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ABSTRACT 

 

Restoration practices commonly make use of a reference condition in order to restore a site 

to a better ecological state than it is currently in.  The selection process and relevance of the 

reference condition has not yet been tested in upland Western Cape rivers especially with 

relation to spatial and temporal scales.  This thesis sought to evaluate whether space 

(longitudinal) and time (temporal) influence riparian plant community composition (laterally), 

how it influences the community composition and whether these differences impacts the 

selection of a reference condition used in restoration practices. 

In order to investigate the role longitudinal position, sites were selected across three 

longitudinal zones: mountain stream, transitional and upper foothills.  Historic sites used in a 

previous study on riparian vegetation of upland rivers were resampled and datasets used for 

temporal comparisons between undisturbed sites, sites recovering after clearing of invasive 

alien plants and sites affected by fire. 

Riparian vegetation communities showed differences between longitudinal zones, basins 

and rivers.  The species responsible for marginal zone identity (plants in close proximity to 

the active channel), determined using relative cover abundance varied, with Isolepis prolifera 

responsible for the group identity in the mountain stream and transitional sites but in the 

foothills Calopsis paniculata, Drosera capensis and Metrosideros angustifolia saplings were 

responsible for lateral zone identity.  The lower dynamic (transitional between wet and 

drybank) had no similarities between different longitudinal zones across rivers.  In the lower 

zone Pteridium aqualinum was mostly responsible for the identity.  The upper bank had no 

single species responsible for group identity.  The species described to be typical for the 

reference condition on these particular rivers by other studies were mostly present in the 

comparable lateral zone but it was however not always responsible for the identity of the 

specific lateral zone. 

By comparing selected environmental variables such as horizontal distance from active 

channel, elevation and substrate calibre with different longitudinal zones’ riparian vegetation 

species distribution, different combinations were produced.  The mountain streams showed 

the strongest relationship with horizontal distance and elevation in combination to one 

another and the upper foothills horizontal distance from the active channel was linked most 

strongly to vegetation positioning.  These results confirm the importance of space when 

attempting to assess, study or restore riparian communities. 
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Temporally, sites had stronger similarity to data collected during the same sampling period 

than with historic data.  Also, the overall relative species abundance did not show significant 

change to be present at a site scale.  The changes in community composition were found to 

be due to a lateral zone scale variation in species abundance.  As expected the undisturbed 

rivers showed less variation in species responsible for temporal changes than the recovering 

and fire-exposed rivers.  Species responsible for changes in relative abundance at a lateral 

zone scale were Metrosideros angustifolia, Morella serrata, Brabejum stellatifolium, Isolepis 

prolifera, Elegia capensis, Prionium serratum and Calopsis paniculata.  Due to the species 

diversity not changing much temporally but the relative abundance of specific species 

showing much variation over time it can be concluded that the changes are not diversity 

based but instead driven by changes in relative abundances of species typical for a lateral 

zone. 

The spatial and temporal variation in riparian vegetation community composition was found 

to be significant enough to suggest that the use of a fixed reference condition for all Western 

Cape rivers would not be feasible due to clear differences between basins.  Secondly when 

selecting a reference site the spatial location of this site should be within the same 

longitudinal zone since bank shape does influence riparian plant species distribution.  Finally 

the temporal comparison between sites showed high diversity in species abundances but 

small differences in diversity overall.  This would suggest that a general community 

description specific to 1) where the site is situated and 2) based on the present riparian 

vegetation community composition within a specific basin may be more realistic and 

achievable for restoration and environmental management purposes as opposed to using 

site descriptions from the past and reference sites too far upstream or downstream from the 

restoration site. 
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SAMEVATTING 

 

Herstel praktyke maak algemeen gebruik van 'n verwysing toestand om 'n terrein te herstel 

na 'n beter ekologiese toestand as wat dit tans is.  Die keuringsproses en relevansie van die 

verwysing toestand is nog nie in die boonste gedeeltes van Wes-Kaap Riviere getoets nie, 

veral met betrekking tot ruimtelike en tydskale nie.  Hierdie tesis het gesoek om te evalueer 

of ruimte (longitudinaal) en tyd (temporaal) rivieroewers plant gemeenskap samestelling 

(lateraal) beïnvloed en of hierdie verskille die keuse van 'n verwysing toestand in die herstel 

praktyke beïnvloed. 

Ondersoek terreine was oor drie longitudinale sones geselekteer: berg stroom, oorgangs en 

boonste hange terreine.  Historiese terreine was weer ondersoek en die datastelle was 

gebruik vir die temporale vergelykings tussen onversteurde terreine, terreine wat herstel na 

die skoonmaak van indringer spesies en wat geraak was deur 'n brand.   

Oewerplantegroei gemeenskappe het verskille tussen longitudinale sones, rivier-kom en 

rivier takke gewys.  Die spesies wat verantwoordelik was vir marginale zone (plante in nabye 

afstand met die aktiewe rivier kanaal) identiteit, bepaal met behulp van relatiewe dekking 

hoeveelheid, het gevarieer met Isolepis prolifera verantwoordelik vir die groep identiteit in die 

berg stroom en oorgangs trerreine, maar in die boonste hange was dit Calopsis paniculata, 

Drossera capensis en Metrosideros angustifolia boompies wat verantwoordelik was vir die 

laterale sone identiteit.  Die laer dinamiese area het geen ooreenkomste tussen marginale 

gebiede van verskillende longitudinale sones gehad nie.  In die onderste sone was Pteridium 

aqualinum meestal verantwoordelik vir die groepering se identiteit.  Die boonste bank het nie 

'n enkele spesie wat verantwoordelik was vir die groep identiteit gehad nie.  Die spesies 

beskryf as tipies vir die laterale sone deur Reinecke et al. (2007) was meestal teenwoordig 

in die beskryfde laterale sone van hierdie studie, maar dit was egter nie altyd 

verantwoordelik vir die identiteit van die laterale sone gemeenskap nie. 

Verskillende lengte sones het gekorreleer met verskillende omgewingsveranderlikes wat 

sterkste gekoppel kon word aan die verspreiding van spesies.  Die bergstrome het die 

sterkste verhouding met horisontale afstand en hoogte in kombinasie met mekaar gehad en 

in die boonste hange was horisontale afstand van die aktiewe kanaal die sterkste gekoppel 

aan plantegroei posisie.  Die belangrikheid van ruimte is onmiskenbaar ten opsigte van 

evaluering, bestudering en die herstel van rivieroewers gemeenskappe. 
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Terreine het sterker ooreenkoms met data gehad wat tydens dieselfde tydperk versamel 

was, as met historiese data.  Die algehele relatiewe spesies hoeveelheid het egter nie 

beduidende verandering getoon op 'n terrein skaal nie.  Soos verwag was het die 

onversteurde riviere minder temporale variasie in spesies getoon as die herstellende en 

brand blootgestelde riviere.  Spesies wat verantwoordelik was vir die verandering in 

relatiewe hoeveelhede op 'n laterale sone skaal was M. angustifolia, Morella serrata, 

Brabejum stellatifolium, I. prolifera, Elegia capensis, Prionium serratum en C. paniculata. 

As gevolg van die diversiteit van spesies wat nie baie verander het tydelik nie, maar die 

relatiewe hoeveelheid van spesifieke spesies wat heelwat variasie oor tyd getoon het, kan 

dit afgelei word dat die veranderinge nie diversiteit gebaseerd was nie, maar eerder gedryf 

was deur veranderinge in relatiewe hoeveelhede van tipiese spesies in 'n laterale sone. 

Die ruimtelike en tydelike variasie in oewerplantegroei gemeenskap samestelling was 

beduidende genoeg om voor te stel dat die gebruik van 'n vaste verwysing toestand vir alle 

Wes-Kaapse riviere nie haalbaar sou wees nie as gevolg van duidelike verskille tussen 

riviere.  Tweedens, by die kies van 'n verwysing terrein moet die ruimtelike plek van hierdie 

terrein in dieselfde lengte sone wees aangesien bank vorm 'n invloed op rivieroewer plant 

verspreiding het.  Laaastens, het die tydelike vergelyking tussen terreine hoë diversiteit in 

spesies verspreidings maar klein verskille in algehele diversiteit gehad.  Dit stel voor dat 'n 

algemene beskrywing van die gemeenskap wat spesifiek op 1) waar die terrein geleë is en 

2) gebaseer op die huidige oewerplantegroei gemeenskap samestelling binne 'n spesifieke 

rivier netwerk dalk meer realisties en haalbaar vir hersteel en bestuurs doeleindes sou wees.  

Hierdie benadering word verkies bo die gebruik van n terrein beskrywings uit die verlede en 

verwysing terreine te ver stroomop of stroomaf van die herstel gebied. 
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1 General Introduction 

 

 Background 1.1

Rivers are complex, multidimensional, dynamic ecosystems (Wilson and Imhof 1998).  Their 

functioning is influenced by their size (Ward et al. 2002), position in the catchment, geology 

and hydrology (Naiman and Décamps 1997).  Riparian vegetation occurs on the banks of 

rivers, ponds, wetlands and lakes and is associated with almost all continental freshwater 

bodies (Naiman et al. 2005) forming ecotones between terrestrial and aquatic ecosystems 

(Swanson et al. 1992).  A transition is present in riparian vegetation moving from the active 

channel to the terrestrial habitat.  The transition from aquatic to terrestrial is known as the 

riparian zone and forms part of the lateral dimension of interactions occurring in a riverine 

environment. 

Riparian vegetation occurs in two main zones up the bank: wetbank and drybank.  The 

wetbank and drybank can be segregated into smaller lateral zones, which have been 

described as being associated with flood recurrence levels (Boucher 2002; Reinecke and 

Brown 2013) and containing species that are associated with them specifically (Reinecke et 

al. 2007; Sieben et al. 2009). 

Environmental factors affecting riparian areas operate on different temporal hierarchical 

scales (O’Neill et al. 1986) and also across three physical dimensions (Wilson and Imhoff 

1998).  These are: 

1. Longitudinal, from source to mouth, for example, longitudinal changes in rivers along 

their length include those associated with the river continuum concept (Vannote et al. 

1980), the nutrient spiralling concept (Webster and Patten 1979) and the hyporheic 

corridor concept (Stanford and Ward 1993). 

2. Vertical, between the bank, fluvial aquifers and river bed, exemplified by studies on the 

vertical exchange in the hyporheos (Palmer et al. 1992). 

3. Laterally across the floodplain, addressed in studies such as Junk et al. (1989), who 

described the riparian flood-pulse concept for floodplains. 

The main drivers of change in these dimensions are hydrology and geomorphology (Lorenz 

et al. 1997), the effects of which should be considered within the appropriate temporal scale 

(Ward 1989; Ward et al. 2002, Figure 1.1). 
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Figure 1.1 Diagrammatic representation of the four dimensions in which interactions 

and exchange occurs in riparian vegetation along rivers.  Three are physical dimensions: 

lateral, vertical and longitudinal.  The fourth dimension is time as indicated by the outside 

chain. 

 

The prevailing hydrological regime drives riparian dynamics (Brinson 1990; Correll and 

Weller 1989; Tabacchi et al. 1998; Ward and Stanford 1995), directly influencing the riparian 

vegetation.  Water moving downstream expends energy on the transport and re-

arrangement of bed and bank sediment.  The adjustment of channel form results in changes 

to channel width and depth that affect water velocity and sediment load.  Riparian biota 

respond to such changes in the recruitment phase due to the influence channel and bank 

shape have on established species as well as the removal of individuals and succession 

processes that follow (Gordon et al. 1992). 

The distribution of particle sizes on the river bed and banks has a major influence on the 

distribution of riverine plant and animals (Gordon et al. 1992).  Local flow conditions have a 

sorting effect on sediment, as finer particles travel further downstream than larger material.  

Finer sediments are therefore often found in areas of deposition such as large pools and/or 

backwaters, whereas faster flowing areas are flushed clean of fine material.  The distribution 

of substrate (especially coarser material) may only change at high flows, when flow 

velocities are sufficiently high to transport the bigger particles, and thus the spatial 

distribution of materials is often closely related to antecedent flood events. 
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Many authors have linked hydrology, or aspects thereof, to the zonation of riparian 

vegetation, resulting in various zonal definitions (Boucher 2002; Sieben et al. 2009; Taman 

2001; Thayer et al. 2005). 

Taman (2001), working on wetlands in the South-West of Western Australia used the volume 

and depth of water to define four riparian zones, whereas Thayer et al. (2005) described six 

zones based on a combination of elevation from the water’s edge and flood recurrence 

intervals for South African rivers.  Boucher (2002) described three main zones in Fynbos 

riparian ecosystems, comprised of seven-sub-zones based on a combination of elevation 

from the water’s edge and flood recurrence intervals.  In each case, lateral riparian zones 

were distinguished from one another by species grouped according to their different water 

requirements (Boucher 2002; Sieben et al. 2009; Thayer et al. 2005).  Sieben et al. (2009) 

also found climatic gradients to be a significant factor influencing riparian vegetation 

patterns. 

More recently, a simplified zonation structure was suggested by Reinecke et al. (2007) who 

described a reference condition for four lateral zones in Western Cape rivers: marginal, 

lower dynamic, lower and upper zones.  Reinecke et al. (2007) collected their vegetation 

data from headwaters but did not distinguish between mountain stream, transitional or 

foothill sections of rivers.  Thus, it is not clear how these lateral zones, and the species that 

define them, may differ between longitudinal zones of the rivers.  There is thus scope to 

further explore the patterns they described at a finer scale i.e. lateral zone within longitudinal 

zone.  Furthermore, because the Reinecke et al. (2007) data were available, and had been 

collected seven years prior to the start of this study, there was also scope to explore whether 

the zones changed over time in response to flood disturbance or succession. 

Thus, in this study the description (reference condition) of Reinecke et al. (2007) for lateral 

riparian zones of relatively undisturbed upland rivers in the Western Cape was used to 

compare riparian vegetation communities across different longitudinal zones and at two 

different times (2004 and 2011). 

 

 Motivation and Hypotheses 1.2

Scale influences all ecological processes, within the same process operating at several 

scales, and observation of the same phenomenon at different scales resulting in different 

trends (Levin 1992).  There is a need for increased knowledge of natural variability in plant 

community structure, composition and dynamics in order to better manage aquatic 

ecosystems.  The scales at which changes occur influence conservation initiatives and 
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restoration practices.  Increased knowledge on riparian ecology can thus inform 

management and restoration initiatives, which can be optimised and aligned with the 

characteristics of a river system at the appropriate spatial and temporal scale. 

The research conducted in this thesis focussed on two dimensions, namely; spatial 

(longitudinal) and temporal. The overarching aims of the thesis were: 

1. To investigate and describe differences in riparian vegetation at a lateral zone scale 

across longitudinal zones of selected upland1 rivers in the Western Cape (the spatial 

dimension). 

2. To assess changes in riparian vegetation communities over a relatively short time frame 

and with different disturbances impacting the communities between sample periods (the 

temporal dimension). 

 

1.2.1 Changes in the longitudinal dimension 

In terms of the River Continuum Concept (Vannote et al. 1980), biological communities 

adapt to the variable physical template of the riverine ecosystem, and it should be possible 

to predict and observe the resulting differences.  Similarly, Naiman et al. (2005) contended 

that riparian ecologists should be able to explain longitudinal changes of biota and the 

mechanisms responsible for these changes.  There are, however, as yet few if any 

comprehensive published studies that document these differences for Fynbos Riparian 

Vegetation2 (Mucina and Rutherford 2006). 

Elevation above the river has often been used to explain patterns in riparian vegetation 

communities (Nixon et al. 1977, Wall and Darwin 1999, Hupp 1983 and Bowman and 

McDonough 1991), although few studies have quantified this relationship.  Small changes in 

horizontal distance and elevation can have significant influence on the flooding frequency 

(Lindsey et al. 1961; Sieben et al. 2009), changes in water table levels (Bowman and 

McDonough 1991), fluvial landform (Hupp and Osterkamp 1985) and soil and substratum 

type (Bowman and McDonough 1991).  There should be some correlation between vertical 

and horizontal distance from the active channel and the nature of the riparian vegetation 

(Boucher 2002; Reinecke et al. 2007).  Mountain stream sites are expected to have narrower 

riparian zones than foothill zone sites, and a change in vegetation structure is expected as 

                                                
1
 Upland rivers are sections of rivers with steep channel slope and higher elevation than the lowland 

sections, usually somewhat unutilized for agricultural activities due to the positioning in narrower 
valleys and therefore relatively if not entirely undisturbed. 
2
 Fynbos Riparian Vegetation as described by Mucina and Ruherford (2006) is a collective name for 

the riparian vegetation occurring in the Fynbos biome. 
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the river channel widens and deepens.  Because bank shape, sediment deposition and 

inundation also differ between riffles, pools and rapids, these geomorphological units are 

expected to have different riparian characteristics. 

 

The objectives for this part of the study were: 

1. To identify and describe how plant community composition changes between longitudinal 

zones. 

2. To evaluate and test the relationship between plant community composition and selected 

environmental variables. 

 

The hypotheses were: 

1. Riparian vegetation differs between longitudinal zones of upland rivers. 

2. Horizontal distance, elevation and substrate composition influence species distribution 

and thus riparian zone community structure. 

 

1.2.2 Changes in the temporal dimension 

Apart from changes in riverine ecosystems down the length of a river, there are temporal 

changes occurring in riverine ecosystems.  These temporal changes are encapsulated in the 

Flux of Nature paradigm (Pickett et al. 2007), which states that ecosystems are continually 

changing in response to external influences such as any combination of drought, fire, floods, 

erosion, climate change or anthropogenic impacts (Sousa 1984).  This dynamic character is 

particularly expected in regions with extreme seasonal fluctuations, such as the Western 

Cape. 

The Western Cape has a Mediterranean climate and biota of the Fynbos biome has adapted 

to the hot dry summer and wet cold winter seasons.  The warm dry summer months coincide 

with fire disturbance and are essential for the successful reproduction and distribution 

patterns of fynbos vegetation.  The wet winter conditions coincide with variable discharge 

patterns and flash floods that can lead to erosion and uprooting of riparian vegetation, with 

flood debris and large amounts of sediment being deposited downstream (Grubb and 

Hopkings 1986).  Riparian vegetation, although part of the fynbos biome, do not rely heavily 

on fire for successful reproduction and distribution but is instead influences greatly by 

flooding in the wet winter months and drought episodes in the warm summer months.  Flow 

regimes have been linked to ecological and biological processes in the past (Palmer et al. 

1997) and more recently hydrology has been shown to influence the positioning of riparian 
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species relative to the active channel, with the wetbank (marginal and lower dynamic later 

zones) being more reliant on regular inundation than the drybank (lower and upper lateral 

zones) (Reinecke and Brown 2013). 

I focussed on the changes in riparian vegetation composition that occurred between 

sampling periods.  Due to fire, floods and drought being difficult to track between seasons 

and different sites due to isolated locations, lack of species data (e.g. temperature, wind 

speeds, streamflow) and varying physical characteristics (geomorphology and altitude), less 

focus was placed on the specific changes driven by these disturbances and instead more 

focus was placed on disturbance impacts in general and on comparing disturbed sites to 

relatively undisturbed sites.  I looked at the differences between undisturbed sites and sites 

subjected to two different types of disturbance: natural (fire) and unnatural (recovery after 

clearing of invasive alien trees) to assess whether sites subjected to disturbance show more 

or less change than undisturbed sites. 

