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Abstract

Much forensic inference based upon DNA evidence is made assuming Hardy-Weinberg Equilibrium (HWE) for the
genetic loci being used. Several statistical tests to detect and measure deviation from HWE have been devised, and
their limitations become more obvious when testing for deviation within multiallelic DNA loci. The most popular meth-
ods-Chi-square and Likelihood-ratio tests-are based on asymptotic results and cannot guarantee a good perfor-
mance in the presence of low frequency genotypes. Since the parameter space dimension increases at a quadratic
rate on the number of alleles, some authors suggest applying sequential methods, where the multiallelic case is re-
formulated as a sequence of “biallelic” tests. However, in this approach it is not obvious how to assess the general
evidence of the original hypothesis; nor is it clear how to establish the significance level for its acceptance/rejection.
In this work, we introduce a straightforward method for the multiallelic HWE test, which overcomes the aforemen-
tioned issues of sequential methods. The core theory for the proposed method is given by the Full Bayesian Signifi-
cance Test (FBST), an intuitive Bayesian approach which does not assign positive probabilities to zero measure sets
when testing sharp hypotheses. We compare FBST performance to Chi-square, Likelihood-ratio and Markov chain
tests, in three numerical experiments. The results suggest that FBST is a robust and high performance method for
the HWE test, even in the presence of several alleles and small sample sizes.
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Introduction

The Hardy-Weinberg law is one of most important
principles in population genetics, and establishes a direct
relationship between allele and genotypic proportions in a
population. This law states that in a large population of
panmictic dioecious organisms with non-overlapping gen-
erations, the allelic and genotypic frequencies at a locus
will stay unchanged, provided that migration, mutation,
and natural selection do not affect that locus. When these
conditions hold, it is said that the locus is under Hardy-
Weinberg Equilibrium (HWE).

This principle was discussed independently by Yule,
Pearson and Castle (between 1902 and 1904), for some par-
ticular allele frequencies (see references in Crow and Ki-
mura, 1972). In 1908, Godfrey Hardy presented the general
principle for two alleles (Hardy, 1908). This principle was
called Hardy’s law for 35 years, until Stern (1943) called at-
tention to an article of Weinberg (1908) showing the same

principle at the same time and demonstrating its validity for
multiple alleles (Crow, 1999).

Since its postulation, several results in population ge-
netics and much forensic inference based upon DNA evi-
dence have been based on the assumption that HWE is valid
for the genetic loci of interest. Some statistical tests to de-
tect and measure deviation from HWE have been devised,
and their limitations have become more obvious when test-
ing for deviation within multiallelic DNA loci. The most
common approach consists of goodness-of-fits tests, like
Chi-square and Likelihood-ratio, which are heavily based
on asymptotic results, and can sometimes lead to false re-
jection or acceptance of HWE when the sample sizes are
small and/or some genotype sample frequencies are very
small (Emigh, 1980). Another approach involves exact
tests, but is restricted to small dimensions and allele num-
bers.

A Bayesian sequential method for multiallelic HWE
test was proposed by Pereira et al. (2006), who suggested
reformulating the multiallelic case as a sequence of “bial-
lelic” tests. In that work, the central component is the Full
Bayesian Significance Test (FBST), an intuitive Bayesian
approach which does not assign positive probabilities to
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zero measure sets when testing sharp hypotheses (Pereira
and Stern, 1999). Although the sequential method avoids
the quadratic increase of parameter space dimension with
respect to the number of alleles, it is not obvious how to as-
sess the general evidence of the original hypothesis; nor is it
clear how to establish the significance level for its accep-
tance or rejection (see DeGroot, 1970).

In this work, we propose a method for the multiallelic
HWE test, based on the FBST. FBST has many theoretic
and practical advantages over other approaches, and it has
shown to be robust in several high-dimensional problems
(Lauretto et al., 2008).

Background

In this section we introduce some notations, and the
Hardy-Weinberg Equilibrium (HWE) formula. Let us con-
sider k alleles A1, A2, ..., Ak in a locus. The main interest is to
assess the population relative frequencies of the genotypes
AiAj (i, j = 1, 2, ..., k) which we denote by pij. As usual in the
literature (see Hardy, 1908), we assume that the allele fre-
quencies do not depend on sex and thus are symmetric, that
is, AiAj is equivalent to AjAi and pij = pji. Therefore, the pa-
rameter of interest is the (lower triangular) matrix of geno-
type proportions:

� = (�ij), with �ii = pii, �ij = 2pij for 1 � j � i � k.

