two-
phase flows (Brill, 1992). Among the many different variables that 
may be used to diagnose flow regimes, the void fraction is, 
certainly, one of the most important. 

Several methods of measuring this variable have been developed 
in the last 40 years. A wide range of principles have been applied in 
order to quantify, or just to reveal the presence of a given phase in 
the mixture. Some of the measuring techniques require sophisticated 
equipment such as x-ray absorption spectrometers, while others 
involve simpler items such as resistance sensors (Moreira, 1989). 
Examples on tomography techniques for visualization or regime 
identification can be found at Lehner and Wirth (1999) that obtained 
the void fraction applying x-ray technique in a downer reactor. 
Ostrowski et al. (2000) applied capacitance electrical tomography 
for measurement of dense phase pneumatic conveying, and Xu and 
Xu (1997) applied ultrasonic tomography in the gas-liquid two-
phase flow regime identification.  

In gas-liquid two-phase flows it is well-established that an 
abrupt change in the pressure-drop is frequently associated with a 
change of flow regime (Wambsganss et al.,1994). Lin and Hanraty 
(1987) used pressure measurements to detect the intermittent flow 
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regime. Osman and Aggour (2002) introduced a neural network 
model to predict the pressure drop in horizontal multiphase flow. 
The model was developed and tested on experimental data and a 
wide range of variables. Sekoguchi et al. (1987) applied a 
statistical method and the mean void fraction to identify flow 
patterns. Regarding non-classical techniques of signal analysis, 
Giona et al. (1994) and Seleghim & Hervieu (1998) used, 
respectively, fractal techniques and joint time-frequency analysis 
in the characterization of transitions between horizontal two-phase 
flow regimes. In this field, the use of neural network techniques to 
analyze signals from two-phase flows shows great potential 
(Monji & Matsui, 1998) and many articles have adopted this 
approach. Crivelaro et al. (2002) used a neural network to process 
signals emitted by a direct imaging probe in order to diagnose the 
corresponding flow regime. Smith et al. (2001) utilized self-
organizing maps to compare flow regime classifications based on 
traditional analysis. Statistical values of impedance signals were 
used as inputs for a neural network, which grouped the results 
within a number of predetermined categories. Mi et al. (1998) 
employed a supervised neural network and an unsupervised neural 
network (self-organizing map) to identify flow patterns, the input 
signal being a non-intrusive impedance measurement. Cai et al. 
(1994) demonstrated a technique to classify the patterns of air-
water two-phase flow by applying a self-organizing neural 
network. The principle of the technique lay in the characterization 
and classification of the turbulent pressure signal in relation to 
flow regimes. More recent researches have been based on the use 
of neural networks in association with genetic algorithms and 
fuzzy logic; a detailed discussion of these techniques may be 
found in Annunziato and Pizzuti (1999), and Tarca et al. (2002).  

Many studies have been developed also considering the regime 
identification in gas-solid flows. In fluidized beds, for instance, 
Letzel et al. (1997) investigated the characterization of regimes and 
regime transitions in bubble columns by chaos analysis of pressure 
signals. Li and Kuipers (2002) used computational simulation to 
analyze the effect of pressure on gas-solid flow behavior. A 
transient method for characterizing flow regimes in a circulating 
fluid bed was proposed by Monazam and Shadle (2004) and a state-
of-the-art review of gas-solid turbulent fluidization was presented 
by Bi et al. (2000). Zijerveld et al. (1998) investigated the 
fluidization regimes and transitions from fixed bed to dilute 
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transport flow. Chen et al. (1995) studied the distributions of flow 
regimes and phase holdups in three-phase fluidized beds. Kwak and 
Li (1996) and Bai et al. (1996) lead wider studies on fluidization 
regimes. Considering this, the aim of this work is to analyze the 
application of neural networks in regime identification. Specifically, 
a self-organizing neural network is implemented and tested in two 
different experimental circuits: gas-solid and gas-liquid in order to 
investigate the application of this model in very different regimes 
cases. In other words, the main objective is to analyze if this tool is 
capable of being applied at many different multiphase flow 
situations. This type of neural model (unsupervised) was selected 
because, in almost every case, data about the regimes are not 
available. It should be stressed that this question is of great 
relevance for the efficient operation of equipment and installations 
involving multiphase fluid transport and represents one of the great 
challenges nowadays in the petrochemical and thermonuclear 
industries, among others. 