One of the biggest anthropogenicaly driven disturbance factors in South Africa is the 

invasion of woody alien species in riparian zones, particularly in the Fynbos biome.  These 

woody alien species are known to have higher transpiration rates (Dye et al. 2001) and 

therefore use more water (Dye and Poulter 1995) compared to co-occurring native species.  

Invasive species have also been known to alter riparian canopy structure and the abundance 

and diversity of native species (Holmes et al. 2005).  This empirical information has led to 

the Working for Water (WfW) programme that was initiated in 1995 of which one aim is to 

removing invasive species as to preserve water resources.   

Restoration practices are aimed at restoring a degraded environment back to its historical 

state by using a reference condition (Bailey et al. 1998).  The dynamic character of natural 

ecosystems often makes it difficult to pinpoint the state to which an impacted environment 

should be restored (Pickett and Parker 1994; Hobbs and Harris 2001).  A more realistic 

approach is to restore an environment to a less disturbed state than it is currently in (Meek et 

al. 2013; Palmer et al. 1997).  The recovery of disturbed riparian communities has been a 

popular area of research but the changes occurring over time in undisturbed sites have 

received less attention. This part of the study aimed to look at changes occurring in 

undisturbed sites and sites subjected to disturbance to see whether disturbed sites or 

undisturbed sites show more change over a relatively short period of time and what drives 

any changes that do occur. 
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The objective of this part of the study was: 

1. To assess the change in riparian community composition over time. 

 

The hypotheses were: 

1. Disturbed sites (disturbed by fire and alien plants) exhibit greater change in species 

abundance when compared to natural sites over time. 

2. If differences result from changes in relative species abundances then the wetbank 

should show greater change due to its close proximity to the active channel which is 

inundated more regularly. 

 

 General Description of Vegetation 1.3

The Fynbos biome, a unique part of the Cape Floristic Region, contains three distinct 

vegetation types; 1) Fynbos, 2) Renosterveld and 3) Strandveld (Mucina and Rutherford 

2006).  The Fynbos biome is situated in the Cape Fold Mountain Belt, South Africa, and, as 

such, is adapted to frequent natural disturbances, such as fire and floods.  Within the Fynbos 

biome there are many specialised vegetation units, such as coastal vegetation and inland 

azonal vegetation, which includes freshwater wetlands, salt pans and alluvia (Mucina and 

Rutherford 2006).  Fynbos Riparian Vegetation occurs on alluvial soils and is characterised 

by narrow belts of thicket on the banks of rivers from near sea level to 1300 meters above 

sea level (masl).  Typical species include palmiet (Prionium serratum) and restios (Calopsis 

paniculata and Elegia capensis), while tall species such as Metrosideros angustifolia and 

Brachylaena neriifolia are also common (Holmes et al. 2005, Mucina and Rutherford 2006, 

Reinecke et al. 2007). 

 

 Geology 1.4

The main components of geology in the Fynbos biome are Table Mountain sandstone, Cape 

Supergroup shale and Cape granite.  These components are broken down, leading to the 

alluvial sandy and silty soils distributed across Quaternary sediments found in the western 

part of the Fynbos area.  The sites for this study were situated in the Cederberg Sandstone 

and the Hawequas Sandstone (Figure 1.2), which are both characterised by acidic lithosol 

soils from Ordovician sandstones from the Table Mountain Group (Mucina and Rutherford 

2006). 
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Shale and granite typically erode into fertile soils, but sandstone erodes slowly, eventually 

forming nutrient poor soils that are coarse, well-drained and acidic with a pH ranging 

between 4.4 and 7.0 (Goldblatt and Manning 2000).  The vegetation is usually scrubby on 

sandstone mountain slopes and they have physiological adaptations for water absorption 

and retention and nutrient uptake to survive the climate (warm dry summers) and geology 

(nutrient poor soils) (Goldblatt and Manning 2000, Mucina and Rutherford 2006).  The 

positioning of a plant relative to a water source is thus very important in a nutrient poor and 

water scarce area. 
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Figure 1.2 The South-Western section of the vegetation Map of South Africa, Lesotho 

and Swaziland indicating the different geological Fynbos types.  FFs 4 = the distribution of 

Cederberg Sandstone Fynbos and FFs 10 = the distribution of the Hawequas Sandstone 

Fynbos type (SANBI 2005, Mucina and Rutherford 2006). 
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 Climate 1.5

The Western Cape experiences a Mediterranean climate and supports one of the five 

Mediterranean Type Ecosystems found globally (Cowling and Richardson 1995; Cowling 

and Holmes 1992).  These are characterised by hot dry summer months and wet cold winter 

months.  The dry summer months coincide with fire disturbance and the wet winter months 

are known for flooding events occurring annually. 

Streams and rivers are fed by winter rainfall and acidic seeps that are high in organic 

compounds (Mucina and Rutherford 2006).  Some streams carry water year round 

(perennial) while others only flow during the rainy winter season (seasonal) and run dry 

during warm summer months.  High rainfall, steep slopes and narrow gorges throughout the 

mountainous region contribute to the occurrence of violent floods during winter.  Erosion, 

especially higher up in the catchment, leads to soil-poor substrate.  The vegetation is 

adapted to uprooting, poorly vegetated patches are common (Mucina and Rutherford 2006). 

Warm, dry summer months increase the risk of wildfires.  Fynbos vegetation is dependent on 

fire for reproduction and distribution of seeds, and many trees are adapted to burning as 

they re-sprout after fire (Cowling 1992; Cowling and Richardson 1995).  Riparian vegetation 

is sheltered from fire in the catchment due to headwater areas and narrow valleys acting as 

protection (Cowling 1992).  If it does burn, riparian vegetation is known to re-sprout 

afterwards and is thus also believed to be fire adapted (Cowling 1992; Cowling and Holmes 

1992). 

The Cederberg Sandstone Fynbos vegetation occurs in an area with a mean annual rainfall 

of 395 mm, and mean daily maximum and minimum temperatures of 28.4°C and 4.0°C, 

respectively.  The incidence of frost is 3 to 30 days per year (Mucina and Rutherford 2006).  

By contrast the Hawequas Sandstone Fynbos vegetation occurs where there is a higher 

mean annual rainfall (1200 mm) and milder temperatures.  The mean maximum and 

minimum daily temperatures are 25.4°C and 4.4°C, respectively, and frost is less frequent, 

with 3 to 20 frost days per year (Mucina and Rutherford 2006). 

The Western Cape Province has been identified as one of two South African provinces most 

at risk of climate-induced warming and rainfall reductions, both of which represent significant 

threats to upland Riparian Fynbos Vegetation (Mukheibir and Ziervogel 2006).  Climate 

change threatens to increase the likelihood of extreme events, such as droughts, floods and 

fire, in the province.  It also threatens to reduce water quality and annual runoff/stream flow 

(DEADP 2012). 
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 Site selection and description 1.6

1.6.1 Site selection 

The study sites are located in two Fynbos vegetation types: Cederberg Sandstone Fynbos 

and Hawequas Sandstone Fynbos (Figure 1.3). 

 

 

Figure 1.3 Location of study areas within Africa, South Africa and the Western Cape. 
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The sites were selected on the basis of: 

1. The longitudinal zone (Rowntree et al. 2000) they were situated in which enabled a 

variation of longitudinal zones to be represented for comparisons to be made spatially. 

2. Their condition i.e undisturbed vs disturbed.  Undisturbed sites were used with the 

exception of two sites on the Molenaars River (Mol 1 and Mol 3). 

3. The availability of historic vegetation data collected from sites used by Reinecke et al. 

(2007) making temporal sample plot level comparisons possible. 

 

The location of study sites was important as the aim of the study was to draw spatial and 

temporal comparisons.  Mountain stream, transitional and upper foothill longitudinal zones 

were used.  Only upland rivers were used due to lower sections being too modified and 

disturbed. 

Two sites were selected within each of the three longitudinal zones, adjacent to a pool and 

the second adjacent to an hydraulic control (riffle, rapid or run).  An important consideration 

was the general condition of the site, as riparian communities in lower reaches are often 

disturbed by agricultural activities, invasion by exotic species or some other anthropogenic 

disturbance.  The sites selected for this study were relatively undisturbed unless stated 

otherwise (two recovering sites are used in Chapter 4).  Using riparian vegetation 

communities in a near-natural condition was important because it allowed for a better 

understanding of the natural characteristics of these communities, particularly for answering 

the questions on spatial differences of riparian community composition between longitudinal 

zones assessed in Chapter 3.  Disturbances are also important, as they are known to drive 

change in community structure and functioning, and this is dealt with in Chapter 4. 
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Figure 1.4 Location of paired sites (pool and hydraulic control combination) situated 

on four rivers in the Western Cape.  The Rondegat (Ron), Heks (Hek), Molenaars (Mol) and 

Elands Rivers (Ela). 

 

The third important consideration in site selection was availability of historic data that would 

allow for assessment of the temporal changes in riparian vegetation (Chapter 4).  Historic 

data from Reinecke et al. (2007) were available for 13 sites on four rivers.  These were the 

Elands/Molenaars River combination, the Heks River and the Rondegat River.  In each case, 

permanently marked plots from Reinecke et al. (2007) enabled sample plot level accuracy in 

the re-sampling seven years later.  This relocation level of sample plots was within a less 

than 2 m accuracy.  Google Earth was used to establish the altitude at which the sites were 

located.  This is done by entering the GPS coordinates into Google Earth and reading the 

altitude (in metres above sea level - masl) from the map. 
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1.6.2 Site Description 

1.6.2.1 Elands River  

The Elands River is in the Hawequas Mountain range.  Four sites on the Elands River were 

sampled: two mountain stream (Ela 1 and Ela 2: Figure 1.5 A and B) and two transitional 

sites (Ela 3 and Ela 4: Figure 1.5 C and D).  Ela 1 is situated next to a deep pool.  The valley 

is narrow and the banks are rocky.  Large boulders and slabs of exposed bedrock caused 

the riparian vegetation to be somewhat sparse and more scattered than that at the 

downstream sites.  Ela 2 is situated downstream of Ela 1 next to a rapid.  The valley and 

bank had very similar characteristics to upstream with steep banks and large boulders and 

exposed bedrock.  Ela 3 was situated next to a cobble bar and plane bed.  The banks were 

less steep than upstream and the valley wider.  Ela 4 was situated next to a pool and 

downstream of Ela 3.  The valley shape and character was much the same as at Ela 3. 

 

 

Figure 1.5 Sites on the Elands River during summer 2011: A - Ela 1 (pool); B - Ela 2 

(rapid); C - Ela 3 (riffle); D - Ela 4 (pool). 
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1.6.2.2 Molenaars River  

The Molenaars River is in the Hawequas mountain range, and the sites were located 

downstream of the confluence with the Elands River and the Krom River.  Four sites were 

sampled along the Molenaars River (Figure 1.6), all of which were in the upper foothills 

longitudinal zone. 

 

 

Figure 1.6 Sites on the Molenaars River during summer 2011: A - Mol 2 (riffle); B – Mol 

5 (pool); C - Mol 1 (run); D - Mol 3 (riffle). 

 

Mol 2 (Figure 1.6 A) was situated next to a riffle/plane bed in a much wider valley than the 

Elands River.  The bank slope was more gradual and the riparian zone much wider than 

upstream.  This site was upstream of the confluence with the Klip River in an area described 

to be in a near natural condition (Boucher 1988), although Reinecke et al. (2007) found this 

site to be more comparable with sites that had previously been cleared of Acacia mearnsii 

Stellenbosch University  http://scholar.sun.ac.za



even though disturbance at the site due to invasion was not very evident.  The site contained 

a few small individuals of invasive species (A. mearnsii and Parkia speciosa) but overall it 

had few signs of disturbance and, for the purpose of this study, was considered relatively 

undisturbed.  Mol 5 (Figure 1.6 B) was situated next to a deep pool upstream of Mol 2.  The 

valley and banks had characteristics similar to Mol 2 with the exception of the right bank, 

which was near vertical along the pool edge. 

Mol 1 (Figure 1.6 C) was the most upstream site on the Molenaars River.  The site was 

cleared of woody invasive alien species (mainly A. mearnsii) in 1994 and Working for Water 

teams have continued removing invasives through successive follow-ups.  Mol 3 (Figure 1.6 

D) is situated downstream of Mol 2 and was first cleared of A. mearnsii in 1997, with regular 

follow ups thereafter.  This site was more disturbed than Mol 1 when sampled by Reinecke 

et al. (2007) who found evidence of stack burning and hacked vegetation that was stacked 

on top of indigenous plants.  There were also large sandy areas with little or no vegetation at 

that time which was no longer the case when sampled during 2011. 
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1.6.2.3 Rondegat River  

The Rondegat River is situated in the Cederberg and forms part of the Olifants River system.  

It occurs in a neighbouring river basin of the Heks River (see 1.6.2.4).  Four sites were 

selected on the Rondegat River: two in the mountain stream zone (Ron 1 and Ron 2), and 

two in the transitional (Ron 3 and Ron 4; Figure 1.7). 

Ron 1 (Figure 1.7 A) was alongside a fast-flowing turbulent riffle.  Ron 2 (Figure 1.7 B) was 

just downstream of Ron 1 next to a pool.  The channel was very narrow and the riparian 

canopy extended over into the channel at both sites.  The outer parts of the riparian zone 

had been burnt three years earlier when a fire swept the upland area.  Ron 3 (next to a riffle; 

Figure 1.7 C) was situated upstream of Ron 4 (next to a pool; Figure 1.7 D).  The valley was 

wider and flatter than at Ron 1 and Ron 2 and the stream was not shaded by the canopy.  

These sites had also been burnt three years earlier, and burnt trees and dead branches 

extended to the edge of the active channel. 

 

 

Figure 1.7 Sites on the Rondegat River during summer 2012: A - Ron 1 (riffle); B - Ron 

2 (pool); C - Ron 3 (riffle); D - Ron 4 (pool). 
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1.6.2.4 Heks River 

The Heks River is in the Cederberg, adjacent to the Rondegat River, and forms part of the 

Olifants River System.  Four sites were selected on the river: two in the transitional zone 

(Hek 1 and Hek 2), and two in the foothills (Hek 3 and Hek 4). 

Hek 1 was next to a pool and Hek 2 was just downstream of Hek 1, next to a riffle.  Both 

sites were confined within well-defined macro-channels.  Hek 3 was next to a pool and Hek 4 

was just downstream of Hek 3, next to a riffle.  The valley was much wider at Hek 3 and 4 

than at Hek 1 and Hek 2.  There were some secondary channels present with riparian 

vegetation extending out into the floodplain.  The outer edges of the riparian zone had burnt 

three years earlier. 

 

 

Figure 1.8 Sites on the Heks River during summer 2012: A - Hek 1 (pool); B - Hek 2 

(riffle); C - Hek 3 (pool); D - Hek 4 (riffle). 
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 General Sampling Methods 1.7

There is some overlap in the use of sites and the methods applied for data collection in 

Chapters 3 and 4, which has led to some repetition between the chapters.  Data collected 

during 2011/2012 are indicated with an asterisk (*) throughout the document and historic 

data used only in Chapter 4 are not indicated with an asterisk to make it clear which results 

relate to which data set.  The methods used in this study were based on the same ones 

used to collect the historic data.  This enabled temporal comparisons to be as accurate as 

possible. 

1.7.1 Riparian Vegetation 

The width of the sampled area was dependent on the width of the riparian zone.  At some 

sites higher up in the catchment the width of riparian zone was only 5 m, while downstream 

in the foothill longitudinal zone the width was up to 12 m.  Each site was 20 m long and laid 

out perpendicularly to the active channel (Figure 1.11), and was sub-divided into four 

transects of 5 m each, named A, B, C and D from upstream to downstream (Figure 1.9).  

Each transect was divided into 1 m sample plots up the bank (5 x 1 m sample plots). 

 

 

Figure 1.9 Site setup was done at a morphological unit scale (pool, riffle, run).  

Vegetation transects A – D were along the bank and vegetation plots of 5 m x 1 m up the river 

bank.  Surveying lines were situated at 5 m (between vegetation plots A and B) and 15 m 

(between vegetation plots C and D). 
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Cover abundance of canopy and groundcovers were estimated visually (Kent and Coker 

1992) for plants rooted in each sample plot.  Species were collected and pressed according 

to standard plant identification protocols and sent to the Compton Herbarium at Kirstenbosch 

(South African National Biodiversity Institute) for identification.  All species present were 

collected.  Vegetation data were collected at the exact same locations as Reinecke et al. 

(2007), who had marked the transect boundaries when fieldwork was carried out in 

2004/2005.  In this study, additional punched metal washers were attached to each sample 

plots indicating the distance (in meters) of the sample plot from the edge of the active 

channel (water’s edge).  These markers were also the points that were surveyed.  The 

spatial scale at which longitudinal comparisons were made was at the pool and riffle scale 

101 – 102 m  and the temporal scale was 7 years (<10). 

 

1.7.2 Cross-sectional Surveying 

The shape of the river bank was surveyed using a Total Station (Leica TC307 model) (Figure 

1.12).  The horizontal distance from the active channel and the difference in height (elevation 

above active channel/water’s edge) between two points (one of which was fixed by means of 

the total station’s position) was measured across the channel.  When these two points were 

plotted together on a graph the shape of the bank and active channel could be determined 

(Figure 1.10).  This allowed for bank slope to be calculated and comparisons in bank shape 

to be made between different longitudinal zones, lateral zones and between the two 

sampling dates.  The sample plots could also be related to the substrate at specific points on 

the bank.   

 

1.7.3 Substrate 

Sample-plot substrate information was estimated as the percentage of each substrate size-

class relative to the sample plot’s surface area (Wentworth scale, Gordon et al. 1992).  This 

meant that the maximum total percentage substrate per sample plot was 100%.  The 

substrate types were: bedrock, boulder, cobble, gravel and sand (Wentworth scale, Gordon 

et al. 1992).  The presence of surface water was also recorded. 
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Figure 1.10 Cross-sectional survey graphs of bank shape across sites situated in 

different longitudinal zones: mountain stream (Ela 1), transitional (Ela 3) and foothills (Mol 2).  

The x-axes (horizontal distance) and y-axes (elevation) are recorded in m with M - marginal, LD 

- lower dynamic, LB – lower and UB – upper bank, indicating the approximate position of the 

lateral riparian zones. 
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Figure 1.11 Fieldwork during the summers of 2011 and 2012.  A - Permanent markers 

placed at sites during 2004 sampling, B - Dr Willem Otto recording vegetation data while 

assisting with fieldwork on the lower sites of the Rondegat River, C - Burnt branches of re-

sprouting trees overhanging the active channel on the Rondegat River during 2012 sampling, 

D - Strings are put out spanning the cross-section to aid the surveying and sampling of 

vegetation, E - Karl Reinecke and the total station used to survey cross-sections across sites, 

F - Sites are set up by laying out a 50 m tape perpendicularly to the active channel. 