We denote by p1, p2, ..., pk the (unknown) population

frequencies of alleles A1, A2, ..., Ak, with pi � 0 and

pii

k

�� �
1

1. When the locus is under HWE, the genotype

proportions are as follows:

� �ii i ij i jp p p j i k� � � � �2 2 1; , . (1)

In order to test the HWE in a locus, one considers a
sample of n individuals drawn randomly from the popula-
tion. Such a sample can be presented as the array x, whose
elements x j i kij , 1� � � , are counts of genotypes AiAj. The

sample size n is n xijj i

k
�

� �� 1
, and the sample frequency of

allele Ai is n x xi ijj
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since all loci have two alleles and this sum is the number of
alleles in the whole sample. The sample proportion of allele
Ai,

~pi , is given by
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Assuming that each individual genotype does not de-
pend on remaining individuals in the same generation, we
can consider that the genotype frequencies xij follow a

multinomial distribution with unknown parameter �,
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Testing Procedures

In this section we present three tests used in our com-
parative study. These and other approaches are described
by Emigh (1980), Guo and Thompson (1992), Hernández
and Weir (1989) and Montoya-Delgado et al. (2001).

Chi-square goodness-of-fit test

This test involves calculating the sample chi square
value,
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Under HWE, this quantity has a chi-square distribu-
tion with k(k – 1)/2 degrees of freedom.

The Chi-square goodness-of-fit test with continuity
correction involves calculating the previous statistics, with
the subtraction in each term of a correction constant c:
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Usually c = 0.5 is the value chosen.

Likelihood-ratio tests

The likelihood function, given a sample, follows di-
rectly from the multinomial distribution presented in
Eq. (3). A Likelihood-ratio test is constructed by compar-
ing the likelihood maximized under the hypothesis, L0, with
the maximum likelihood, L1, not constrained by the hypoth-
esis. For HWE we have
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with the sample allelic frequencies, ~pi , given by Eq. (2).
The test statistic

G
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is asymptotically distributed as a chi-square distribution
with k(k – 1)/2 degrees of freedom.

Markov Chain Monte Carlo (MCMC) method

Proposed by Guo and Thompson (1992), the method
consists of an adaptation of the Metropolis algorithm, with
the construction of a Markov chain with equilibrium distri-
bution matching the genotype probabilities under HWE of
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samples that have the same allelic counts as the observed
data.

Under HWE and conditional on sample allele counts,
n1, n2, ..., nk, the probability of obtaining the sample x is (see
Levene, 1949):

Pr( | , , )

!
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.x n n

n n

n x
k

i

i

ij

j i

xij
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2

2� �
��
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� (8)

Given the data x, the test evaluates

P y
y

�
��
� Pr( ), (9)

where� � � �{ :Pr( ) Pr( ), }y y x x �0 and

� �� �0 � �x {y: y has the same allele counts as does x}. (10)

The MCMC algorithm is performed in order to esti-
mate the probability P in E. (9). Rejection or acceptance of
the null hypothesis depends on whether P is smaller than a

pre-specified significance level �.

Methods

The Full Bayesian Significance Test (FBST)

The Full Bayesian Significance Test (FBST) was pro-
posed by Pereira and Stern (1999) as a coherent and intu-
itive Bayesian test. It assumes that the hypothesis, H, is
defined as a subset defined by inequality and equality con-
straints:

H g hH H

n

: { | ( ) ( ) },

.
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�

for
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(11)

For simplicity, we often use H for �H. FBST is par-
ticularly focused on precise hypotheses: i.e.,

dim(�H) < dim(�). In this work, fx ( )� denotes the poste-

rior probability density function, given the observation x.
Bold 0 and 1 denote vectors of appropriate dimensions.

For the HWE test, the parametric space consists of all
arrays of genotype proportions
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As previously stated, we consider that the genotype
frequencies x follow a multinomial distribution, given by
Eq. (3). Taking as a priori the Dirichlet distribution with pa-
rameters (1,1...1), i.e., a uniform distribution, then the a
posteriori is a Dirichlet distribution with parameters
(x11 + 1, x21 + 1, x22 + 1, ..., xkk + 1) which is proportional to
the likelihood function (DeGroot, 1970):
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The computation of the evidence measure used on the
FBST is performed in two steps:

1. The optimization step consists of finding the maxi-
mum (supremum) of the posterior under the null hypothe-
sis, � � �" "� �arg sup ( ), ( )*

H x xf f f .