Self-Organizing Neural Networks  

An artificial neural network model can be defined as a large 
number of simple interconnected processing units used to establish 
an input/output relationship. The self-organizing system considered 
here belongs to a special class of artificial neural networks (ANN) 
known as feature maps.  

A Self Organizing Map (SOM) consists of neurons organized on 
a regular low-dimensional grid (usually one or bi-dimensional). 
Maps of higher dimensions are possible but rarely used. Figure 1 
shows a schematic diagram of a bi-dimensional grid, frequently 
used as a discrete map. Each neuron in the grid is fully connected to 
the neurons at the input layer.  

 

 
Figure 1. Bi-dimensional grid of neurons (Haykin, 1996). 

 
From the point of view of the information in the data and how it 

is visualized, the self-organizing nature of the mapping implies that 
the statistical and nonlinear metric relations among the n-
dimensional input data are converted into simple geometric relations 
between variables located at the nodes of a bi-dimensional net 
(Kohonen, 2001). In other words, to the extent that a self-organizing 
map projects the information contained in the primary data space on 
to a bi-dimensional network, without altering significantly the 
topological relations, it may be regarded as a tool capable of 
creating abstractions. These two attributes – visualization and 
abstraction of data – are of great importance in complex 
information-analysis applications, such as the problem of 
identifying multiphase flow regimes and others involving the use of 
artificial intelligence (Seleghim Jr., 2002). These networks are 
characterized by competitive learning, a process in which the output 
"neurons", or nodes of the map, compete among themselves to 
become activated while a data-pattern is presented to the inputs. 

Eventually, just one output neuron, or one in each local group, 
becomes the "winner" of the competition and remains active.  

The neurons are selectively composed according to the many 
input patterns or input pattern classes in the context of a 
competitive learning process. The winner neuron location is 
arranged according to the other neurons in a significant way inside 
the coordinate system. It creates a grid for different characteristics 
of the input patterns. 

Let m be the input vector dimension. Let p be any input vector 
selected from the input space, represented as: 

 
T[ , ,..., ]1 2 mp p p=p   (1) 

 
The weight vector of which neuron has the same dimension as the 
input vector. Let the weight vector of the neuron j be denoted by:  

 
T[ , ,..., ] , 1,2,...,j1 j2 jmw w w j l=jW =  (2) 

 
where l is the total number of neurons. In order to find the best 
competition of input and weight vectors, we compare the internal 
product wT

jp for j = 1,2,...,l . Then, the one with the best result is 
selected. Furthermore, this neuron fixes the location where the 
topologic neighborhood of excited neurons is centered. 

The best competition criterion, based on the internal product 
maximization is mathematically equivalent of Euclidean distance 
(between p and wj) minimization. 

The neuron i(p) identifies the closest neuron from input vector 
p, and i(p) can be determined applying the condition:   

 

j jargmin - ,i(p) j 1,2,...,l= = p w    (3) 
 
This procedure is the essence of the competition process of 

neurons. The specific neuron i which satisfy this condition is the 
so called winner neuron for the input vector p. We can verify this 
in Eq. (3). 

A continuous input space of activation patterns is mapped on 
an output discrete space by a competition process of neurons. 
Depending on the application, the neural network output can be 
the winner neuron index (i.e., its grid position) or the weight 
vector near the input vector or both (Haykin, 1996). 

A topographical map is formed in SOM from the input 
patterns, in which the spatial locations (coordinates) of the 
neurons in the grid reflect intrinsic statistical features within the 
input patters – hence the name self-organizing maps (Haykin, 
1996). Each input pattern presented to the network is equivalent to 
a certain region of input space. The position and nature of that 
region usually vary from one input pattern to the next. All the 
neurons in the SOM should be exposed to a sufficiently large 
number of different patterns to ensure that the self-organizing 
process has the chance of evolving correctly and developing a 
complete feature map. The layer of nodes in a SOM is arranged 
initially in physical positions, in conformity with the topology 
adopted for the map: a hexagonal bi-dimensional grid was used in 
this work. 