 

 

A 

F E 

D C 

B 
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Figure 1.12 Fieldwork during summers of 2011 and 2012 continued. A - Permanent 

markers (number-punched washers) attached to vegetation at each sample plot up the bank, B 

- Drossera capensis, one of the many species collected, photographed and submitted for 

identification, C - Sediment calibre was estimated as percentage coverage per sample plot, D - 

Plant specimens were labelled, pressed and submitted to the Compton Herbarium at 

Kirstenbosch for identification, E - Vegetation collection during summer 2012, F - Strings are 

put up to measure 1 m sample plots up the bank. 

 

Figure Error! No text of specified style in document..1 Fieldwork during summers of 2011 and 

2012. A) Permanent markers (number-punched washers) attached to vegetation at each 

sample plot up the bank. B) Drossera capensis, one of the many species collected, 

photographed and submitted for identification. C) Sediment calibre was estimated as 

percentage coverage per sample plot. D) Plant specimens were labelled, pressed and 

submitted to the Compton Herbarium at Kirstenbosch for identification. E) Fieldwork during 

summer 2012 in the Cederberg. F) Strings are put up to measure 1 m sample plots up the bank. 
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 Thesis Structure 1.8

The thesis is divided in to five chapters, two of which are data chapters (Chapters 3 and 4).  

Chapter 3 addresses the spatial comparisons across longitudinal zones and Chapter 4 deals 

with the question of change over time in Fynbos Riparian Vegetation. 

Chapter 1 – Introduction:  This section contains the general outline and conceptual 

framework for the research study. 

 

Chapter 2 - Literature Review:  This chapter is an overview summarizing the foundation 

upon which the research study was based. 

 

Chapter 3 - This is the first data chapter of the thesis and is focussed on the spatial 

differences in Fynbos Riparian Vegetation communities of the Western Cape. 

 

Chapter 4 - This is the second data chapter of this thesis and deals with temporal changes 

in riparian Fynbos Riparian Vegetation communities. 

 

Chapter 5 - Synthesis:  The concluding chapter used the results to draw conclusions 

regarding Fynbos Riparian Vegetation communities over spatial and temporal scales.  These 

include lateral zone characteristics, biodiversity and community composition. 

Recommendations for further studies are also made in this chapter. 
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2 Literature Review 

 

 Introduction 2.1

Riparian vegetation is associated with nearly all continental freshwater bodies (Naiman et al. 

2005) and forms diverse ecotones (Swanson et al 1992) between the aquatic and terrestrial 

environments.  In this study, ‘riparian zone’ refers specifically to the plant community that is 

directly adjacent to, and dependent on, water in the river channel.  This band of vegetation is 

often distinctly different from the adjacent terrestrial vegetation, which is located higher up 

the bank away from the active channel (Reinecke et al. 2007). 

Riparian vegetation occurs in different zones on the bank of rivers (Boucher and Tlale 1999).  

This zonation pattern has been described by multiple authors in South Africa (Boucher 2002; 

Sieben et al. 2009; Taman 2001; Thayer et al. 2005).  Boucher (2002) used hydrology, and 

more specifically the flood recurrence intervals to establish the positioning of riparian zones 

on the bank.  He described three riparian areas broken down into seven zones with the 

transition between wetbank and drybank occurring at the 1:2 year flood recurrence level.  

Other authors have used similar methods in other parts of South Africa such as Hughes 

(1990); Van Coller (1992); Van Coller et al. (1997).  Reinecke et al. (2007) identified four 

lateral zones on reference sites in the Western Cape, South Africa from which they also 

identified horizontal distance and elevation as good indicators for riparian zone.  Throughout, 

hydrology and geomorphology has been the most effective approach used to describe 

riparian zones and community dynamics.  Van Coller (1992) and Van Coller et al. (1997) 

used geomorphological characterises of the active channel linked it to vegetation 

communities of the floodplain.  Boucher (2002), Hughes (1990) and Reinecke and Brown 

(2013, in press) used aspects of hydrology to explain riparian community structure and 

dynamics. 

Rogers (1995) distinguishes riparian vegetation of rivers from that of other wetland 

ecosystems on the basis of (1) its linear form – as the communities track the course of the 

river, and (2) longitudinal connectivity – the river forms a hydrological connection between 

upstream and downstream areas for the movement of sediment, hydrochorous seeds, 

aquatic vertebrates, invertebrates and other fauna.  Defining the correct temporal and spatial 

scales for ecological studies of riverine ecosystems is important (Levin 1992; Lowe et al. 

2006; Wiens 2002).  Scale is defined as an informal system to categorise changes in space 

and through time (Gibson et al. 2000).  Lowe et al. (2006) emphasised the importance of 

using multiple scales in ecological management while Biggs et al. (2005) focussed on 
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different scales of flow events and the impacts these had on lotic system development and 

maintenance.  Species are known to be sometimes restricted geographically and, such as 

the case with plants, to be relatively immobile, which emphasises the relationship between 

localized species and the local geographic scale (Poiani et al. 2000).  Most spatial scale 

studies have focussed on invertebrate (instream) community dynamics leaving little known 

about the impact of ecological scales on plant (local-scale species3) dynamics.  Levin (1992) 

described scale as a filter through which the observer investigates a particular piece of an 

ecosystem and how this filter changes in size depending on the specific dynamics and 

patterns investigated.  Spatial and temporal scales are the two fundamental mechanisms 

driving and maintaining ecosystem development and population dynamics (Levin 1992). 

There are three spatial dimensions across which exchange of ecological processes occur in 

a river ecosystem: longitudinal, vertical and laterally across the floodplain (Figure 1.1).  Time 

is considered by many authors view as a fourth dimension (Lorenz et al. 1997, Ward et al. 

2002).  In this thesis, spatial and temporal changes in riparian vegetation characteristics 

were assessed separately.  Riparian vegetation ecosystem development is influenced by 

structural processes (e.g. landforms) and disturbance events (e.g. fire) which varies in scale 

spatially and temporally.  The largest spatial scale is the river basin catchment, which tends 

to change over a temporal scale of 10 to 1000 000 years (Table 2.1).  The smallest scale is 

a particle the size of 10-8; which changes over <10 years (Sear 1994, Wissmar 1998).  There 

are, however, numerous exceptions to these rules.  The spatial and temporal scale at which 

research is conducted has always influenced ecosystem studies (O’Neill et al. 1986, Sieben 

et al. 2009) and was considered most important for this thesis.  Since spatial and temporal 

scales influence the riparian vegetation communities in different ways (Table 2.1), these 

should be addressed separately. 

  

                                                
3
 Local-scale species refers to organisms unable to move as widely geographically.  In this case when 

disturbances occur the species are unable to relocate or avoid the disturbance and are therefore 
more directly influenced and affected by localized disturbances of varying scales. 
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Table 2.1 Spatial and temporal scales that influence a river catchment. Highlighted 

rows are at the scale used in this study to sample and compare riparian communities.  

Adapted from Wissmar (1998) and Sear (1994). 

Geomorphic 

Structure 
Geomorphic Function 

Spatial 

Scale (m) 

Temporal 

Scale (years) 

River basin network Sediment and water transfer >10
4 

10
1
 - 10

6
 

Valley floor Sediment and water storage 10
3 
- 10

4 
10

2
 – 10

4
 

Floodplain Sediment and water storage 10
2
 - 10

3 
10

1
 – 10

3
 

Riparian 

zone/corridor 

Sediment and water storage, wildlife and 

habitat interactions 
10

1
 - 10

2 
10

0
 – 10

3 

Channel meander Sediment and water storage and transfer 10
1
 - 10

2 
10

1
 – 10

2
 

Pools and riffles Sediment and water storage and transfer 10
1
 - 10

2
 10

1
 – 10

2
 

Depositional bars Sediment transfer 10
0
 - 10

2
 10

0
 – 10

2
 

Dunes and ripples Sediment and water storage <1 <1 

Particles Erosion product 1 - 10
2
 <10 

 

 Spatial Change 2.2

The flow regime is the main driver of channel morphology through its influence over 

sediment transport and, through this, channel structure (Naiman et al. 2005).  Seasonal 

inundation and flooding, and the erosion and deposition of sediments all exert an influence 

on the physical characteristics of the river channel and banks (Frissel et al. 1986) and the 

composition of the plant community that inhabits river banks (Tabacchi et al. 1998).  The 

Western Cape’s flash floods during the winter months have different impacts on channel 

morphology at different longitudinal positions in the river basin (Campbell 1983).  For 

instance, in steep mountain streams with a boulder and cobble substrate one extreme flow 

event can substantially alter the channel morphology, whereas in a large low gradient 

channel, low intensity and frequently recurring flows are often responsible for channel form 

as they deposit sediment and change fluvial landforms (Frissel et al. 1986, Swanson et al. 

1988).  There are, however, exceptions to this.  For instance, low channel gradient flooding 

during the 2000 flood in the Sabi River, Mpumalanga, South Africa, resulted in substantial 

channel modification.  The geomorphological characteristics (slope, channel substrate and 

valley width) are important characteristics that influence the composition and structure of the 

riparian plant community. 

Frissell et al. (1986) proposed a framework for the hierarchical classification of spatial 

variation in a basin that was based on several spatiotemporal scales and geomorphic 

features and events.  This framework is presented in Figure 2.1 and is very similar to the 
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hierarchical classification system developed more recently by Rowntree et al. (2000) in 

terms of its spatial division of 5 clear riverine scales (catchment/basin, zone, segment, 

reach, morphological unit). Sullivan et al. (1987) describes three geomorphological provinces 

of physical factors operating in a river basin.  The first of these is the erosional province that 

corresponds with headwaters where the channel gradient is >4%, the valley is v-shaped and 

only minor lateral exchanges occur.  The steep gradient results in a high carrying capacity so 

a variety of particles of different calibre are transported.  The riparian community is generally 

narrow in this province (Tabacchi et al. 1998).  The second province is transitional with a 

channel gradient of between 1 and 4%.  Enough kinetic energy is available to transport 

particles of between 0.2 and 250 mm in diameter.  This province is associated with wider 

valley areas and more stable channels than the erosion province.  The riparian zone tends to 

be wider and spatially more complex in habitat diversity (Tabacchi et al. 1998).  The 

depositional province is downstream, has a very low gradient (>1%) and is characterised by 

meandering or braided channels and high sediment deposition, and a fragmented riparian 

zone (Tabacchi et al. 1998). 

 

 

Figure 2.1 A hierarchical classification system for river basins which relates directly to 

the zonal classification system of Rowntree et al. (2000) (modified from Frissell et al 1986). 

 

The geomorphological hierarchy and provinces described by Frissell et al. (1986) and 

Sullivan et al. (1987) correlate with the more recent zonal classification system of Rowntree 

et al. (2000).  Rowntree et al. (2000) described different longitudinal zones for rivers in three 

different parts of the country: the Sabie River in Mpumalanga, the Buffalo River in the 

Eastern Cape and the Olifants River in the Western Cape.  This zonal classification system 

identified five scales at which different physical characteristics dominate.  These are (from 
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largest scale to smallest): 1) the catchment; 2) zones; 3) segments; 4) reaches; and 5) 

morphological units (Figure 2.1; Table 2.2). 

The classification system of Rowntree et al. (2000) has become widely used in the Fynbos 

biome (e.g. within the eco-classification system of Kleynhans et al. (2007)). According to 

Rowntree et al. (2000), mountain streams are characterized by bedrock, boulders and large 

cobbles with a slope of 0.04 to 0.099.  There is also a tendency toward abrupt gradient 

changes, such as at waterfalls and chutes, and outside of pools, the flow is fast and 

turbulent.  Foothills, on the other hand, typically have a higher dominance of smaller stones, 

such as cobbles, gravel and sand, and although there are large pools, there are also long 

sections of relatively shallow riffles and runs.  This longitudinal zone has a channel slope 

range of 0.005 to 0.0019.   

 

Table 2.2 The zonal classification system for South African rivers. Highlighted rows 

are the longitudinal zones used in this study (Rowntree et al. 2000). 

Zone Range of slope River characteristics 

Source zone Not specified 
Low gradient, upland plateau or upland basin able to store 
water. Spongy or peaty hydromorphic soils. 

Mountain 
headwater stream 

>0.1 
A very steep gradient river dominated by vertical flow over 
bedrock with waterfalls and plunge pools. Normally first or 
second order. Reach types include bedrock fall and cascades. 

Mountain stream 0.04-0.099 

Steep gradient river dominated by bedrock and boulders, 
locally cobble or coarse gravels in pools. Reach types include 
cascades, bedrock fall, step-pool. Approximate equal 
distribution of vertical and horizontal flow components. 

Transitional 0.02-0.039 

Moderately steep river dominated by bedrock or boulder. 
Reach types include plane-bed, pool-rapid or pool-riffle. 
Confined or semi-confined valley floor with limited flood plain 
development. 

(Upper) foothills 0.005-0.0019 

Moderately steep, cobble-bed or mixed bedrock-cobble bed 
channel, with plane-bed, pool-riffle, or pool-rapid reach types. 
Length of pools and riffles/rapids similar. Narrow flood plain or 
sand, gravel or cobble often present. 

Lower foothills 0.001-0.005 

Lower gradient mixed bed alluvial channel with sand and 
gravel dominating the bed, locally may be bedrock controlled. 
Reach types include pool-riffle or pool rapid, sand bars 
common in pools. Pools of significantly greater extent than 
rapids or riffles. Flood plain often present. 

Lowland river 0.0001-0.0009 

Low gradient alluvial fine bed channel, typically regime reach 
type. May be confined, but fully developed meandering 
pattern within a distinct flood plain develops in unconfined 
reaches where there is an increased silt content in bed or 
banks. 

 

The role of riparian vegetation in upland-riverine ecosystem functioning received little 

attention (Tabacchi et al. 1998) until the publication of the River Continuum Concept (RCC) 
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(Vannote et al. 1980) and the Nutrient Spiralling Concept (Minshall et al. 1983 and Webster 

1975), where after riparian zones were integrated more into such studies.  The RCC states 

that biological communities adapt to the physical template of the riverine ecosystem, defined 

by changes in gradient, river width, sediment size and food resources from source to mouth.  

It should therefore be possible to predict and observe these differences in natural systems 

(Naiman et al. 2005). 

Partly in response to the RCC, longitudinal changes in riverine ecosystems received 

considerable attention in studies, which focused on, inter alia, the influence of tributaries on 

mainstream ecosystems, river ecosystem classification (Hestir 2007; Statzner and Higler 

1985), longitudinal and temporal variation in recovery of benthic invertebrate communities 

(Canton and Chadwick 1983; Larned et al. 2010), longitudinal distribution of 

macroinvertebrate assemblages (Carter et al. 1996; Miserendino and Pizzolon 2003; 

Nautiyal and Mishra 2012), the complexity of biological interactions (Thorp et al. 2006; 

Peckarsky et al. 1997) and organic matter processing in different river reaches (Navel et al. 

2011).  Together these have helped shed light on how populations, nutrient availability and 

abiotic characteristics change and interact with one another down the length of a river. 

Although longitudinal studies on macroinvertebrate assemblages (e.g. Carter et al. 1996; 

Grubaugh et al. 1997; Miserendino and Pizzolon 2003; Nautiyal and Mishra 2012) tend to be 

more numerous than those on riparian vegetation communities, possibly because it is easier 

to collect large amounts of data for macroinvertebrates, some studies have focused on the 

riparian vegetation.  Rot et al. (2000) found that large woody debris in the riparian zone was 

directly influenced by the age of riparian forest communities and by the geomorphological 

characteristics of the sample site, although they did not give detailed descriptions of riparian 

change from upstream to downstream. 

Hupp (1986) recorded a change in geomorphological characteristics and associated tree 

species as the stream order changed.  He described the changes recorded in the distribution 

of tree species in terms of changes in gradient downstream, bringing about morphological 

changes in the channel and landform type.  He concluded this directly influenced riparian 

structure.  Bredenkamp et al. (1991) also found that there was a gradient of different species 

assemblages along the length of the Sabie River in South Africa, which could be partially 

explained by geology.  Van Coller (1992), working on the same section of the Sabie River 

suggested that factors other than geology influenced species distribution, since geological 

changes were abrupt, whereas changes in riparian communities tend to occur along a 

continuum. 
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At a local scale, elevation above the river has often been used to explain patterns in riparian 

vegetation communities, although few studies have been able to quantify this relationship 

(Bell 1973; Bowman and McDonough 1991; Hupp 1983; Nixon et al. 1977) until recently by 

Reinecke and Brown (2013).  Small changes in horizontal distance and elevation can have 

significant influence on the flooding frequency (Bell 1973; Lindsey et al. 1961), changes in 

water table levels (Bowman and McDonough 1991), fluvial landform (Hupp and Osterkamp 

1985) and soil and substratum type (Bowman and McDonough 1991).  It is clear that there 

are some correlations between vertical and horizontal gradients of species distribution within 

the riparian zone and are likely to be due to a combination of physical influences and 

channel characteristics.  Land use may also be a contributing factor to shaping riparian 

zones (Meek et al. 2010). 

Rosgen (1994) contends that the shape of the active river channel (inundated during low 

flows) is mainly driven by floods with a return interval of 1.5 to 2.5 years.  Different substrate 

compositions have different correlations with flooding frequency (Calow and Petts 1992).  

The marginal riparian vegetation zone is usually considered to be within the 1.5 to 2 year 

flooding area which means this area gets inundated regularly and has a lower drought 

tolerance than the other riparian vegetation zones higher up the bank as described by 

Boucher (2002) for South African rivers. 

Fynbos Riparian Vegetation was described to comprise of four identifiable lateral zones 

(Reinecke et al. 2007).  These zones were said to differ in species composition (Reinecke et 

al. 2007) and although there were no consistent indicators for any one lateral zone, species 

varied in abundance between lateral zones up the river bank.  The marginal zone was 

characterised by Isolepis prolifera and Prionium serratum, the lower dynamic and lower 

zones by Calopsis paniculata, Elegia capensis, Todea babara, Morella serrata and 

Metrosideros angustifolia and the upper by Searsia angustifolia, Diospyros glabra, Pteridium 

aquilinum and Brabejum stellatifolium (Reinecke et al. 2007). 

In Fynbos riparian vegetation, Reinecke et al. (2007) was able to describe general 

community patterns across lateral zones, and Boucher (2002) investigated the relationship 

between riparian community and distance and elevation from the water’s edge but the 

relationship between riparian vegetation and longitudinal zone (Rowntree et al. 2000) has 

not yet been tested.  This gap is investigated in this thesis. 
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 Temporal Change 2.3

Riverine ecosystems also change over time, even in undisturbed environments.  These 

temporal changes are encapsulated in the Flux of Nature paradigm4 (Pickett et al. 2007), 

which states that ecosystems are continually changing in response to external influences.  

These external influences can be any combination of drought, fire, floods, erosion, climate 

change and other natural or anthropogenic disturbances.  This dynamic character is 

expected to be marked in regions with extreme seasonal fluctuations, such as the Western 

Cape, and in the Fynbos biome where fire is a major and frequent natural disturbance 

(Cowling and Holmes1992). 

The Western Cape has a Mediterranean climate that is characterized by hot, dry summer 

months and cold, wet winter months (Campbell 1985).  The hot and dry summers mean that 

disturbances such as fire and drought are common, and it is expected that the riparian 

vegetation communities have a high level of resilience and resistance (Paskoff 1973).  The 

wet winter conditions coincide with variable discharge patterns and flash floods that can lead 

to erosion, uprooting of riparian vegetation and deposition of large amounts of sediment and 

other flood debris downstream (Grubb and Hopkins 1986).  Fire and flooding are probably 

the biggest drivers of natural disturbance in Fynbos Riparian Vegetation (Hupp and 

Osterkamp 1996; Rogers and van der Zel 1989; Stromberg et al. 1996). 