2. The integration step consists of integrating the pos-
terior density over the Tangential Set, T, where the poste-
rior is higher than anywhere in the hypothesis, i.e.,

� �

Ev H T x f d

T f f

x

T

x

x

( ) Pr( | ) ( ) ,
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� � #
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� �
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�

(15)

Ev(H) is the evidence against H, and EV(H) = 1 – Ev(H) is
the evidence supporting (or in favor of) H. For a better un-
derstanding of this evidence measure, Figure 1 illustrates
two examples in the biallelic case, showing the null and tan-

gential sets (�H and T). Since �21 = 1 – �11 – �22, the para-
metric space is fully defined by homozygote proportions,

�11 and �22. The parameter space corresponds to the area in-
side the triangle. Sample genotype counts for A11, A21, A22

and Ev(H) are also shown in each graph. Marker ‘*’ repre-
sents the point �* of maximum a posteriori density in the

constrained space �H, and the level curve tangent to �* cor-
responds to T frontier. Intuitively, if the hypothesis set is in
a region of “low” posterior density (as in the example 1),

then T is “heavy” and therefore Ev(H) is “large” (% 0.91),
meaning “strong” evidence against H. On the other hand, as
illustrated by the example 2, if hypothesis set is in a region
of “high” posterior density, then T is a “small” set, and

hence Ev(H) is “small” (% 0.36), meaning “weak” evidence
against H.

For HWE test, the point � �" � arg sup ( )H xf is given
as follows.

Rewriting the posterior pdf under HWE, we have:

f H p p px i
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x
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Taking its logarithm,
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where n x xi ij jij

k

j

i
� �

�� �� 11
, and h is the sum of sample

heterozygote frequencies, h xiij i
�

�� .

By the constraint pii

k
�

�� 1
1

, we have:
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The gradients of lx(�) are given by:

&

&

l

p

n

p

n

p

x

i

i

i

k

j

j

k
! 




�




�1
1

1
(19)

Hence, the optimal point under HWE is given by the
vector p p p

k

* * *( , , )� 
1 1� which satisfies:
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Summing over all constraints and after some algebra,
we obtain the following solution:

p p p
n

n
i ki i

i* * ~ , , ,� � � �
2

1� .

The computation of �* from p* follows from Eq. (1).

The integration step may be performed by generating
a set of M points { , , , }( ) ( ) ( )� � �1 2

�
M with a Dirichlet distri-

bution with parameter (x11 + 1, x21 + 1, x22 + 1, ..., xkk + 1)

and computing the percentage of points with posterior den-
sity greater than f *:

�( ) ~ ( , , , ), , , ,
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kkx x x r M
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�
#

�� I f f

M

x

r

r
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where I(stat) = 1 if stat is true and 0 otherwise. A more pre-
cise and efficient Monte Carlo method for the integration
step is presented by Lauretto et al. (2003).

As with any significance test, this procedure requires

the choice of a threshold level, ., for acceptance/rejection

of the hypothesis at a significance level �. Several alterna-
tive methods have been developed for establishing this
threshold:

• An empirical power analysis, developed by Stern
and Zacks (2002) and Lauretto et al. (2003), pro-
vides critical levels that are consistent and also ef-
fective for small samples.

• A threshold based on reference sensitivity analysis
and paraconsistent logic is given by Stern (2004).

• Pereira et al. (2008) relates the e-value threshold to
standard p-value thresholds.

• Madruga et al. (2001) proves the existence of a loss
function that renders the FBST a true Bayesian de-
cision-theoretic procedure.

• An asymptotically consistent threshold for a given
confidence level was given by Stern (2007), and
Borges and Stern (2007), which we adopt in this
work.

Let us consider the cumulative distribution of the evi-
dence value against the hypothesis, V Ev H( ) Pr( ( ) ). .� � ,

given �0 , the true value of the parameter. Under appropriate
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regularity conditions, for increasing sample size, we can
state the following:

If H is false, �0 /H, then Ev(H) converges (in proba-
bility) to one, that is,V ( ) ( ). 01 1 .