One of the main neural network features is the generalization 
ability, i.e., it successfully classifies the patterns not presented 
before. Self-organizing maps generalize, placing in the same class, 
similar patterns to the ones previously classified at training 
procedure. It means that, flow regime identification by a 
representative data set is a feasible proposal, since the net has 
correctly classified the data set. Summarily, even with an input 
data change, the neural model will classify the inputs by its input 
pattern similarity (Beale and Jackson, 1990). 
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Experimental Setup: Gas-Solid 

The gas-solid validation tests were done at the experimental 
facilities of the Thermal and Fluids Engineering Laboratory of the 
University of São Paulo at São Carlos (NETeF-USP). The 
pneumatic transport loop, drawn schematically in Figure 2, has a 
transparent 45 mm inner diameter test section, extending 
horizontally through 12 m and vertically through 9 m. Air is 
supplied by a 60 hp screw compressor (1), capable of generating air 
speeds up to 40 m/s in the transport line. The air flow rate is 
controlled with the help of a servo-valve (2) and measured by an 
orifice plate (3), instrumented with temperature and pressure 
transmitters (differential and absolute). The particulate is introduced 
in the transport line through a venturi feeder (4), which receives the 
particulate from a screw conveyor (5). The solids flow rate is 
controlled by imposing the rotation of the screw conveyor with a 
frequency converter (6). A cyclone separator (7) is placed at the exit 
of the test section, from where the particulate may be returned to a 
separated storage container (8) for batch operation or, alternatively, 
to a rotary airlock (9) connected to the feeding silo (10) for 
continuous operation. 

 

 
Figure 2. Schematic representation of the pneumatic transport test loop at 
the NETeF-USP. 

 
In this work, the horizontal part of the circuit was focused and 

the particulate used in the tests was Setaria italica seeds with an 
average diameter DP = 2.5 mm and an approximately density of 
800 kg/m3. 

Experimental Setup: Gas-Liquid 

In this case the measurements were carried out on the oil 
pipeline circuit still at the Thermal and Fluid Engineering 
Laboratory – NETeF-USP which was designed for gas-liquid two-
phase flow transient tests. The three-phase pilot pipeline sketched in 
Fig. 3 works with gas-liquid-liquid mixtures and has straight test 
sections of 12 m length and internal diameter of 45, 30 and 24 mm, 
placed on a hinged platform that can be inclined up to 100 from the 
horizontal. A system of tanks installed downstream from the test 
section is responsible for the primary separation of air from liquid 
and, subsequently, the separation of oil from water. Centrifugal 
pumps equipped with 7.5 kW frequency inverters recirculate the 
liquid phases, controlling the flows with the help of orifice plates 
installed in the respective injection lines. A 50 kW screw-

compressor supplies the flow of air, which is controlled by servo-
valves equipped with flow-sensors. The analytical instruments 
include rapid-response pressure-sensors to measure total and 
differential pressure-drops, a capacitance sensor to estimate the 
phase fraction and an acoustic sensor to produce echograms of the 
flow. A microcomputer with an analog-to-digital converter is used 
to acquire the signals from the measuring devices (both operational 
and analytical), as well as from control devices (servo-valves and 
frequency inverters). In this study, tests were performed on air-water 
two-phase flow. The pipeline test section used was a 12 m straight 
pipe of internal diameter of 30 mm. 
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Figure 3. Sketch of the pilot three-phase pipeline at NETeF-USP. 

Neural Models and Results: Gas-Liquid 

For each type of horizontal air-water flow pattern, several long 
duration tests were carried out in the experimental circuit described 
in section 3. The signals used in the analysis corresponded to 
measurements of electrical capacitance, pressure-drop in the along 
pipe and local pressure gradient, collected respectively by a 
capacitive probe and pressure meters. For each test, the signals were 
sampled at the rate of 30 Hz until the storage memory was used up 
(214 samples). Each test lasted for 546 seconds. The classes of test 
are defined in Table 1, where Ql represents the liquid (water) mass 
flow rate and Qg represents the gas (air) mass flow rate. 

 

Table 1. Classification of regimes tested. 

Label Test Ql(kg/s) Qg(kg/s) 
1 Smooth 

stratified 
0.0800 0.0014 

2 Wavy stratified 0.0840 0.0075 
3 Rough 

stratified 
0.1060 0.0190 

4 Intermittent 0.6910 0.0020 
5 Bubbles 7.05 0.0120 
6 Annular 0.3500 0.0400 

 
Steady state tests were done in a sufficient number of different 

pairs of air and water flow-rates to reproduce as well as possible the 
whole range of variation of every flow regime. The data from the 
flow-regimes listed in Table 1 were arranged in matrices of 16,384 
rows by 3 columns, 16,384 being the number of samples while the 
columns contained, respectively, the measurements of capacitance, 
pressure drop in the pipe and fluctuating pressure. Some types of 
horizontal air-water flow regimes are illustrated in Fig. 4. 
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Annular 

 
Bubbles 

 
Intermittent 

 
Rough stratified 

Figure 4. Gas-liquid flow regimes. 