Examining the history of climatic and other natural changes occurring within a basin is useful 

when trying to establish the ecological spatial and temporal scale at which disturbances 

occur (Tabacchi et al. 1998).  Fire and flooding is of special interest due to the decadal basis 

on which they occur (Wissmar and Swanson 1990).  All these disturbances alter the physical 

characteristics of the surface landform, thereby altering riparian and channel characteristics.  

Reinecke and Brown (2013) found that lateral zonation is linked to the hydrological regime at 

a wetbank and drybank scale.  Disturbance driven change is therefore predicted to occur at 

this scale within a site. 

Flooding alters the physical habitat and the biological composition for instance when 

macroinvertebrates are flushed downstream and vegetation gets uprooted (Grubb and 

Hopkings 1986).  Flood debris may get caught in bank vegetation, causing sunlight and 

space limitations for established plant species to continue growing (Naiman et al. 2005).  

Flooding also changes the substrate characteristics, due to larger amounts and particle sizes 

of sediment being deposited downstream.  Intra-annual floods have a smaller impact on 

                                                
4
 The Flux of Nature paradigm views the environment as a dynamic system rather than a static one.  

Whether disturbances, development or any other form of altering impacts occur or not, the habitat 
would not stay static it is ever changing as organisms act and react to one another and their 
immediate environment (Pickett et al. 2007). 
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bank structure and the biological communities than inter-annual flooding.  This is because of 

the flood magnitude being considerably larger with inter-annual floods (larger floods 

occurring more than one year apart) than that of intra-annual floods (floods occurring every 

year/seasonal flooding). Large trees usually get uprooted in large scale floods, and even 

relatively small annual floods can uproot young individuals or cover them in debris, enabling 

further plant community development and recruitment (Reinecke and Brown 2013).  

Vegetation uprooting opens new niches for recruitment to occur, suggesting that the areas 

exposed to regular inundation should show greater changes than areas not regularly 

inundated over a relatively short temporal scale. 

One of the biggest disturbance concerns in South Africa is the invasion of woody alien 

species in riparian zones.  These woody alien species are known to have higher 

transpiration rates than the indigenous species (Dye et al. 2001) and therefore use more 

water (Dye and Poulter 1995).  Invasive species have also been known to alter riparian 

canopy structure and the abundance and variety of species (Holmes et al. 2005).  This led to 

the Working for Water (WfW) programme which was initiated in 1998 and is aimed at 

removing invasive species to preserve water resources.  This programme has also 

secondarily created jobs and training opportunities for economically marginalised people 

(Van Wilgen et al. 1998). 

Restoring previously invaded communities is a complicated and long process due to 

persistent seed banks left by different invasive species (Holmes et al. 2005).  The restoration 

process therefore requires regular follow up clearings but has been shown to have made 

significant progress in the clearing and restoration of freshwater ecosystems nationally 

(Blanchard and Holmes 2008; Holmes et al. 2005).  Woody invasive species are able to 

utilize the flooding events and anthropogenic disturbances to aid their recruitment 

(Galatowitsch and Richardson 2005) and ability to out-compete the indigenous species 

(Meek et al. 2010; Tabacchi et al. 1998).  Sieben and Reinecke (2008) give a wetbank / 

drybank description to aid restoration by means of re-vegetation instead of natural recovery.  

Natural recovery is timely and has proven less successful as well as more expensive in the 

past (Blanchard and Holmes 2008; Galatowitsch and Richardson 2005; Pretorius et al. 

2008). 

The Western Cape has a Mediterranean climate and the Fynbos biome has adapted to the 

hot dry summer and wet cold winter seasons.  The warm dry summer month coincide with 

fire disturbance that is essential for the successful reproduction and distribution of fynbos 

vegetation.  Fire affects the community structure of Mediterranean vegetation (Arianoutsou 

1998) and post-fire succession has been shown to cause an increase in species richness in 
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some cases at the two to three year temporal scale (Rutherford et al. 2011) due to the flush 

of germination triggered by fire disturbance (Purdie 1977). 

The second part of this study was aimed at assessing the temporal changes occurring at 

undisturbed sites and sites subjected to fire and clearing of alien woody species.  More focus 

has been directed towards studying the changes following burning and clearing and 

comparing these with undisturbed sites.  The changes occurring in these “reference sites” 

was assessed and then compared with disturbed. 

Authors such as Reinecke et al. (2007) and Reinecke and Brown (2013) addressed lateral 

zonation in riparian vegetation communities, but the issue of how vegetation differs from 

mountain stream to the upper foothill longitudinal zones has not been addressed.  Also a 

temporal comparison between sites affected by different disturbances and sites not 

subjected to major disturbances has not yet been compared.  The small temporal scale at 

which this comparison was made helped to assess whether sites change drastically over a 

relatively short period of time.  The information on the spatial and temporal dimension of 

change is needed because the concept of reference sites or descriptions may be defined 

better if such information is available. 
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3 Spatial differences of undisturbed Fynbos Riparian Vegetation 

communities longitudinally down Western Cape Rivers 

 

 Introduction 3.1

A river has three main dimensions across which exchange of nutrients and ecological 

interactions occur: 1) longitudinal; 2) lateral, and; 3) vertical (Ward and Wiens 2001).  The 

distribution of vegetation growing alongside rivers is closely linked to these three 

dimensions.  Longitudinal changes in nutrient input and sediment size affects longitudinal 

distribution of species with communities changing markedly from source to sea.  Differential 

lateral inundation (Boucher 2002), scouring and seed dispersal affects zonation across the 

floodplain/river bank, as does the connection between roots (vertical dimension) and 

subsurface water (Richardson and Kruger 1990).  Indeed, in recognition of the important 

influence of longitudinal factors on the distribution and life-histories of aquatic biota, spatial, 

often hierarchical classification of stream and rivers has become an important aspect of 

ecological studies on rivers (Downes et al. 2000; Frissell et al. 1986; Townsend and Hildrew 

1994; Ward and Palmer 1994).  The longitudinal dimension has also received considerable 

attention through frameworks such as the River Continuum Concept5 (Vannote et al. 1980). 

Of all riverine biota, riparian plant communities show the most prominent lateral zonation 

patterns.  These have been linked to the flow regimes of river system (Boucher and Tlale 

1999, Boucher 2002) and, albeit to a lesser extent, to vertical exchange of water and 

nutrients (Correll 1999, Jacobs et al. 2007).  This thesis used the most recent lateral zone 

description of Reinecke and Brown (2013), which described four lateral riparian zones: 

marginal, lower dynamic, lower and upper, based on differential species responses to a suite 

of abiotic factors that influence water availability and a species’ dependence upon this.  

Three of these, marginal, tree-shrub and upper, correspond to the three zones described by 

Kleynhans et al. (2007) and are listed in Table 3.1. 

The marginal plants are considered to be reliant upon regular inundation (Boucher 2002) 

and, as such, are expected to be less drought-tolerant and more flood-resistant than those in 

zones further from the water’s edge (Reinecke and Brown 2013, in press).  The lower 

dynamic zone is situated between the marginal and lower zones.  It is therefore also 

considered to form a transition between these two zone types (marginal and lower zones) 

thus containing a mixture of species found in those zones (Reinecke et al. 2007).  Plants in 

                                                
5
 The River Continuum Concept (RCC) states that biological communities adapt to the physical 

template of the riverine ecosystem defined by changes in gradient, river width, sediment size and food 
resources from source to mouth. 
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the lower zone were said to be reliant upon periodic inundation (Reinecke and Brown 2013) 

and usually comprise both obligate and facultative riparian woody trees and shrubs.  Plant 

species in the lower zone are less drought-tolerant than upper zone species (Reinecke and 

Brown 2013, Reinecke et al. 2007).  The upper bank species are relatively drought-tolerant 

but less resistant to flooding (Boucher 2002).  The upper bank comprises of a mixture of 

lower bank and non-riparian species. 

 

Table 3.1  A comparison of lateral zonation descriptions for South African riparian 

vegetation from different sources. 

Bank position based on 
flow regime/inundation 

Boucher (2002) 
Reinecke et 
al. (2007) 

Kleynhans et 
al. (2007) 

Reinecke and 
Brown 2013 

Aquatic 

Permanent 
Not 
addressed 

Not addressed Not addressed 
Rooted aquatic 
macrophytes 

Wet bank 

Fringing sedge 
Wet edge Marginal Marginal 

Shrub willow 

Lower dynamic 
Channel 
fringe 

Not addressed Lower dynamic 

Dry bank Tree shrub Tree shrub Lower Lower 

Back dynamic 
Outer 
transitional 

Upper Upper 

Terrestrial 

 

Although species are often not confined to a single zone, they do tend to occur more 

frequently in some zones than others.  To that end, Reinecke et al. (2007) described the 

distribution of indicator species for lateral zones of Fynbos rivers: Isolepis prolifera and P. 

serratum for the Marginal, C. paniculata, E. capensis, T. babara, M. serrata and M. 

angustifolia for the lower dynamic and lower and S. angustifolia, D. glabra, P. aquilinum and 

B. stellatifolium for the upper bank.  The most comprehensive study on lateral zones in 

Fynbos Riparian Vegetation to date (Reinecke et al. 2007) described a reference condition 

for the four lateral zones that is applicable across three longitudinal zones; the mountain 

stream, transitional and upper foothills. 

This study focused on disaggregating the differences between lateral zones situated in three 

longitudinal zones.  The objective was to demonstrate changes in riparian vegetation 
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communities and the physical attributes linked to these differences between longitudinal 

zones. 

 

The objectives of the study were: 

1. To identify and describe how plant community composition changes between longitudinal 

zones. 

2. To evaluate and test the relationship between plant community composition and selected 

environmental variables. 

 

 Methods 3.2

3.2.1 Site selection 

Fourteen sites were selected on four rivers across three longitudinal zones in two different 

basins in the Western Cape Province, South Africa (Figure 3.1, Table 3.2).  Each 

longitudinal zone contained two sites which were paired units consisting of a hydraulic 

control, such as a riffle or rapid, and a pool (Figure 3.2).  These were: 

 Elands Rivers in the Breede River Basin: two sites along the mountain stream and 

transitional; 

 Molenaars River in the Breede River Basin: two sites in the upper foothills longitudinal 

zone; 

 Rondegat River in the Olifants River Basin: two sites along the transitional and upper 

foothills; 

 Heks River in the Olifants River Basin: two sites along the mountain stream and 

transitional. 
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Figure 3.1 Position of rivers selected in context to the African continent (A) and within 

the Western Cape Province, South Africa (B).  E indicates the Olifants River Catchment and H 

indicates the Breede River catchment. 

 

Table 3.2 Location of paired sites in the two catchments with their corresponding 

zone - longitudinal zone: M - mountain stream, T - transitional, FH - upper foothills, unit - 

morphological units.  Masl = Altitude in meters above sea level. 

Catchment River Site Coordinates masl Gradient Zone Unit 

Breede 

Elands 

Ela 1 S33°45.654', E19°07.705' 519 0.054 M Pool 

Ela 2 S33°45.636', E19°07.694' 505 0.054 M Rapid 

Ela 3 S33°44.410', E19°06.791' 450 0.017 T Riffle 

Ela 4 S33°44.361', E19°06.786' 446 0.017 T Pool 

Molenaars 
Mol 2 S33°43.387', E19°10.762' 375 0.012 FH Run 

Mol 5 S33°43.398', E19°10.524' 382 0.012 FH Pool 

Olifants 

Heks 

Hek 1 S32°26.123', E19°00.530' 245 0.023 T Pool 

Hek 2 S32°26.116', E19°00.518' 244 0.023 T Riffle 

Hek 3 S32°26.187', E18°58.883' 175 0.018 FH Pool 

Hek 4 S32°26.209', E18°58.872' 167 0.018 FH Riffle 

Rondegat 

Ron 1 S32°23.764', E19°05.384' 624 0.085 M Riffle 

Ron 2 S32°23.762', E19°05.368' 624 0.085 M Pool 

Ron 3 S32°22.599', E19°04.015' 501 0.029 T Riffle 

Ron 4 S32°22.569', E19°04.002' 497 0.029 T Pool 

 

 
A B 
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Figure 3.2 Distribution of sites across the three longitudinal zones; mountain stream, 

transitional and upper foothills.  Paired sites (one hydraulic control and one riffle) were used in 

each longitudinal zone and the same longitudinal zone was used on at least two different 

rivers. 

 

3.2.2 Data Collection 

All data used in this chapter were collected during summer 2011/2012, these includes data 

on riparian vegetation cover, sediment calibre and cross-sectional surveys (see 1.7).  Sites 

were classified into three longitudinal zones: mountain stream, transitional and upper 

foothills using the geomorphological classification of Rowntree et al. (2000).  

Riparian vegetation cover was estimated per sample plot.  This estimation was made as a 

percentage cover present within the three dimensional space in and above the 1 x 5 m 

sample plot.  Overhanging individuals from neighbouring sample plots were excluded.  The 

estimates also separated trees into three growth classes based on tree height: seedling = 

0.01 – 0.3 m, sapling = 0.31 – 2 m and trees > 2 m in height.  All ground cover and tree 

cover data were recorded and unknown species were collected and submitted to the 

Compton Herbarium at the South African National Biodiversity Institute (Kirstenbosch) for 

identification. 

Elands River

Transitional zone

Mountain stream zone

Rondegat RiverHeks River

Molenaars River

Ela 2

Ela 1

Foothills zone

Ron 4

Ron 3

Ron 2

Ron 1

Hek 4

Hek 3

Hek 2

Hek 1
Ela 4

Ela 3

Mol 5

Mol 2
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Sediment calibre was estimated as a percentage of surface substrate present in a sample 

plot (see 1.7).  The soil/sediment size was recorded using the Wentworth scale (Gordon et 

al. 1992). 

 

3.2.3 Data Analyses 

The vegetation data were analysed using PRIMER (V6, Clarke and Gorley 2006) a 

multivariate statistical programme.  An overall transformation of fourth root was applied to 

the data before CLUSTER analyses and non-metric Multi-Dimensional Scaling (MDS) 

ordinations were produced.  The fourth root transformation function boosts the values of 

plants with smaller cover abundances recorded due to their small growth form.  A Bray-

Curtis (PRIMER V6, Clarke and Gorley 2006) similarity was applied before data was 

analysed further.  Multi-dimensional scaling and CLUSTER analyses were used to determine 

similarity coefficients between sites (PRIMER V6, Clarke and Gorley 2006).  Global one-way 

ANOSIM analyses (PRIMER V6, Clarke and Gorley 2006) were then applied to test the 

similarity/dissimilarity between sites based on assigned factors of basin, river and 

longitudinal zones.  These results were used to indicate where differences worth 

investigating were present.  As was indicated by the Global R values (ANOSIM results), 

comparative analyses for this chapter were then further conducted at the river scale. 

A 40% similarity grouping value was used to distinguish differences between sample plots 

(Reinecke et al. 2007).  Plots were allocated to a lateral zone on the basis of the outcome of 

the CLUSTER and MDS analyses (Clarke and Gorley 2006), and borderline sample plots 

were assigned to groups using plant life histories (Goldblatt and Manning 2000).  Based on 

Goldblatt and Manning (2000) species were assigned one of three possible categories: 

obligate6, incidental7 and facultative8.  These categories aided CLUSTER or MDS results for 

allocating a group to a specific lateral zone.  Once sample plots had been allocated to a 

lateral zone, a one-way Bray-Curtis similarity (SIMPER) analysis (Clarke and Gorley 2006) 

was used to identify the species responsible for similarity and dissimilarity in a lateral zone of 

the specific longitudinal zones. 

                                                
6
 Species commonly found in seeps, rivers and watercourses, these are wet species associated with 

riparian communities 
7
 Species found on rocky outcrops, rocks, mountain slopes and other dry areas of the riparian zone, 

these are dry terrestrial species occurring on the outer edge of the riparian zone where the riparian 
vegetation transitions to a terrestrial community 
8
 Occurs in forest, woodland and bushy areas and are associated with water courses, these can be 

wet or dry species and are known to occur across the riparian zone however usually in higher 
abundances between the obligate and incidental species 
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Principle Component Analysis ordinations act on the same principles for environmental data 

as an MDS would for biological data.  Distance, as plotted on a chart, is used as an indicator 

of the relationship between different environmental variables recorded for a sample plot.  By 

using environmental data only, a PCA ordination was produced for each longitudinal zone on 

a river producing comparable graphs between longitudinal zones.  By using the lateral 

vegetation zones as produced by MDS and CLUSTER diagrams, a colour was assigned to 

different zones making the relationship between environmental and biological visible if 

present.  The distribution of sample plots was based on environmental attributes solely, 

while the colour is an indication of biological results. 

BEST Bio-Env analysis (Clark and Gorley 2006) was used to test which combination of 

environmental variables best explained the vegetation assemblage/pattern.  The 

environmental variables included horizontal distance of sample plot from water’s edge, 

elevation above water level and substrate calibre (bedrock, boulder, cobble, gravel and 

sand).  BIOENV analysis in PRIMER (V6, Clarke and Gorley 2006) produced a combination 

of environmental variables which shows the strongest relationship with the biological data 

(discriminant species). 

 

 Results 3.3

The species recorded at each site are given in Table 6.1.  These data were used to generate 

a CLUSTER diagram that portrays the similarity/dissimilarity of species composition between 

sites (Figure 3.3 and Figure 3.4).  At the first level of similarity, the sites grouped into the two 

river basins in which they occurred indicating catchment signatures being very prominently 

indicated.  The Rondegat River grouped with the Heks, and the Elands River grouped with 

the Molenaars.  The second level of similarity occurred at the river scale, where multiple 

sites on each river grouped together.  The Molenaars River grouped separately from the 

Elands River, even though they are part of the same main stem, with only 30% similarity 

between the two rivers. 
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Figure 3.3 CLUSTER diagram of Bray-Curtis similarity between sites.  Hek - Heks, Ron 

- Rondegat Mol - Molenaars and Ela - Elands Rivers with sites numbered 1 to 5. 

 

 

Figure 3.4 Non-metric MDS ordination of Bray-Curtis similarity between sites.  Hek - 

Heks, Ron - Rondegat Mol - Molenaars and Ela - Elands Rivers with sites numbered 1 to 5. 
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The third level of separation was between longitudinal zones.  Sites grouped according 

longitudinal zone rather than morphological unit.  For instance, Ela 1 (pool) and Ela 2 (rapid) 

grouped together in the mountain stream while Ela 3 (riffle) and Ela 4 (pool) grouped 

together in the transitional zone.  A Global one-way ANOSIM of species abundances 

conducted at three different scales9, the basin, river and longitudinal zone scales showed R 

values for the basin at 0.84, the river at 0.92 and longitudinal zone at 0.69 (p<0.01). 

 

3.3.1 Comparisons between riparian vegetation of longitudinal zones 

Outputs from the MDS and CLUSTER analyses are presented for the Molenaars in Figure 

3.5, Elands River in Figure 3.6, Heks River in Figure 3.7 and the Rondegat River in Figure 

3.8. 