If H is true, �0 �H, then V(.), the confidence level, is

approximated by the function Q(t, h, .) =

Chi2( Chi2 ( ))-1t h t,
 , . , where t = dim(�), h = dim(H) and

Chi2(df, x) denotes the cumulative chi-square distribution
with df degrees of freedom.

Hence, to reject H with a significance level �, we can

set . �� 

Q t h1 1( , , ), i.e., set . such that Q t h( , , ). �� 
1 .

Results and Discussion

The numerical experiments used in the performance
analysis are based on three typical datasets. Two examples
consist of simulated data used in the literature as
benchmarks for comparing the performance of competing
methods, while the third example is from a real dataset.
These examples are presented in Figure 2, as lower triangu-
lar matrices containing genotype frequencies. The first
example is taken from Louis and Dempster (1987) and con-
sists of a sample of size 45 of genotype frequencies distrib-
uted in four alleles. The second example is given by Guo
and Thompson (1992) and consists of a sample of size 30 of
simulated genotype frequencies simulated under HWE
with underlying allele frequencies (0.2, 0.2, 0.2, 0.2, 0.05,
0.05, 0.05, 0.05). The third example is from a rheumatoid
arthritis (RA) study performed by Wordsworth et al.

(1992), where two hundred and thirty RA patients were
genotyped for the HLA-DR locus. The DR4 allele was sub-
divided into Dw4, Dw14 and other subtypes. DRX repre-
sents all non-DR1, non-Dw4, non-Dw14 alleles. This
example is used by Chen and Thomson (1999) as a bench-
mark.

Our main interest is to compare the error convergence
of FBST and other methods presented in this work
(MCMC, Chi-square and Likelihood-ratio) for increasing

sample sizes. For each sample size n �{ , , , },30 50 100 200 we
simulated two collections of 100 samples. The first collec-
tion consists of samples drawn under HWE, i.e., each sam-
ple is drawn with a multinomial distribution with parame-
ters (n, �* ), with � ��

* arg max ( )� �H xf . The second
collection consists of samples drawn with a multinomial
distribution with parameters (n, � ( )h ), where � ( )h is drawn
under the posterior distribution. That is, each sampling iter-
ation is performed in two steps:

a) draw � ( ) ~ ( , , , )h

kkx x xDirichlet 11 211 1 1� � �� ,

where xij (1 � j � i � k) are the frequencies in the original
dataset; and

b) draw X n
h h( ) ( )~ ( , )Multinomial � .

The Type I error (rejection rate of a true hypothesis) is
estimated by the proportion of samples in collection 1 such
that HWE is rejected, and the Type II error (acceptance rate
of a false hypothesis) is estimated by the proportion of sam-
ples in collection 2 such that HWE is accepted. The perfor-
mance criterion used in this work is the average error, i.e.,
the average of Types I and II error rates. Two standard sig-

nificance levels, � � {0.01, 0.05}, were used to calibrate
the asymptotic acceptance/rejection threshold of each
method.

A variability measure for the errors was obtained by
performing 10 batches of simulations and computing the
mean and standard deviation of average errors across the
batches.

Figure 3 presents the average errors for FBST,
MCMC, Chi-square (with continuity correction) and Like-
lihood ratio for simulated data based on examples 1, 2 and
3. The bar height represents the mean of average errors, and
the vertical line on the top of each bar is the error bar, repre-

senting the mean 2 one standard deviation of average er-
rors.

For simulated data based on examples 1 and 3, the
best competitors are FBST and Likelihood-ratio test, while
for simulated data based on example 2, the best competitors
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Figure 2 - Datasets for numerical experiments, given by Louis and Dempster (1987) (a), Guo and Thompson (1992) (b) and Wordsworth et al. (1992) (c).



are FBST and MCMC. In every case, we notice that FBST
is always the best competitor (especially for small sample

sizes, n � 100) or is very close to it.
These numerical results suggest that FBST is more

stable than the competitors discussed in this paper, in the
sense that it has good comparative performance for differ-
ent datasets and allele numbers.

Final Remarks

We have introduced a simple and straightforward
procedure for testing deviance from Hardy-Weinberg Equi-
librium (HWE) in the presence of several alleles. This pro-
cedure was implemented in C language, and integrated into
a system for parentage testing developed with FAPESP
support, where it is applied in the selection of loci to be
used for parentage testing. Further details of this project can

be found at http://watson.fapesp.br/PIPEM/Pipe13/genet1.
htm. Currently, the routine is available by request to the
corresponding author.
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