 
On the basis of preliminary studies, the architecture of the SOM 

was defined as a layer of 3 inputs and a grid with 10 neurons. The 
number of neurons was chosen to enable the network to learn 
complex tasks by the progressive extraction of significant features 
from the input patterns (Haykin, 1996). This number is not fixed 
theoretically and may be chosen equal to the number of classes that 
the SOM is expected to identify or a larger number. In this case, the 
network was supposed to identify 6 different flow regimes, but had 
10 neurons. In this way, it was possible to discover whether the 
SOM would autonomously identify 6 regimes and no more, despite 
possessing a larger number of potential class decoders. After 
training with the data set, the network did indeed identify 6 different 
classes of data, which coincided with the flow regimes. The 
topology of the competitive layer used here was hexagonal, this 
being preferred for the purpose of unbiased visualization (Kohonen, 
2001). The distance calculated between the nodes was Euclidean, 
which is the commonest distance function found in SOM 
applications. To train the SOM, data matrices of 300 rows by 3 
columns were chosen, small enough for each training run to reach a 
successful conclusion in a reasonable time, yet not so small that 
features from the recorded sets of signals would be lost. Ten of these 
matrices were used for each regime during training. By the end of 
this training, the SOM had encoded the six distinct flow regimes on 
six separate neurons (labeled 1, 2, 4, 7, 8, and 10), as shown in 
Table 2. 

 

Table 2. Neurons identifying the flow regimes in gas-liquid case. 

       Flow regime Identifying Neuron 
Annular 1 
Rough stratified 2 
Intermittent 4 
Smooth stratified 7 
Wavy stratified 8 
Bubbles 10 

 
To test generalization, characteristic signals for each of the flow 

regimes were presented to the SOM, in order to verify whether the 
expected code (neuron index) was output by the ANN. 

The signals used in generalization were signals not used 
previously at training procedure. The data matrices were organized 
with 16384 rows as discussed before and a part of these matrices 
were used for training and another part were used for generalization. 
This kind of test was executed in order to verify if the net was 

capable of abstracting the characteristics of different flow regimes, 
because by this way, it would be able to identify these regimes 
correctly. 

In this context, several simulations of flow-regime tests were 
performed, using test data not utilized during training and the same 
result as presented in Table 2 was obtained. 

Neural Models and Results: Gas-Solid 

The self organizing model used for the gas-solid situation was 
very similar to the gas-liquid. The topology of the competitive layer 
used was hexagonal and the distance calculated between the nodes 
was Euclidean. The input vector has 3900 elements (13 x 300 
matrix) and the grid was set to have 6 neurons in order to verify the 
model ability for the classification of the 4 regimes classified 
visually. The particulate used in the tests was Setaria italica seeds 
with an average diameter of 2.5 mm and an approximately density 
of 800 kg/m3. Several steady state experiments were done with 
different combinations of gas and solid mass flow rates. The solid 
mass flow rate (Qsol) ranged from 0.0739 kg/s to 0.1437 kg/s and the 
gas flow rate (Qair) from 0.013 kg/s to 0.020 kg/s producing the 4 
regimes called in this work: homogeneous, dunes, big dunes, and 
flow on fixed particle layer (Fig. 5). 

 

 
Dunes

 
Big dunes

 
Homogeneous

 
Flow on the fixed particle layer 

Figure 5. Gas-solid flow regimes. 

 
As the gas-liquid case, several tests were performed. Regarding 

the training procedure the 4 regimes were perfectly classified in 4 
neurons as shown in Table 3. 

In this case, two kinds of generalization tests were performed. In 
the first one, different parts (not utilized) of the signals used for the 
training procedure were considered (As in gas-liquid case). Note 
that, although unknown by the net, it implies the use of the same gas 
and solid mass flow rates as training. The results in this kind of tests 
were exactly equal to the one showed in Table 3, even changing the 
way whereby the training data was presented to the ANN.  