 

 

  

Figure 3.5 Cluster analysis (left) and Non-metric MDS ordinations (right) of Bray-Curtis 

similarity between species abundances of Mol 2 and Mol 5.  The following lateral zones are 

indicated as follows: M - Marginal, LD - lower dynamic, LB - lower and UB – upper.  Sample 

plot codes are indicated by a numeric (meters up bank) and alphabetic letter (a- upstream and 

d – downstream transect). 

                                                
9
 The scales (factors) used for the ANOSIM analyses were based on the geomorphological 

classification system by Rowntree et al. (2000). 
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Figure 3.6 Cluster analysis (left) and Non-metric MDS ordinations (right) of Bray-Curtis 

similarity between species abundances of Ela 1 - 4.  The following lateral zones are indicated 

as follows: M - Marginal, LD - lower dynamic, LB - lower and UB – upper.  Sample plot codes 

are indicated by a numeric (meters up bank) and alphabetic letter (a- upstream and d – 

downstream transect). 
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Figure 3.7 Cluster analysis (left) and Non-metric MDS ordinations (right) of Bray-Curtis 

similarity between species abundances of Hek 1 - 4.  The following lateral zones are indicated 

as follows: M - Marginal, LD - lower dynamic, LB - lower and UB – upper.  Sample plot codes 

are indicated by a numeric (meters up bank) and alphabetic letter (a- upstream and d – 

downstream transect). 
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Figure 3.8 Cluster analysis (left) and Non-metric MDS ordinations (right) of Bray-Curtis 

similarity between species abundances of Ron 1 - 4.  The following lateral zones are indicated 

as follows: M - Marginal, LD - lower dynamic, LB - lower and UB – upper.  Sample plot codes 

are indicated by a numeric (meters up bank) and alphabetic letter (a- upstream and d – 

downstream transect). 
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3.3.1.1 Typical and differentiating species for lateral zones 

Zones (marginal, lower dynamic, lower and upper) were assigned to sample plots in the 

mountain stream (Ela 1 and Ela 2) and transitional sites (Ela 3 and Ela 4).  SIMPER was 

used to identify typical (Table 3.3) and differentiating (Table 3.4) species in and between 

sample plots for each longitudinal zone.  Species with the highest values were selected and 

low valued species were discarded as a low value meant that the variation between 

longitudinal zones and rivers was too high.  The species with the highest values are 

summarised in Table 3.3 and Table 3.4. 

The most important species for the grouping of sample plots (based on SIMPER results) in 

the marginal zone of mountain stream and transitional sites was I. prolifera, while in the 

upper foothill sites it was either M. serrata saplings or a combination of C. paniculata and D. 

capensis.  The lower dynamic zone was dominated by different species across rivers and 

longitudinal zones.  Little consistency was present in species dominance with the exception 

of Brabejum neriifolia.  Where indicated as dominant species, M. angustifolia, M. serrata and 

B. stellatifolium were usually adult trees and not juveniles or saplings. 

The lower bank on the Rondegat River had the same species defining the lateral zone in 

both longitudinal zones: P. aqualinum.  The other typical species occurring in the lower bank 

were M. angustifolia, E. caffra and E. capensis.  The upper bank contained P. distichophylla, 

A. capitata, S. angustifolia and D. glabra.  With the exception of P. aqualinum in the lower 

bank of the Rondegat River, each longitudinal zone presented a different species as typical 

and thus responsible for the grouping of a different lateral zone.  The Molenaars River had 

no differentiating species because there were no other longitudinal sites selected to compare 

the foothills with.  Species responsible for the dissimilarities between lateral zones were 

comparable with that of the species on the Elands River as presented in Table 3.3. 

On the Elands River I. prolifera was responsible for the difference between the marginal 

zones of the mountain stream and transitional zone.  B. stellatifolium trees and B. neriifolia 

saplings was responsible for the mountain stream being different from the transitional zone 

in the lower dynamic zone.  The lower dynamic in the transitional sites on the Elands and 

Heks Rivers both showed C. paniculata as discriminant species.  The differences in 

discriminating species continued up the bank and across the rivers with very little 

consistency in indicating and differentiating species present. 
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Table 3.3 Typical species for lateral zones on the Elands, Molenaars, Heks and 

Rondegat Rivers per longitudinal zone based on SIMPER analyses.  Sim/SD = similarity 

coefficient divided by the standard deviation within groups.   

Lateral 
zone 

Mountain stream Transitional Foothills 

Elands River 

Sim/SD Species Sim/SD Species Sim/SD Species 

Marginal 1.18 
Isolepis 
prolifera 

- None 
No sites 
sampled 

No sites sampled 

Lower 
dynamic 

0.62 
Brabejum 
stellatifolium 

tree 
0.62 Calopsis paniculata 

No sites 
sampled 

No sites sampled 

Lower 0.77 Erica caffra 1.06 Elegia capensis 
No sites 
sampled 

No sites sampled 

Upper 0.76 
Pentameris 
distichophylla 

1.12 Aristea capitata 
No sites 
sampled 

No sites sampled 

 
Molenaars River 

Sim/SD Species Sim/SD Species Sim/SD Species 

Marginal 
No sites 
sampled 

No sites 
sampled 

No sites 
sampled 

No sites sampled 0.83 
Morella serrata 

sapling 

Lower 
dynamic 

No sites 
sampled 

No sites 
sampled 

No sites 
sampled 

No sites sampled 0.96 
Brachylaena 
neriifolia sapling 

Lower 
No sites 
sampled 

No sites 
sampled 

No sites 
sampled 

No sites sampled 0.5 
Pteridium 
aqualinum 

Upper 
No sites 
sampled 

No sites 
sampled 

No sites 
sampled 

No sites sampled 1.67 
Searsia 
angustifolia 

 
Heks River 

Sim/SD Species Sim/SD Species Sim/SD Species 

Marginal 
No sites 
sampled 

No sites 
sampled 

2.57 Isolepis prolifera 
6.8, 
6.55 

Calopsis 
paniculata, 
Drossera 
capensis 

Lower 
dynamic 

No sites 
sampled 

No sites 
sampled 

1.94 

Metrosideros 
angustifolia tree, 
Morella serrata tree 

2.62, 
2.98 

Ehrharta ramosa, 
Metrosideros 
angustifolia tree 

Lower 
No sites 
sampled 

No sites 
sampled 

1.55 
Metrosideros 
angustifolia tree 

1.56 
Metrosideros 
angustifolia tree 

Upper 
No sites 
sampled 

No sites 
sampled 

0.43 Diospyros glabra 2.75 Diospyros glabra 
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Rondegat River 

Sim/SD Species Sim/SD Species Sim/SD Species 

Marginal 0.74 

Metrosideros 
angustifolia 
tree 

1.97 Isolepis prolifera 
No sites 
sampled 

No sites sampled 

Lower 
dynamic 

2.43 
Elegia 
capensis 

0 None 
No sites 
sampled 

No sites sampled 

Lower 4.93 
Pteridium 
aqualinum 

2.06 
Pteridium 
aqualinum 

No sites 
sampled 

No sites sampled 

Upper 2.22 
Pelargonium 
scabrum 

0 None 
No sites 
sampled 

No sites sampled 
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Table 3.4 Differentiating species within lateral zones and between longitudinal zones 

on the Elands, Heks and Rondegat Rivers.  Diss/SD = dissimilarity coefficient over standard 

deviation. 

Elands River 

Lateral 
zone 

Diss/SD 
Mountain stream Transitional 

Foothills 

Marginal 1.27 Isolepis prolifera None No sites sampled 

Lower 
dynamic 

1 Brabejum stellatifolium 
tree, Brachylaena 
neriifolia sapling 

Calopsis paniculata 
No sites sampled 

Lower  
1.21 Erica caffra, Metrosideros 

angustifolia tree, 
Diospyros glabra, 
Elegia capensis 

No sites sampled 

Upper 
1.21 Pentameris distichophylla, 

Elegia capensis 
Aristea capitata  

No sites sampled 

Heks River 

Lateral 
zone 

Diss/SD 
Mountain stream Transitional 

Foothills 

Marginal 
5.45 No sites sampled 

None 

Drossera capensis, 
Calopsis paniculata, 

Morella serrata sapling 

Lower 
dynamic 

2.74 No sites sampled Calopsis paniculata, 
Panicum schinzii 

Ehrharta ramosa,  

Lower  
1.17 No sites sampled 

Morella serrata T 
Metrosideros angustifolia 
tree, Morella serrata 

sapling 

Upper 
1.24 No sites sampled 

Rhus lucida forma 
eliptica 

Morella serrata sapling, 
Diospyros glabra, 
Ehrharta ramosa 

Rondegat River 

Lateral 
zone 

Diss/SD 
Mountain stream Transitional 

Foothills 

Marginal 
1.86 Metrosideros angustifolia 

tree, Elegia capensis 
Prionium serratum, 
Isolepis prolifera 

No sites sampled 

Lower 
dynamic 

 
None None 

No sites sampled 

Lower  1.94 Phylica oleaefolia S Stoebe plumosa No sites sampled 

Upper  None None No sites sampled 
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When typical species occurrence as described by Reinecke et al (2007) was compared to 

data collected for different longitudinal zones, a graphic comparison between species 

occurrence in lateral zones and across different longitudinal zones could be made (Figure 

3.10; Figure 3.11; Error! Reference source not found.). 

Most of the groundcover species followed the same trend produced by Reinecke et al. 

(2007).  Isolepis prolifera and Prionium serratum in the marginal and Calopsis paniculata 

and Elegia capensis in the lower dynamic and lower zones was consistent with the reference 

description but had slight differences in abundances present longitudinally.  The same was 

true for P. macrourum, E. caffra and S. angustifolia following the Reinecke et al. 2007 

description for later distribution with variation in abundances longitudinally. There were 

however species that varied significantly in abundance between longitudinal and lateral 

zones.  Diospyros glabra, for instance, showed higher abundances in the marginal of the 

mountain stream sites than in the upper lateral zone as described by the reference 

description.  Todea babara had high occurrence frequency in the mountain stream marginal 

and lower zone, apart from that no clear distribution pattern was evident. Pteridium 

aqualinum was most frequently found in the lower zone of the transitional sites however the 

increase in abundance from marginal to upper was true for all longitudinal zones sampled. 

Results from a comparison of typical tree species with the reference description made by 

Reinecke et al. (2007) are shown in Figure 3.12, Figure 3.13, Figure 3.14 and Figure 3.15.  

Tree growth class distribution varied greatly.  The most variation was seen in seedling 

establishment with an overall trend towards the marginal zone having the most seedling 

activity.  Where higher occurrence for M. angustifolia and M. serrata was found for the lower 

dynamic zone by Reinecke et al. (2007) a higher frequency of occurrence was found to be 

present in the marginal zone by data collected during this study.  Brabejum stellatifolium was 

an exception with the highest frequency of occurrence10 being in the lower dynamic instead 

of the lower zone as predicted by Reinecke et al. (2007). 

An overall increase in occurrence of B. stellatifolium seedlings was seen from mountain 

stream to upper foothills.  Saplings and adult trees showed similar patterns in distribution but 

great variation in frequency of occurrence between longitudinal zones.  The mountain stream 

zone tended to have a very different distribution of adult trees from that of the foothills.  For 

instance B. stellatifolium which is usually found in the lower and upper lateral zones in the 

foothills, showed high abundance in the marginal and lower dynamic lateral zones of the 

mountain stream sites.  Also in the case of M. angustifolia where there were hardly any trees 

                                                
10

 Frequency of occurrence is presented as relative cover abundance recorded. 
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recorded in the marginal during 2004/2005 sampling but during the present study high 

abundances of trees were recorded in the marginal lateral zone.   

 

 

Figure 3.9 Comparison between results for typical groundcover species taken from 

Reinecke et al. (2007) presented on the left, and results produced by the present study 

distributed across three longitudinal zones presented on the right.  M – mountain stream, T – 

transitional and F – upper foothills.  Results are based on relative species abundances as % 

frequency of occurrence in a sample plot situated in the particular lateral zone. M – marginal, 

LD – lower dynamic, L- lower and U – upper lateral zone. 
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Figure 3.10 Comparison between results for typical groundcover species taken from 

Reinecke et al. (2007) presented on the left, and results produced by the present study 

distributed across three longitudinal zones presented on the right.  M – mountain stream, T – 

transitional and F – upper foothills. Results are based on relative species abundances as % 

frequency of occurrence in a sample plot situated in the particular lateral zone. M – marginal, 

LD – lower dynamic, L- lower and U – upper lateral zone. 
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Figure 3.11 Comparison between results for typical groundcover species taken from 

Reinecke et al. (2007) presented on the left, and results produced by the present study 

distributed across three longitudinal zones presented on the right.  M – mountain stream, T – 

transitional and F – upper foothills.  Results are based on relative species abundances as % 

frequency of occurrence in a sample plot situated in the particular lateral zone. M – marginal, 

LD – lower dynamic, L- lower and U – upper lateral zone. 
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Figure 3.12 Comparison between results for typical tree species (separated into growth 

classes: seedling, sapling and adult) taken from Reinecke et al. (2007) presented on the left, 

and results produced by the present study distributed across three longitudinal zones 

presented on the right.  M – mountain stream, T – transitional and F – upper foothills.  Results 

are based on relative species abundances as % frequency of occurrence in a sample plot 

situated in the particular lateral zone. M – marginal, LD – lower dynamic, L- lower and U – 

upper lateral zone. 
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Figure 3.13 Comparison between results for typical tree species (separated into growth 

classes: seedling, sapling and adult) taken from Reinecke et al. (2007) presented on the left, 

and results produced by the present study distributed across three longitudinal zones 

presented on the right.  M – mountain stream, T – transitional and F – upper foothills.  Results 

are based on relative species abundances as % frequency of occurrence in a sample plot 

situated in the particular lateral zone. M – marginal, LD – lower dynamic, L- lower and U – 

upper lateral zone. 
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Figure 3.14 Comparison between results for typical tree species (separated into growth 

classes: seedling, sapling and adult) taken from Reinecke et al. (2007) presented on the left, 

and results produced by the present study distributed across three longitudinal zones 

presented on the right.  M – mountain stream, T – transitional and F – upper foothills.  Results 

are based on relative species abundances as % frequency of occurrence in a sample plot 

situated in the particular lateral zone. M – marginal, LD – lower dynamic, L- lower and U – 

upper lateral zone. 

 

  

  

  

0

10

20

30

40

50

60

WE CF TS OT

%
 F

re
q

u
e
n

c
y

Metrosideros angustifolia 
seedling

0

10

20

30

40

50

60

WE CF TS OT

%
 F

re
q

u
e
n

c
y

Metrosideros angustifolia 
seedling

M

T

F

0

10

20

30

40

50

60

WE CF TS OT

%
 F

re
q

u
e
n

c
y

Metrosideros angustifolia 
sapling

0

10

20

30

40

50

60

WE CF TS OT

%
 F

re
q

u
e
n

c
y

Metrosideros angustifolia 
sapling

M

T

F

0

10

20

30

40

50

60

WE CF TS OT

%
 F

re
q

u
e
n

c
y

Metrosideros angustifolia 
adult

0

10

20

30

40

50

60

WE CF TS OT

%
 F

re
q

u
e
n

c
y

Metrosideros angustifolia 
adult

M

T

F

    M             LD             L            U     M          LD         L         U 

    M         LD          L           U     M              LD            L              U 

    M          LD         L          U    M             LD            L              U 

Stellenbosch University  http://scholar.sun.ac.za



 

Figure 3.15 Comparison between results for typical tree species (separated into growth 

classes: seedling, sapling and adult) taken from Reinecke et al. (2007) presented on the left, 

and results produced by the present study distributed across three longitudinal zones 

presented on the right.  M – mountain stream, T – transitional and F – upper foothills.  Results 

are based on relative species abundances as % frequency of occurrence in a sample plot 

situated in the particular lateral zone. M – marginal, LD – lower dynamic, L- lower and U – 

upper lateral zone. 
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3.3.1.2 Links between environmental variables and species assemblage 

To assess whether the differences in species composition between longitudinal zones is 

related to physical environmental variables, PCA ordinations were used to determine the 

relationships between sediment calibre, bank shape and riparian zonation. 

Principle Component Analyses present the relationship between a sample plot and its 

different environmental variables in a diagram as ordination distance between samples and 

factors.  In order to establish whether pre-selected lateral zones can be linked to 

environmental variables, the sample plots were labelled according to the vegetation pattern 

(lateral zonation) but the analyses were conducted using only environmental data: sediment 

calibre, horizontal distance and elevation.  The PCA ordinations indicate a distinct 

relationship between environmental variables and riparian vegetation species distribution as 

seen by the distribution of different coloured lateral zone sample plots (Figure 3.16 and 

Figure 3.17). 

Elevation and horizontal distance seem to be the best related to upper bank sample plots 

while one or more substrate type together with saturated soil was predominantly associated 

with marginal sample plots.  The lower dynamic and the lower bank showed the most 

overlapping with varying combinations of environmental attributes associated with the 

sample plot distribution within the PCA ordination.  There are some exceptions to the pattern 

described above such as the transitional zone on the Rondegat River.  In this case the lower 

bank showed a strong relationship with elevation and horizontal distance.  This could be 

because the site is situated in a braided channel and the upper bank and lower dynamic 

were not present. 

The foothill sample plots on the Heks River were distributed across the PCA with little or no 

pattern.  The upper bank and marginal zone tended to show divergent relationships to 

environmental attributes.  The upper bank and the marginal zone sample plots are at 

opposite ends of the PCA in most diagrams, and while this may be due to the influence of 

horizontal distance and elevation growing stronger higher up the bank, the transitional sites 

on the Heks River for instance showed that the marginal had the strongest relationship with 

horizontal distance while still positioned at the opposite end of the PCA than the upper bank.   
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Figure 3.16 PCA ordination of ordination distance between sample sites of three 

longitudinal zones on the Elands and Molenaars Rivers.  Sample sites are indicated by 

different colours: Green = marginal, blue = lower dynamic, turquoise = lower and red = upper 

bank zones. 
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Figure 3.17 PCA ordination of ordination distance between sample sites of three 

longitudinal zones on the Heks and Rondegat Rivers.  Sample sites are indicated by different 

colours: Green = marginal, blue = lower dynamic, turquoise = lower and red = upper bank 

zones. 

 

Little species data overlapping occurred between the marginal and the upper bank while the 

lower dynamic and the lower zones did have some significant species overlapping present in 

the PCA ordinations.  To test the relationship between these two patterns (environmental 

attributes with vegetation) a BEST analysis in Primer was run.  The BEST test (Bio-Env) 

uses environmental attributes in different combinations in an attempt to best explain the 

biological pattern present.  By using the MDS and CLUSTER results of species level data 
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together with detailed environmental variable information for each sample plot the best 

combination of environmental variables were produced (Table 3.5). 

 

Table 3.5 BEST Bio-Env PRIMER (V6, Clarke and Gorley 2006) results representing 

the best combination of environmental variables responsible for the pattern presented in 

riparian vegetation. 