 

Table 3. Neurons identifying the flow regimes in gas-solid case. 

Flow regime Identifying Neuron 
Dunes 5 
Big dunes  6 
Homogeneous (Homo) 1 
Flow on the fixed particle 
layer (FFPL) 4 
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The objective of the second kind of tests was to investigate the 
net behavior, when evaluating the same regime at different flow 
rates. The results were summarized on Table 4 where the flow 
regime name (abbreviation) was compared with the neuron number. 
The homogeneous and flow on fixed particle layer regimes were 
abbreviated as Homo and FFPL respectively. 

 

Table 4. Neural net identification for different mass flow rates. 

Qair\Qsol 

(kg/s) 
0.0739 0.1037 0.1228 0.1343 0.1395 0.1437 

0.0200 
Homo 
01 

Homo 
01 

Homo 
01 

Homo 
01 

Homo 
01 

Homo 
01     * 

0.0150 
Dunes 
04 

Dunes 
05 

Dunes 
05 

Dunes 
05 

Dunes 
05 

Dunes 
05 

0.0143 
Dunes 
05 

Dunes 
05 

Dunes 
05     * 

Dunes 
05 

Dunes 
05; 04 

Dunes 
04 

0.0140 
Big 
dunes 
05; 06 

Big 
dunes 
06     * 

Big 
dunes 
05; 06 

Big 
dunes 
05 

Big 
dunes 
05 

Big 
dunes 
05 

0.0130 
FFPL 
 05 

FFPL 
04     * 

FFPL 
04; 05 

FFPL 
05; 06 

FFPL 
04 

FFPL 
04; 05 

 
The asterisks represent the signals used in the training 

procedure. For each pair (solid and gas mass flow rate) 10 examples 
were presented to the net. In the most of cases all of the 10 examples 
were identified at the same neuron, but there were situations where 
two neurons were used. The identification for the homogeneous 
regime was perfect, i.e, even varying the solid mass flow rate the net 
still indicated the neuron number 1. For the dunes regime 
approximately 80% of the examples were correctly identified even 
varying the solid and the gas mass flow rate. For the big dunes and 
the flow on the fixed particle layer regimes the correct identification 
percentages were 33% and 50% respectively.  

A fact that may explain this lower percentage is that these 
regimes have mass flow rates very close. It means that probably in 
the lower part of Table 4 we have lines of regime transitions. It is 
also important to emphasize that the visual classification was 
according to the predominant regime, once it is possible to have 
regime transitions even fixing the mass flow rates. 

Conclusions 

The employment of a self-organizing artificial network in the 
identification of two-phase (air-water) flow regimes in a horizontal 
pipe and gas-solid flow regimes in a pneumatic conveying system 
has been demonstrated in this study. Data for the air-water flows 
were collected from a pilot pipeline, designed to allow measurement 
of capacitance, fluctuating pressure and pressure drop. In the case of 
gas-solid flow, signals of the pressure drop were collected from 13 
sensors and were then used to train the ANN. To verify the ability of 
the network to generalize, other data obtained from the same 
experimental circuit were presented to the ANN, i.e. data not used 
during the training procedure. To validate the proposed 
methodology, tests of identification were used. Signals characteristic 
of each flow regime were presented to the ANN, which responded 
by outputting class codes (index of the activated neurons). The 
correct identification percentage for the flow regimes achieved by 
the network was 100%, when using signal with the same flow rates 
(the same as used in the training phase).  

Considering the gas-solid case, tests with different solid and gas 
flow rates, but still visually representing the same flow regime, were 
presented to the ANN. The results confirm that the correct 
identification percentage is bigger for the flow rates near the values 

used in the training phase, emphasizing the importance of training 
signals choice. These results are extremely promising and strongly 
justify further research in this direction. Firstly, the self-organizing 
neural network proved to be capable of identifying, completely 
autonomously, all the main flow-regimes that occurred in the 
horizontal test-section in the pilot pipeline at NETeF (São Carlos, 
Brazil). Secondly, the detection-rate with untrained data reached 
high values in many situations. The study of the optimization of the 
parameters and hidden variables of the training of the network 
showed that its performance depended critically on the time of 
presentation of the training data matrices. Under the right 
conditions, a self-organizing map is seen to be a very powerful and 
flexible tool, both for the analysis of experimental data in research 
and for direct application in the in-line monitoring of industrial 
processes. 
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