Longitudinal zone Sample Statistic (R
2
) Environmental variables 

Elands River 

Mountain stream 0.40 (p<0.01) Horizontal distance and elevation 

Transitional 0.53 (p<0.01) Boulder, cobble and elevation 

Molenaars River 

Foothills 0.24 (p<0.01) Horizontal distance 

Heks River 

Transitional 0.56 (p<0.01) Cobble and elevation 

Foothills 0.24 (p<0.01) Horizontal distance 

Rondegat River 

Mountain stream 0.50 (p<0.01) Horizontal distance and elevation 

Transitional 0.48 (p<0.01) Horizontal distance and elevation 

 

The BEST results show that the lateral riparian vegetation patterns in the mountain stream 

sites are linked to horizontal distance and elevation.  For foothill sites horizontal distance is 

the most important environmental variable linked to riparian vegetation communities 

although the strength of this relationship is not very strong as indicated by the low values in 

Table 3.5.  In the transitional sites one or more substrate type together with elevation was 

shown to be the best combination of variables linked to the riparian vegetation community 

pattern. 
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 DiscussionDoes riparian vegetation community composition change between 3.4

longitudinal zones? 

Riparian vegetation communities did not just differ between longitudinal zones, but also 

showed significant differences between basins and rivers.  This indicates the presence of 

river signatures (Roux et al. 2002) as previously described by King and Schael (2001) for 

macroinvertebrates.  Other studies have also shown river signatures for fish and riparian 

vegetation (Hawkins 2000, King and Schael 2001, Roux 2002, Wishart et al. 2002; Sieben et 

al. 2009).  This makes grouping riparian communities across basins and rivers inappropriate 

for comparative studies.  Even though river signatures have been found to be present in 

multiple studies across a variety of disciplines, to date no explanation exists for these 

patterns between basins and rivers.  What was interesting about the results obtained from 

this study was that the differences are not just present at a basin scale but also at a river 

scale.  The Elands and Molenaars river sites were situated only a couple of hundred meters 

downstream and upstream from one another and yet very prominent separations were seen 

in the CLUSTER and MDS diagrams.  This could indicate that a tributary, in this case the 

Krom River, influences the character of a river greatly and or that other ecological processes 

such as nutrients, sediment deposition and channel gradient greatly influences the overall 

character of the ecology over as little as a couple of hundred meters. 

The logical next question was whether riparian species, and more specifically, the riparian 

community structure differ between longitudinal zones when looking at lateral zones?  By 

comparing longitudinal zones on one uninterrupted stretch of river, it was found that although 

the species compliment did not differ substantially, the species responsible for the grouping 

of the lateral zone was different more often than not.  For instance Isolepis prolifera was 

expected to be responsible for the grouping of the marginal zone as described by Reinecke 

et al. (2007) and Sieben and Reinecke (2008), but instead was not responsible for the 

grouping of marginal zone sample plots in the foothill zone.  Instead the species responsible 

for marginal zone identity in the foothills were: Calopsis paniculata, Drosera capensis and 

Morella serrata saplings.  This could be due to the valley widening and banks flattening out 

more gradually towards the terrestrial environments.  A more gradual incline up the banks 

could mean that the overall marginal zone is wider and the species abundances recorded 

during sampling was larger for species with larger growth forms leading to a smaller ratio I. 

prolifera being recorded.  I. prolifera were present at foothill sites but it wasn’t responsible for 

the identity of the marginal zone.  In the mountain streams and transitional zones however, I. 

prolifera was mostly responsible for the marginal zone group formation but one exception to 

this was the mountain stream sites on the Rondegat River where it was M. angustifolia adult 

trees.  As for Prionium serratum, none of the longitudinal zones showed this species to be 
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responsible for the grouping of marginal zone sample plots, in many cases the species did 

not occur on the site.  I suspect this to be due to site specific substrate differences rather 

than distribution patterns.  Some species such as P. serratum was seen very abundantly on 

rivers with cobble/boulder substrate at the edge of the active channel.  Most river sites used 

in this study had smaller substrate calibre at the outer edges of the active channel. 

The lower dynamic had no similarities between different longitudinal zones.  Each sample 

set had its own unique species responsible for the grouping of the lower dynamic zone.  

Since the lower dynamic zone is a transitional between the marginal (wetbank) and the lower 

bank zone (drybank), it was expected that there would be high variability in species 

composition.  There were however similarities when the results were compared to what 

Reinecke et al. (2007) described as frequent species for the lower dynamic.  These included 

C. paniculata, E. capensis, E. caffra, M. serrata and M. angustifolia seedlings.  On the 

Elands River’s transitional zone C. paniculata, on the Rondegat River’s mountain stream 

zone E. capensis and on the Heks River’s transitional and foothill zones M. angustifolia 

(however adult trees and not seedlings) were the species responsible for the grouping.  

Brabejum stellatifolium is described as an upper bank zone species (Reinecke et al. 2007; 

Sieben and Reinecke 2008) but occurred with quite substantial frequency in the lower 

dynamic and even marginal zones of mountain stream sites.  This suggests that the lateral 

zone description of B. stellatifolium tree species is not that narrow.  The occurrence of 

substantial cover of B. stellatifolium lower down the bank may be explained by the spatial 

constraints associated with mountain streams (steep banks and narrow valleys).  And lower 

down the river where the banks widen and valley open up on the sides the positioning of B. 

stellatifolium may be more hydrology/drought influences than driven by competition for 

recruiting space.  Also, it is possible that recruitment activities over the course of the past 

seven years could have been influenced by disturbances and or the size of the individuals 

recorded by Reinecke et al. (2007) changing from sapling to tree without any significant 

flooding events uprooting trees in the marginal zone. 

In the lower bank, P. aqualinum was shown to be responsible for the lower bank identity in 

most cases, however, the Elands River had E. caffra in the mountain stream and E. 

capensis in the transitional zones.  On the Heks River in the transitional zone M. angustifolia 

adult trees was responsible for the identity of the lower bank lateral zone identity.  This is not 

entirely out of line with what Reinecke et al. (2007) and Sieben and Reinecke (2008) 

described for Western Cape Rivers.  They identified M. angustifolia, M. serrata and B. 

stellatifolium adult trees together with E. capensis and E. caffra as the typical species 

present in the lower bank zone.  Apart from Pteridium aqualinum, which was responsible for 
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zone identity in most cases, the other species were similar to what was expected to be found 

in the lower zone. 

The upper bank had no single species indicated as responsible for the groupings of sample 

plots in this particular lateral zone.  Each river and longitudinal zone had its own species 

responsible for the identity of the upper bank.  The upper bank zone is a transition between 

the lower bank zone and terrestrial species so this is not entirely unexpected.  The presence 

of different terrestrial species in different abundances could influence the upper bank 

significantly since the species compliment is a mixture between the terrestrial area and 

riparian zone.  Some species identified as responsible for the group identity were P. 

distichophylla, A. capitata, S. angustifolia, D. glabra and P. scabrum.  This lateral zone 

shows great variability in species composition, most variability was however seen in the 

foothills.  Again this could be due to more space being available for riparian and terrestrial 

species to establish. 

Reinecke and Brown (2013) produced new indicator species for each lateral zone based on 

SIMPER results combined with hydrological data.  For the marginal zone they suggest P. 

serratum, for the lower dynamic C. paniculata and P. schinzii, for the lower zone E. capensis 

and for upper zone P. aquilinum and D. glabra.  Their sampling was conducted across more 

rivers and basins when they made this description, thus this may be why species such as P. 

schinzii and P. serratum did not feature significantly in the results of this study.  However the 

aim of this research was not to identify indicators or even describe lateral zone identities, the 

aim was to assess whether a single riparian vegetation description based on species 

complement alone could be used across longitudinal zones.  The description for lateral 

zones such as Reinecke et al. (2007) was based on riparian communities on river reaches 

high up in the valleys (upland) and used as a reference description for this study.  This 

description was, however found to not always be consistent.  The results showed that 

riparian zones did not always have the same species/group of species responsible for later 

zone identity in different longitudinal zones. The species described to be typical was, more 

often than not, present in the lateral zone of described preference, just not responsible for 

the identity of the group. 

 

3.4.2 Is there a relationship between riparian species distribution and selected 

environmental variables? 

A strong pattern was found to be present when overlaying lateral zones onto PCA diagrams 

consisting purely of environmental data analysis.  Different longitudinal zones presented 
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different environmental variables most strongly linked to different lateral zones.  The 

mountain stream sites were linked to horizontal distance and elevation, foothill sites were 

linked to horizontal distance and the transitional sites were linked to elevation and 

cobble/boulder.  The strength of these relationships based on the statistical values were not 

always convincing such as the case with the foothills where the p value was 0.24 compared 

to the transitional and mountain stream sites producing p values higher than 0.5.  Due to 

narrow valleys in the mountain streams the space for recruitment and establishment is 

limited, which explains why horizontal distance and elevation in combination to one another 

would be important for an individual’s survival.  In the foothills, where valleys are much wider 

than in the mountain streams, elevation was found not as important for riparian species 

position as horizontal distance from the active channel.  This result makes sense since I 

would expect a species to be more vulnerable to drought in the foothills than in the mountain 

streams.  In the mountain streams I would expect species to be more vulnerable to uprooting 

during floods.  This explains the relationship of species positioning with different 

environmental variables in the mountain stream than that of the foothills. 

When these results are compared to what Boucher (2002) and Reinecke and Brown (2013) 

found, the results supports their findings of riparian vegetation being hydrology linked.  Both 

Boucher (2002) and Reinecke and Brown (2013) used hydrology to describe lateral zonation 

in riparian vegetation communities.  Boucher (2002) used the two-year flooding mark on the 

bank as an indicator for wetbank (marginal and lower dynamic) and drybank (lower and 

upper zones) zones.  Horizontal distance is an indication of inundation, and elevation is in 

direct relation to horizontal distance due to the shape of a river bank, both these 

environmental variables were linked to riparian vegetation in this study and therefore support 

the findings of other authors working in the fynbos biome (Reinecke et al. 2007; Reinecke 

and Brown 2013, Sieben and Reinecke 2008). 

Cobble and boulder seems to be the most important sediment type related to species 

distribution, this could be due to the fact that species recruit in finer sediment calibre, and 

especially higher up the bank cobble bars and boulders are less vegetated (as seen at Mol 

2) than the sand and gravel areas.  A possible reason why the foothills did not show a 

significant relationship with any sediment type is due to the fact that the foothills contained 

more sandy areas and space for recruitment was not as big a constraint as in the mountain 

streams where space is limited and valleys are narrow with steep banks containing larger 

substrate such as boulders and bedrock.  The mountain stream showed little relationship to 

sediment calibre, but in this case it might be due to the fact that species that survive on 

bedrock are adapted to do so and will most probably out-compete other species less 

adapted to surviving flash floods while rooted on bedrock.  This was expected since the 
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amount of finer sediment in the mountain stream is less, perhaps due to the carrying 

capacity being higher and the channel slope being steeper than in the upper foothills.  This 

clear relationship between bank shape, sediment calibre and species positioning suggests 

that more caution should be used when attempting to use a general riparian description for 

different basins and different longitudinal zones.  Space is clearly a contributing factor to 

where a species recruits, grows and establishes.  Care needs to be taken when attempting 

to study or manage these rivers as to not disregard the river signatures and longitudinal 

zonation in Western Cape Rivers. 

 

 Conclusion 3.5

These findings have implications for restoration and future research frameworks.  Space is 

an important aspect which should be considered very carefully when conceptually 

developing ecological research and management programmes or projects.  It is important to 

consider the differences in location relative to longitudinal zones of sample sites and 

reference conditions when attempting to access, study or restore riparian communities.  The 

implication this has on our current understanding and use of reference sites should be 

questioned and studied further to ensure restoration practices are developed to suit each 

river individually as shown by river signatures (King and Schael 2001; Roux et al. 2002) and 

for each longitudinal zone shown by results produced in this study.  A change in riparian 

plant community at this small spatial scale (longitudinal zone scale) questions the relevance 

of a reference condition in restoration practices.  Furthermore future research conducted 

across the riparian vegetation types could be affected by basin, river and longitudinal zone 

scale site selections.  Comparing lateral zone scale data across basins, rivers and even 

longitudinal zones could be ineffective with the variability in species abundance across 

lateral zones being very high. 
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4 Temporal changes of Fynbos Riparian Vegetation communities 

on selected upland rivers in the Western Cape, South Africa 

 

 Introduction 4.1

Spatial and temporal scales have significant influence on the community composition of 

fynbos riparian structure and form an integral part of ecological theory, environmental 

management and restoration practices (Callicott 2002).  The lateral riparian plant 

communities are shaped by many natural disturbances such as flood, fire and drought 

(Sousa 1984).  These disturbance processes are important for nutrient cycling, primary 

production processes, competition (Connell 1978) and diversity and succession (Callicott 

2002; Bailey et al. 1998) within ecosystems, especially in riparian ecosystems (Naiman et al. 

2005).  In rivers, physical interactions occur in three spatial dimensions: laterally across the 

floodplain, vertically between the surface and groundwater, and longitudinally down the 

river’s length (See Chapter 3).  These spatial interactions are embedded in a fourth 

dimension, which is time.  Spatial and temporal scales are central to the framework of 

ecological inquiry (Callicott 2002; Chesson 2000), and the dynamic character of natural 

ecosystems often makes it difficult to pinpoint the state to which an impacted environment 

should be restored (Pickett and Parker 1994; Hobbs and Harris 2001).   

A reference condition has been used in the past as template for restoration and to facilitate 

data interpretation while factoring in the regional differences of biotic factors (Dallas 2000).  

There are two types of reference conditions: a site-specific and a regional reference 

condition.  A site-specific reference condition is usually used in upstream and downstream 

instances whereas a regional reference condition is based on a bigger scale such as 

ecoregions (Kleynhans et al. 1998), bioregions (Brown et al. 1996) and even a smaller scale 

based on geomorphological zones and river types (Brown et al. 1996).  By using a site-

specific reference condition an established site with the least amount of impacts can be 

compared to monitoring sites.  When a less degraded site or suitable reference site and a 

regional template are unobtainable a historic description or ecological models are used 

(Kleynhans 1999). 

A reference condition enables a measurement of deviation from the natural conditions and 

also assists with restoration initiatives (Dallas 2000).  The aim of this study was to determine 

ecological changes over time and to ascertain what implications this has for use of reference 

conditions.  Also, how does the change in reference conditions compare to changes in sites 

subjected to fire and sites recovering after clearing of woody alien invasive species? 
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When looking at changes and the processes linked to riparian community composition and 

disturbance regimes, hydrology is a very important contributor.  Flow regimes have been 

linked to ecological and biological processes (Palmer et al. 1997) and more recently 

hydrology has been shown to influence the positioning of riparian species relative to the 

active channel (Reinecke and Brown 2013).  The wetbank (marginal and lower dynamic later 

zones) is more reliant on regular inundation than the drybank (lower and upper lateral zones) 

and Reinecke and Brown (2013) found that riparian vegetation could be linked to hydrology 

at this scale.  Impacts of hydrological disturbances on the riparian community composition 

are different for each of these two zones (wetbank and drybank).  Based on this the smallest 

scale of temporal changes examined in this part of the study was at the wetbank-drybank 

spatial scale. 

At a bigger scale climate, which also influences flow regimes also drives disturbances such 

as fire and drought.  The Western Cape has a Mediterranean climate and the Fynbos biome 

has adapted to the hot dry summer and wet cold winter seasons.  The warm dry summer 

months coincide with fire disturbance that is essential for the successful reproduction and 

distribution of fynbos vegetation.  Fire affects the community structure of Mediterranean 

vegetation (Arianoutsou 1998) and post-fire succession has been shown to cause an 

increase in species richness in some cases at the two to three years temporal scale 

(Rutherford et al. 2011) due to the flush of germination triggered by fire disturbance (Purdie 

1977).  Recruitment of seedlings is favoured by the open patches created by fire, and also 

flooding and other riverine ecological impacts (geomorphology, sediment deposition, erosion 

and drought) (Ward and Stanford 1995). 

The riparian community can be separated into lateral zones and these lateral zones usually 

consists of different life histories and growth forms.  Goldblatt and Manning (2000) defines 

ten different growth forms, these descriptions are summarised in Table 4.1.  Different growth 

forms have different life histories and may be responding differently to disturbances which 

would make an assessment of temporal change based on growth forms worth exploring.  In 

this part of the study, the temporal changes of growth form frequency and distribution were 

assessed and compared in order to test whether change occurs at a site scale or perhaps at 

a smaller disturbance scale such as that associated with intra-annual flooding occurrences. 
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Table 4.1 Growth form definitions (Goldblatt and Manning 2000). 

Growth form Definition 

Forb A broad leafed herbaceous plant. 

Geophyte A perennial plant that propagates by underground bulbs or tubers or corms. 

Rhizomatous perennial Plants in the division Pteridophyta. 

Rush Plants in the family Juncaceae. 

Sedge Plants in the family Cyperaceae. 

Grass Plants in the family Poaceae. 

Restio Plants in the family Restionaceae 

Small shrub A low woody perennial plant often with multiple stems (<1m). 

Shrub A medium sized woody perennial plant often with multiple stems (1-2m). 

Tree A tall woody plant with main trunk, branches and a distinct elevated crown 
(>10m). 

 

Apart from natural disturbances there are also unnatural disturbances acting on the riparian 

communities.  In the Western Cape, water is a scarce commodity, especially in the hot dry 

summer months when fire and drought are common.  In light of this water scarcity, one of 

the biggest disturbance concerns is the invasion of woody alien species in riparian zones.  

These woody alien species are known to have higher transpiration rates (Dye et al. 2001) 

and therefore use more water than indigenous riparian species (Dye and Poulter 1995).  

Invasive species have also been known to alter riparian canopy structure and the abundance 

and variety of species (Holmes et al. 2005).  The need to control invasive species led to the 

Working for Water (WfW) programme which was initiated in 1995 and is aimed at removing 

invasive species as to preserve water resources.  This programme has also secondarily 

created jobs and training opportunities for economically marginalised people (Van Wilgen et 

al. 1998).  Restoring previously invaded communities is a complicated and long process due 

to the persistent seed banks left by different invasive species (Holmes et al. 2005).  The 

restoration process therefore requires regular follow-up clearings but has been shown to 

have made significant progress in the clearing and restoration of freshwater ecosystems 

nationally (Blanchard and Holmes 2008; Holmes et al. 2005). 

Restoration practices are aimed at restoring a degraded environment back to its historical 

state (Bailey et al. 1998).  A more recently suggested approach is to restore an environment 

to a less disturbed state than it is currently in (Meek et al. 2013; Palmer et al. 1997).  The 

recovery of disturbed riparian communities has been a popular area of research but to a 

lesser extent the changes occurring over time in undisturbed sites, the latter is the primary 

aim while the former is a secondary aim of this current study.  I am expecting to see the 
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recovering sites on the Molenaars to be very similar to the reference site Mol 2 after such an 

extended period of recovery (more than 10 years). 

Undisturbed sites are referred to in this study as sites at which no obvious disturbance, other 

than natural processes, occurred between sampling periods.  Natural disturbances are 

constantly impacting these sites but could not be quantified; these include hydrology, 

geomorphology, climate, competition and others.  These disturbances are encapsulated in 

an extension of the Intermediate Disturbance Hypothesis11 (IDH) proposed by Svensson 

(2010) which proposed that smaller more frequent disturbances will have different (more 

unpredictable) effects on diversity than larger less frequent disturbances.  The flux of nature 

paradigm states that an ecosystem is dynamic and ever-changing in response to different 

spatio-temporal impacts (Pickett et al. 2007).  Even though riverine ecosystems are relatively 

hostile environments, riparian vegetation is adapted to these disturbances (Naiman and 

Decamps 1997) and little or no significant changes are expected to be present at sites not 

subjected to fire or clearing of alien woody invasives. 

This chapter aims to look at both changes occurring in undisturbed sites and sites subjected 

to disturbance to see whether disturbed sites or undisturbed sites show more change over a 

relatively short period of time. 

 

The objective for this part of the study was: 

To assess the change in riparian vegetation community composition over time. 

 

The key questions were: 

1. Do fynbos riparian communities show change in community composition, at a site scale, 

over a relatively short period of time (within decadal at a seven year scale)? 

2. Does riparian vegetation composition show significant changes at the wetbank and 

drybank scale (lateral zone scale) based on relative species abundances? 

  

                                                
11

 Local plant species diversity is influenced by disturbance and these ecological disturbances should 
neither be too frequent nor infrequent.  Intermediate levels of disturbance maximize diversity (Catford 
et al. 2012). 
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 Methods 4.2

Methods and site selection was similar to that of Reinecke et al. (2007).  This was done to 

make the present (indicated by an asterisk), and historic data sets comparable. 

4.2.1 Site selection 

In the summer 2004/2005 Reinecke et al. (2007) sampled 15 sites on four rivers in two 

basins in the Western Cape, South Africa.  Seven sites were situated on the 

Elands/Molenaars River combination (Breede Basin) and four sites on each of the Heks and 

Rondegat Rivers (Olifants Basin, Table 4.2). 

These sites were permanently marked during 2004/2005 (Reinecke et al. 2007) and re-

sampled for this study during summer 2011/2012 (*).  Two of the sites on the Molenaars 

River, Mol 1 and Mol 3, were cleared by Working for Water in 1994 (Mol 1) and 1997 (Mol 3).  

This means that when they were sampled during 2011 they have been recovering for 17 and 

14 years respectively.  The Rondegat River sites were affected by fire in 2009.  The sites did 

not burn in entirety but the outer edges of the riparian zone did sustain fire damage which 

was evident from the black tree branches observed during re-sampling. 

Situated between Mol 1 and Mol 3 is Mol 2 which was described as undisturbed by Boucher 

(1988).  Although Mol 2 had been subjected to the practices of Working for Water it has 

never been necessary to clear all the vegetation at the site.  Therefore even though 

Boucher’s (1988) classification was done more than twenty years ago, this site on the 

Molenaars River was found to be still in a relatively undisturbed condition12.   Sprouting 

invasive species are hacked and removed before significant levels of invasion by mature 

trees are reached. 

Table 4.2 is a summary of undisturbed and recovering sites re-sampled during 2011/2012 

with their coordinates, ecological state/history, elevation, geomorphological location in the 

river and the basin within which they occur. 

  

                                                
12

 An undisturbed condition is referred to as a site not subjected to habitat altering disturbances which 
include natural (fire, erosion, invasion by alien species) and anthropogenic (flow altering abstraction, 
damming and uprooting of natural vegetation for agricultural or mining activities).  The site has a 
naturally flowing channel with unmodified riparian vegetation occurring on the banks. 
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Table 4.2 Sites selected in two catchments, and across four rivers in the Western 

Cape. E = Elevation in meters above sea level (masl), Z = longitudinal zone. M = Mountain 

stream, T = Transitional and F = Foothills 

Basin River Site Coordinates Z E 
Date 
Sampled  

Condition 

Breede 

Elands 

Ela 
1 

S33°45.654',  
E019°07.705' 

M 553 2004 & 2011 Undisturbed 

Ela 
2 

S33°45.636',  
E019°07.694' 

M 553 2004 & 2011 Undisturbed 

Ela 
3 

S33°44.410', 
E019°06.791' 

T 470 2004& 2011 Undisturbed 

Ela 
4 

S33°44.361', 
E019°06.786' 

T 470 2004 & 2011 Undisturbed 

Molenaars 

Mol 
1 

S33°43.437', 
E019°08.863' 

F 368 2004 & 2011 
Cleared in 1994 and 
recovering 

Mol 
2 

S33°43.387',  
E019°10.762' 

F 368 2004 & 2011 
Undisturbed with 
periodic WfW activity 

Mol 
3 

S33°42.580', 
E019°11.848' 

F 368 2004 & 2011 
Cleared in 1997 and 
recovering 

Olifants 

Heks 

Hek 
1 

S32°26.123',  
E019°00.530' 

T 255 2005 & 2012 Undisturbed 

Hek 
2 

S32°26.116',  
E019°00.518' 

T 255 2005 & 2012 Undisturbed 

Hek 
3 

S32°26.187',  
E018°58.883' 

F 191 2005 & 2012 Undisturbed 

Hek 
4 

S32°26.209',  
E018°58.872' 

F 191 2005 & 2012 Undisturbed 

Rondegat 

Ron 
1 

S32°23.764',  
E019°05.384' 

M 634 2005 & 2012 
Undisturbed but Burnt 
Feb 2009 

Ron 
2 

S32°23.762',  
E019°05.368' 

M 634 2005 & 2012 
Undisturbed but Burnt 
Feb 2009 

Ron 
3 

S32°22.599',  
E019°04.015' 

T 526 2005 & 2012 
Undisturbed but Burnt 
Feb 2009 

Ron 
4 

S32°22.569',  
E019°04.002' 

T 526 2005 & 2012 
Undisturbed but Burnt 
Feb 2009 

 

 

4.2.2 Data collection 

Sites sampled by Reinecke et al. (2007) were re-located from permanent markers laid out 

during historic vegetation sampling in 2004/2005.  The size of the site was dependant on the 

width of the riparian vegetation and by using the historic data set measurements.  The length 

of all sites was 20 m, containing four transects of 5 m in length with vegetation sample plots 

of 5 x 1 m (Figure 1.9).  Vegetation cover was estimated as percentage per sample plot.  All 

this was done as to replicate the methods used by Reinecke et al. (2007).  Also see section 

1.7 for detailed sampling method description. 
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4.2.3 Data analyses 

In Chapter 3 it was concluded that sites are more comparable within than between rivers 

which led to the temporal comparisons being made at a river scale rather than across river 

basins.  Observing temporal changes in riparian fynbos vegetation community composition 

would have to be based on more sites and across more river basins than used in this study.  

Therefore, rivers are addressed separately in this study as to minimize the different 

environmental events and impacts acting on riparian vegetation of different basins 

(temperature, altitude, rainfall and more).  This way the differences in disturbances are 

minimized thus focussing more on the community response to localized disturbance. 

PRIMER Version 6 (Clarke and Gorley 2006) was used to run multivariate analyses on both 

the historic and the present data sets.  A fourth root transformation was used to transform 

data sets to boost species with smaller cover abundances in general.  A Bray-Curtis 

similarity resemblance analysis was applied which enabled CLUSTER and MDS ordination 

analysis to be made (PRIMER Version 6).  Cluster and MDS ordinations were used to 

demonstrate the differences between riparian communities at two sampling periods (Clarke 

and Gorley 2006).  This result was then tested for significance by doing an ANOSIM 

(PRIMER Version 6).  The ANOSIM analyses were run using a one way design using 

sampling occasion as factor (2004/2005 and 2011/2012) (See section 3.2.3). 

By combining sample plot data of total recorded percentage cover per species at a site, 

PRIMER Version 6 could be used to run biodiversity analyses (DIVERSE, PRIMER Version 

6).  These results included Shannon, Simpson, Fisher and other common measures of 

diversity and evenness in variation of cover abundance across the two sampling periods.  

Plant Functional types were used to compare the differences in average relative cover 

abundances between sampling periods.  These results was tested using a paired T-test 

(Excel, statistical expansion package).  A paired T-test is used to test the significance of 

difference between two samples. 

SIMPER analyses (PRIMER Version 6) based on relative species cover abundance were 

used at a wetbank (marginal and lower dyamic) and drybank (lower and upper) scale within 

sites to identify the species responsible for the change between sample periods (See section 

3.2.3).  I expected the differences to be most evident at this scale since this is where the 

hydrological regime could influence the recruitment and establishment of riparian species.  

Disturbance driven changes at a small temporal scale was therefore expected to occur at 

this spatial scale.  By separating the wetbank (marginal and lower dynamic) from the 

drybank (lower and upper) a comparison could be made between changes evident in both 

these areas of the riparian community if present.  Lateral zone descriptions as used in 
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Chapter 3; marginal, lower dynamic, lower and upper, was grouped into the wetbank 

(marginal and lower dynamic) and drybank (lower and upper) as done by Reinecke and 

Brown (2013) when they were able to link hydrology to riparian vegetation zones.  The 

historic data were assigned into lateral zones during 2004/2005 sampling (Reinecke et al. 

2007).  By combining the sample plots into wetbank and drybank, a comparison could be 

made between species compliment and relative abundances between sampling periods at a 

within site scale. 

MDS ordinations (PRIMER Version 6, Clarke and Gorley 2006) were then used to compare 

the differences occurring at a lateral zone scale (wetbank and drybank) temporally.  These 

ordinations were created by using sample plot scale data of relative species abundances 

categorised by lateral zone; marginal, lower dynamic, lower and upper. 

 

 Results 4.3

4.3.1.1 Do fynbos riparian communities show change in community composition, at 

a site scale, over a relatively short period of time? 

4.3.1.2 Elands River - undisturbed 

A comparison of sites sampled during 2004 and 2011 is presented in Figure 4.1.  Based on 

Cluster and MDS analyses Ela 1 and 2 grouped spatially (i.e. Ela 1* and Ela 1 grouped 

together and similarly Ela 2* and Ela 2) but Ela 3 and 4 grouped temporally.  This indicates 

greater change on Ela 3 and Ela 4 between sampling periods than upstream at Ela 1 and 2 

(Figure 4.1 top).  The MDS ordination however clearly shows a separation between sample 

periods down the middle (Figure 4.1 bottom) as indicated with the red line. 

A Global one-way ANOSIM of species abundances conducted across a temporal scale (Ela 

1-4 historic versus Ela 1-4 present data) showed an R value of 0.5 (p<0.01).  This indicates 

some differences being present at a river scale. 

4.3.1.3 Molenaars River – recovering after clearing 

The Molenaars River showed little or no pattern.  The reference site (Mol 2) seems to have 

changed especially in relation to Mol 1 and Mol 3.  In Figure 4.2 (top) Mol 2 seems more 

similar to new data collected from Mol 1 and Mol 3 which suggests that the recovering sites 

are becoming more similar in community composition compared to Mol 2 (reference site).  

However in Figure 4.2 (bottom) the MDS ordination shows the new data sets of all three 
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Molenaars sites moving closer to the middle and towards each other but then spreading out 

to the top and bottom of the ordination.  This indicates change but not a trend to become 

more similar to one another as would have been expected. 

A Global one-way ANOSIM of species abundances conducted across a temporal scale (Mol 

1* - Mol 3* versus Mol 1 – Mol 3) showed an R value of 0.357 (p<0.01), which is the lowest 

value of all rivers, indicating the least change. 

4.3.1.4 Heks River - undisturbed 

A comparison of sites sampled during 2004 and 2011 is presented in Figure 4.3.  The Heks 

River sites grouped temporally (Hek 1* – Hek 4* together and Hek 1 – Hek 4 together).  At 

the second level of grouping, sites followed a longitudinal zone trend with Hek 1 and Hek 2 

grouping together in the transitional zone and Hek 3 and Hek 4 grouping together in the 

upper foothills (Figure 4.3 top).  The MDS ordination also confirms this clear separation 

between sampling periods as shown by the line separating the groups (Figure 4.3 bottom).  

The historic data however did not show a longitudinal separation in the MDS ordination. 

A Global one-way ANOSIM of species abundances conducted across a temporal scale (Hek 

1* - Hek 4* versus Hek 1 – Hek 4) showed an R value of 0.917 (p<0.01).  This indicates 

substantial differences being present between sampling periods.  This is the highest value 

for all rivers which means this river has the greatest difference temporally. 

4.3.1.5 Rondegat River – fire disturbance 

A comparison of sites sampled during 2004 and 2011 are presented in Figure 4.4.  Similar to 

the Heks River the Rondegat river sample sites grouped more strongly according to 

sampling period than with historic data.  Figure 4.4 (top) showed that there is a minimum of 

40% similarity within sampling efforts and less than 40% similarity between sampling 

periods.  The MDS ordination (Figure 4.4 bottom) shows a clear separation vertically down 

the middle of the diagram. 

A Global one-way ANOSIM of species abundances conducted across a temporal scale (Ron 

1* - Ron 4* versus Ron 1 – Ron 4) showed an R value of 0.823 (p<0.01).  This indicates 

substantial differences being present between sampling periods. 
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Figure 4.1 Cluster (top) 

and MDS (bottom) ordinations for 

sites on the Elands River 

sampled during 2004 and 2011(*).  

Line indicating the temporal 

separation present between sites.  

See table Table 4.2 for site codes 

and descriptions. 
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Figure 4.2 Cluster (top) 

and MDS (bottom) ordinations 

for sites on the Molenaars River 

sampled during 2004 and 

2011(*).  Lines indicating the 

present data moving towards 

the centre of the ordination but 

spreading out vertically around 

the reference site (*) and the 

distance between the same 

sites seven years ago. 
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Figure 4.3 Cluster (top) 

and MDS (bottom) ordinations 

for sites on the Heks River 

sampled during 2004 and 

2011(*).  Line indicates the 

separation between sampling 

periods (temporal divide). 
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Figure 4.4 Cluster (top) 

and MDS (bottom) ordinations 

for sites on the Rondegat River 

sampled during 2004 and 

2011(*).  Line indicates the 

temporal separation between 

sample sites. 
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4.3.2 Diversity at a site scale 

Plant diversity data are presented in Table 4.3.  The Shannon diversity index (H’) showed 

the Hex River to be very similar in diversity between sample periods.  Mol 1 decreased in 

diversity while Mol 3 increased in diversity.  On the Rondegat River the mountain stream 

sites Ron 1 and Ron 2 showed a decrease in diversity while the transitional sites Ron 3 and 

Ron 4 showed an increase in diversity. 

Pielou’s evenness showed that there was very little variation in cover abundance between 

sites temporally.  Pielou’s evenness ranges between 0-1 and the higher the value the less 

variation is present.  All of the J’ values in Table 4.3 are above 0.5 with some ranging as 

high as 0.9. 

Fisher’s coefficient describes the number of species expected to be recorded for every 

percentage cover recoded at a site.  The number of species expected to be recoded per 

percentage cover increased on the Rondegat River.  On the Elands, Molenaars and Heks 

Rivers the number of species expected to be recorded per percentage cover varied.  In 

some cases it increased such as seen on Ela 1, Ela 3, Ela 4, Mol 2, Mol 3, Hek 1 and Hek 4.  

A decrease in number of species expected to be sampled was seen on Ela 2, Mol 1, Hek 2 

and Hek 3.  No consistent trend was evident at a site scale. 
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Table 4.3 Different standard biodiversity indices for historic and present (*) sample 

data per site with; S – total species, N – total cover, d – Species richness, J' – Pielou’s 

evenness, H' – Shannon, 1 - Lambda' – Simpson, ES – Fisher’s indication of the expected 

number of species from a percentage cover recorded. 

Sites S N d J' Fisher H' (loge) 1-ƛ' 

Ela 1 43 960 6.1 0.9 09.2 3.2 0.9 

Ela 1* 46 1148 6.4 0.8 09.6 3.2 0.9 

Ela 2 64 1163 8.9 0.8 14.6 3.5 1.0 

Ela 2* 33 974 4.7 0.8 06.6 2.9 0.9 

Ela 3 49 2369 6.2 0.8 08.7 3.0 0.9 

Ela 3* 61 2448 7.7 0.8 11.3 3.2 0.9 

Ela 4 45 1904 5.8 0.8 08.3 3.1 0.9 

Ela 4* 53 2377 6.7 0.8 09.6 3.1 0.9 

Mol 1 60 3218 7.3 0.8 10.5 3.3 0.9 

Mol 1* 42 4162 4.9 0.6 06.5 2.4 0.9 

Mol 2 51 2857 6.3 0.7 08.8 2.7 0.9 

Mol 2* 55 2937 6.8 0.7 09.6 3.0 0.9 

Mol 3 42 2636 5.2 0.7 07.1 2.5 0.9 

Mol 3* 50 2293 6.3 0.8 09.0 3.0 0.9 

Hek 1 40 3814.5 4.7 0.8 06.2 2.8 0.9 

Hek 1* 49 3748 5.8 0.7 08.0 2.8 0.9 

Hek 2 45 4031 5.3 0.7 07.1 2.7 0.9 

Hek 2* 38 3800 4.5 0.7 05.9 2.7 0.9 

Hek 3 29 2420 3.6 0.7 04.6 2.4 0.9 

Hek 3* 27 2361 3.3 0.7 04.3 2.3 0.9 

Hek 4 35 2221 4.4 0.8 05.9 2.9 0.9 

Hek 4* 36 2244 4.5 0.8 06.1 2.8 0.9 

Ron 1 46 1550 6.1 0.8 08.9 3.1 0.9 

Ron 1* 50 1591 6.6 0.7 09.8 2.9 0.9 

Ron 2 32 1813 4.1 0.8 05.5 2.6 0.9 

Ron 2* 36 2166 4.6 0.6 06.1 2.2 0.8 

Ron 3 41 1975 5.3 0.8 07.3 2.9 0.9 

Ron 3* 55 1933 7.1 0.8 10.5 3.1 0.9 

Ron 4 27 1870 3.5 0.7 04.5 2.2 0.8 

Ron 4* 58 2188 7.4 0.8 10.9 3.1 0.9 

 

A paired T-test analysis was done to establish if sites showed significant change in relative 

cover abundances for different functional types.  These results are provided below in Table 

4.4. 
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Table 4.4 Temporal results per site for t-test based on the percentage cover of each 

growth forms in river groups.  Growth form categories see per Table 4.1. (n) = number of 

sample plots in each site. p =sample statistic for t-test (one-tailed). * = p < 0.05. 

 Growth forms (p values) 

River Sites 
N - 

sample 
plots 

F
o

rb
 

G
e
o

p
h

y
te

 

R
h

iz
o

m
e
 

R
u

s
h

 

S
e
d

g
e
 

G
ra

s
s
 

R
e
s
ti

o
 

S
h

ru
b

le
t 

S
h

ru
b

 

T
re

e
 

Elands 

Ela 1 n=28 0.1 0.1 0.4 0.3 0.1 0.5 0.07 0.1 0.2 0.2 

Ela 2 n=24 0.2 0.1 0.5 0.2 0.2 0.1 0.04* 0.2 0.5 0.3 

Ela 3 n=48 0.5 0.3 0.1 0.2 0.2 0.1 0.1 0.2 0.04* 0.009* 

Ela 4 n=32 0.2 0.2 0.5 0.3 0.5 0.2 0.06 0.001* 0.1 0.07 

Molenaars 

Mol 1 n=40 0.01* 0.08 0.4 0.5 0.04* 0.2 0.2 0.03* 0.2 0.01* 

Mol 2 n=48 0.06 0.1 0.5 0.2 0.1 0.1 0.2 0.1 0.2 0.2 

Mol 3 n=44 0.02* 0.08 0.5 0.2 0.006* 0.2 0.4 0.05* 0.5 0.5 

Rondegat 

Ron 1 n=20 0.2 0.1 0.5 0.03* 11.41 0.1 0.1 0.2 10.48 0.2 

Ron 2 n=24 0.5 0.2 0.3 0.1 11.41 0.03* 0.2 0.4 10.48 0.02* 

Ron 3 n=36 0.2 0.2 0.1 0.004* 11.41 0.006* 0.1 0.3 10.48 0.0001* 

Ron4 n=32 0.1 0.3 0.1 0.02* 11.41 0.1 0.1 3.92 10.48 0.06 

Heks 

Hek 1 n=40 0.1 0.2 0.1 0.005* 0.5 0.02* 0.1 0.2 0.008* 0.1 

Hek 2 n=43 0.2 0.4 0.1 0.1 0.2 0.2 0.1 0.2 0.1 0.5 

Hek 3 n=32 0.2 0.2 0.6 0.01* 0.2 0.2 0.1 0.5 0.04* 0.2 

Hek 4 n=32 0.3 0.2 0.4 0.2 0.2 0.1 0.5 0.3 0.1 0.2 

 

There were growth forms that showed some changes over time.  These differences are 

indicated by an * in Table 4.4.  On the Elands River sites these were restios, shrublets, 

shrubs and trees.  On the Molenaars River the changes were seen in forbs, sedges, 

shrublets and trees.  Rushes, grasses and trees were responsible for change on the Heks 

River and on the Heks it was a combination of rushes, grasses and shrubs.  The temporal 

differences in community composition are caused by differences in relative species 

abundance of different growth forms at different sites.  There seems to be no specific pattern 

although trees, rushes, shrublets and shrubs seem to be the most regularly indicated growth 

form responsible for temporal differences at a site.  A smaller scale analysis is needed to 

identify a more specific description of changes occurring at a site. 
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4.3.3 Does riparian vegetation composition show significant changes at the 

wetbank and drybank scale (lateral zone scale) based on relative species 

abundances? 

Simper was used to identify small scale changes occurring at species level between the 

wetbank and drybank.  This was done at a site scale and results obtained from each river 

are presented below.  The Elands River results are summarised in Table 4.5, for the 

Molenaars River in Table 4.6, the Heks River in Table 4.7 and the Rondegat River in Table 

4.8. 

 

Table 4.5 SIMPER results for dissimilarity analysis = discriminant species on Elands 

River sites sampled during 2004 and 2011.  Sample plots were grouped into wetbank and 

drybank. D – Dissimilarity/Standard Deviation, A – relative abundance. 

WETBANK 

Species 

Ela 1 Ela 2 Ela 3 Ela 4 

D 
2004 2011 

D 
2004 2011 

D 
2004 2011 

D 
2004 2011 

A A A A A A A A 

Isolepis prolifera 1.18 0.79 1.29 0.79 0 0.73    0.25 0 0.08 

Metrosideros angustifolia 

seedling 
1.16 0.84 0.18 0.44 0 0.34    0.6 0.06 0.55 

Pseudobaeckia africana 1.37 1.03 0.45    0.36 0 0.15 0.99 1.37 1.68 

Todea babara 1.04 0.81 0.1    0.47 0.3 0.07    

Metrosideros angustifolia 

adult 
0.43 0 0.32 0.58 0.98 0.4 0.52 0.6 0 1.08 0.89 1.46 

Salix macronata saplings       0.73 0.61 0    

Elegia capensis 0.95 0.72 0.48    0.86 0.72 0.51 1.13 1.07 1 

Brabejum stellatifolium 

adult 
   0.46 0.43 0    1.25 0.32 1.01 

DRYBANK 

Species 

Ela 1 Ela 2 Ela 3 Ela 4 

D 
2004 2011 

D 
2004 2011 

D 
2004 2011 

D 
2004 2011 

A A A A A A A A 

Pseudobaeckia africana 1.22 1.1 0.69          

Metrosideros angustifolia 

adult 
1.01 1.1 0 0.43 0 0.26    0.42 0.2 0.16 

Elegia capensis 1.08 1.14 0.7 0.91 0.5 0.59 1.07 1.04 0.83 0.78 0.21 0.53 

Blechnum capense    1.04 0.47 0.83 0.56 0.15 0.22    

Pteridium aqualinum 0.64 0.18 0.43 1.06 0.97 0.64 1.01 0.8 0.94    

Erica caffra    1.27 0.32 1.18       

Pennisetum macrourum       1.16 1.3 0.28 0.74 0.44 0 

Diospyros glabra 0.73 0.41 0.29 0.59 0.29 0.1 0.81 0.17 0.51 0.92 0.26 0.67 

Erica pinea          1.17 1.36 1.03 
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Table 4.6 SIMPER results for dissimilarity analysis on Molenaars River sites sampled 

during 2004 and 2011.  Sample plots were grouped into wetbank and drybank. D – 

Dissimilarity/Standard Deviation, A – relative abundance. 

WETBANK 

Species 

Mol 1 Mol 2 Mol 3 

D 
2004 2011 

D 
2004 2011 

D 
2004 2011 

A A A A A A 

Pennisetum 

macrourum 
1.59 1.48 0 1.35 1.96 1.32 1.1 0.56 0.6 

Isolepis prolifera 1.2 1.34 1.78 0.84 1.87 1.04 1.38 1.1 0.46 

Salix macronata 

seedling 
1.13 0.25 0.88       

Metrosideros 

angustifolia sapling 
1.1 0.81 0.24 0.91 1.15 0 0.84 0.67 0 

Metrosideros 

angustifolia seedling 
1.15 0.76 0.08    0.52 0.13 0.14 

Morella serrata 

saplings 
0.77 0.38 0.35 1.14 1.7 0 3.86 1.7 0 

Prionium serratum    0.44 0.18 0 1.26 1.57 0.71 

Acacia mearnsii 

seedling 
0.66 0.22 0.23 0.43 0.25 0 1.04 0 0.63 

DRYBANK 

Species 

Mol 1 Mol 2 Mol 3 

D 
2004 2011 

D 
2004 2011 

D 
2004 2011 

A A A A A A 

Brabejum 

stellatifolium sapling 
0.94 0.9 0.16    1.52 1.48 0.07 

Metrosideros 

angustifolia sapling 
0.96 0.83 0.12    0.79 0.55 0.28 

Calopsis paniculata 0.82 0.31 1.31    0.54 0.13 0.39 

Searsia angustifolia    1.59 2.59 1.6 0.27 0 0.12 

Pteridium aqualinum 0.69 0.7 0 1.15 3.01 2.17    

Stoebe plumosa    0.83 0 1.63    

Diospyros glabra 0.55 0.45 0 0.88 1.15 0.49    

Ehrharta ramosa 

subsp. aphylla 
   0.48 0 0.43 0.61 0 0.46 
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Table 4.7 SIMPER results for dissimilarity analysis on Heks River sites sampled 

during 2004 and 2011.  Sample plots were grouped into wetbank and drybank. D – 

Dissimilarity/Standard Deviation, A – relative abundance. 

WETBANK 

Species 

Hek 1 Hek 2 Hek 3 Hek 4 

D 
2004 2011 

D 
2004 2011 

D 
2004 2011 

D 
2004 2011 

A A A A A A A A 

Isolepis 

prolifera 
1.55 1.59 0.66 1.2 1.54 1.03 0.64 0.19 0.44 1.38 1 2.27 

Metrosideros 

angustifolia 

seedling 

1.44 0.18 1.46 1.45 0.45 1.42 1.3 0.35 1.91 1.36 0.45 1.79 

Metrosideros 

angustifolia 

adult 

1.13 0 0.95 0.44 0 0.3 1.05 0.8 0.64 1.07 0.46 0.65 

Morella serrata 

adult 
0.63 0 0.41 0.69 0.15 0.45 0.98 0.52 0.94 2.13 0.19 1.61 

Morella serrata 

seedling 
1.3 0.38 1.16 1.41 0.38 1.25 1.27 0.22 1.46 0.72 0.3 0.53 

Calopsis 

paniculata 
1.03 1.45 1.48 1.08 1.96 1.3 1.31 1.53 0.81 1.33 0.95 1.99 

Drossera 

capensis 
   0.73 0 0.63 0.73 0 0.63 3.55 0 1.61 

DRYBANK 

Species 

Hek 1 Hek 2 Hek 3 Hek 4 

D 
2004 2011 

D 
2004 2011 

D 
2004 2011 

D 
2004 2011 

A A A A A A A A 

Metrosideros 

angustifolia 

adult 

2.43 2.25 0.23 1.12 1.35 0.08 1.15 1.35 0.21 0.99 1.03 0.53 

Metrosideros 

angustifolia 

sapling 

1.02 1 0 0.98 0 1.13 0.48 0.14 0.13 1.37 1.28 0 

Ehrharta 

ramosa 
1.08 0 1.34    0.95 0 1.2 0.49 0 0.38 

Calopsis 

paniculata 
1.15 1.16 0.09    0.46 0.22 0.09 0.75 0.47 0.38 

Morella serrata 

adult 
1.17 1.12 0.43 0.75 0.73 0.09 1.21 1.35 0.81    

Morella serrata 

sapling 
0.95 0.76 0 0.65 0.51 0 0.78 0.53 0.13 1.35 1.21 0.12 

Morella serrata 

seedling 
0.73 0.13 0.56 0.66 0 0.69 1.31 0.14 1.29 0.55 0.24 0.05 

Ehrharta 

rehmannii 
0.8 0.76 0.12 1.55 1.36 0 0.62 0.48 0 0.4 0.28 0 

Searsia 

angustifolia 
0.74 0.47 0.33 1.01 0.73 0.95 0.7 0.43 0.32 0.32 0.06 0.14 
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Table 4.8 SIMPER results for dissimilarity analysis on Rondegat River sites sampled 

during 2004 and 2011.  Sample plots were grouped into wetbank and drybank. D – 

Dissimilarity/Standard Deviation, A – relative abundance. 

WETBANK 

Species 

Ron 1 Ron 2 Ron 3 Ron 4 

D 
2004 2011 

D 
2004 2011 

D 
2004 2011 

D 
2004 2011 

A A A A A A A A 

Isolepis prolifera 1.54 1.11 0.29 0.58 0.1 0.26 3.44 0 2.01 1.79 0.49 2.11 

Prionium serratum       1.96 0 1.08 1.54 0.73 2.33 

Pteridium aqualinum    0.87 0.53 0.63 0.81 0.75 0 1.57 1.47 1.55 

Metrosideros 

angustifolia adult 
0.72 0 0.66 1.01 0.64 0.87 0.76 0.13 0.45 0.85 0.52 0.44 

Metrosideros 

angustifolia seedling 
1.22 0.49 1.76 0.66 0.37 0.27 1.66 0.92 0    

Brachylaena neriifolia 

sapling 
0.94 0.65 1.08 0.64 0.25 0.46       

Elegia capensis 0.9 0.34 1.02 1.33 2.15 2.55 1.68 1.3 0 0.83 0.35 0.4 

Calopsis paniculata 1.22 1.18 0.57 0.99 0.8 0.36 1.29 0.95 0.49 0.98 0.63 0.4 

Todea babara 0.89 0.4 0.42 1.06 1.95 1.46       

Morella serrata 

sapling 
0.52 0.37 0 1.09 0.73 0.33       

Brabejum 

stellatifolium seedling 
0.95 0.72 0.39 1.08 0.44 0.85       

Stoebe plumosa       0.62 0 0.42 1.21 0 1.28 

Erica caffra 0.58 0.32 0.19 0.58 0.4 0    1.62 1.7 0.84 

Panicum cf. schinzii          1.31 0 0.94 

Pelargonium 

grossularioides 
         1.22 0 0.89 

Ursinia sericea          1.33 0 0.89 

DRYBANK 

Species 

Ron 1 Ron 2 Ron 3 Ron 4 

D 
2004 2011 

D 
2004 2011 

D 
2004 2011 

D 
2004 2011 

A A A A A A A A 

Pteridium aqualinum 1.49 0 1.22 1.13 1.79 1.77 0.95 1.28 1.64 1.28 2.03 1.77 

Brabejum 

stellatifolium adult 
0.98 1.17 0.11 0.26 0 0.13 0.91 0.91 0.05 0.77 0.79 0.11 

Metrosideros 

angustifolia adult 
0.79 0.76 0.34    1.17 1.19 0.82 1.23 1.36 0.28 

Metrosideros 

angustifolia sapling 
0.9 0.75 0 0.35 0.26 0 0.6 0.3 0.08 0.35 0.13 0.04 

Pelargonium 

scabrum 
1.12 0 0.92 1.23 0.91 1.34       

Erharta ramosa 

subsp. aphylla 
0.93 0.78 0          

Elegia capensis 0.53 0.43 0 1.12 1.03 0.51 1.27 1.29 0.67 0.46 0.19 0.12 

Stoebe plumosa 0.36 0.16 0 0.48 0 0.29 1.34 0 1.09    

Morella serrata adult 0.5 0.11 0.25 1.1 0.85 0.58 0.53 0 0.33    
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On the Elands River sites, species responsible for temporal changes in the wetbank were a 

combination of trees and other functional types (Table 4.5).  Isolepis prolifera abundance 

increased on most sites while T. babara and E. capensis decreased in abundance.  

Brabejum stellatifolium adults decreased in abundance on Ela 2 but increased in abundance 

on Ela 4.  Pseudobaeckia africana decreased in abundance on Ela 1 but increased in 

abundance on Ela 3 and Ela 4. In the drybank changes were driven by B. capense which 

decreased in abundance on Ela 2 and Ela 3, P. macrourum which decreased in abundance 

on Ela 3 and Ela 4 and D. glabra which decreased in abundance on Ela 1 and Ela 2 but 

increased in abundance on Ela 3 and Ela 4.  Some other species also contributing to the 

changes present on the wetbank and drybank were M. angustifolia, S. macronata, E. caffra, 

P. aqualinum and Erica pinea. 

The species and life history stages responsible for changes in the wetbank on the recovering 

sites of the Molenaars River were S. macronata and M. angustifolia seedlings (Table 4.6). 

Acacia mearnsii seedlings was recorded at Mol 2 during historic sampling but was absent 

during present data collection.  Acacia mearnsii went from being absent on Mol 3 during 

2004/2005 to having a relative abundance of 0.63 during 2011/2012. Other species 

contributing to the changes in the wetbank were: P. macrourum, I. prolifera, M. serrata 

saplings and P. serratum.  The drybank of recovering sites showed a decrease in B. 

stellatifolium and M. angustifolia saplings while species such as C. paniculata showed an 

increased abundance.  Mol 2 had in a couple of different species responsible for the 

temporal change compared to that on the recovering sites (Mol 1 and Mol 3) these were: 

Searsia angustifolia, S. plumosa and D. glabra.  Other species contributing to the temporal 

changes in composition were P. aqualinum and E. ramosa (subsp. aphylla). 

Temporal changes in the wetbank on the Heks River (Table 4.7) were to a larger extent 

caused by I. prolifera, M. angustifolia seedlings, Morella serrata adults, C. paniculata and 

Drossera capensis.  Isolepis prolifera decreased on sites Hek 1 and Hek 2 while the 

abundance increased on Hek 3 and Hek 4.  The abundance of M. angustifolia seedlings and 

adults increased on all four sites with the exception of a decrease in adult abundance on 

Hek 3.  Drossera capensis was not recorded on the Heks river sites during historic sampling 

but during 2011/2012 sampling the species was recorded on the wetbank of Hek 2, Hek 3 

and Hek 4.  The drybank had M. angustifolia saplings and adults together with M. serrata 

seedlings, saplings and adults causing temporal changes on sites (Table 4.7).  Metrosideros 

angustifolia showed a decrease of abundance on all Heks River sites while sapling 

abundance varied.  Abundances of M. serrata seedlings increased and that of adults 

decreased on sites Hek 1, Hek 2 and Hek 3.  Species responsible for changes in abundance 

included E. ramosa, C. paniculata, E. rehmannii and S. angustifolia.  Erharta rehmannii 
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decreased in abundance on all four sites while E. ramosa increased on Hek 1, Hek 3 and 

Hek 4. 

The Rondegat River had the most diverse group of species responsible for temporal 

changes in composition (Table 4.8).  The species driving changes on all sites sampled were 

I. prolifera, M. angustifolia adults, E. capensis and C. paniculata.  Apart from these species 

there seemed to be a longitudinal difference (Chapter 3) present between species driving 

changes on the sites.  In the mountain stream sites B. neriifolia saplings, M. serrata saplings 

and B. stellatifolium seedlings contributed to the changes in composition while in the 

transitional zone P. serratum, S. plumosa, Panicum cf. schinzii, Pelargonium grossularioides 

and Ursinia sericea were contributors to the temporal changes present.  There were no clear 

trends present for species abundances.  Some species increased on one site and decreased 

on the neighbouring site such was the case with M. angustifolia which increased in 

abundance on Ron 1 and decreased in abundance on Ron 2.  B. neriifolia was one of the 

few species which showed a consistent trend with and increased abundance on Ron 1 and 

Ron 2.  Another example of this was seen with S. plumosa in the transitional longitudinal 

zone which increased in abundance on Ron 3 and Ron 4.  The changes were very diverse in 

the wetbank. 

The temporal changes in composition were mostly driven by P. aqualinum, B. stellatifolium 

adults, M. angustifolia saplings and E. capensis.  Elegia capensis decreased in abundance 

on all four sites sampled.  Pelargonium scabrum increased in abundance on Ron 1 and Ron 

2.  On site Ron 1 S. plumosa decreased in abundance while on Ron 2 and Ron 3 the 

abundance increased.  Pteridium aqualinum increased in abundance on Ron 1 and Ron 3 

while the abundance decreased at Ron 2 and Ron 4.  As with the wetbank, little or no trend 

was obvious in changes in species abundances.  The sites exposed to fire disturbances and 

recovering after clearing of alien woody invasive species showed more diverse changes 

occurring in species abundances compared to natural sites.  Rivers not subjected to 

disturbances such as fire and clearing of invasive species had less diversity in species 

responsible for the temporal changes in community composition.  This was tested with MDS 

ordinations comparing the wetbank and drybank of sites temporally.   

Based on the MDS ordination results, sites recovering after clearing and subjected to fire 

disturbance between sampling periods showed greater difference (ordination distance) than 

relatively undisturbed sites.  The rivers undisturbed by recovering after clearing and not 

subjected to fire disturbances (Elands and Heks Rivers) showed more overlapping present in 

the wetbank and drybank sample plots.  These results are present below in Figure 4.5 and 

Figure 4.6. 
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Figure 4.5 MDS ordinations of the wetbank and drybank compared temporally on sites 

of the relatively undisturbed Elands River (including Mol 2) and the recovering sites on the 

Molenaars River (Mol 1 and Mol 3). Blue – historic data, green – present data, 1 and 3 – 

wetbank, 2 and 4 – drybank. 

Transform: Fourth root

Resemblance: S17 Bray Curtis similarity

Wetbank drybank
1

2

3

4

2D Stress: 0.14

Ela 1
Transform: Fourth root

Resemblance: S17 Bray Curtis similarity

wetbank drybank
1

2

3

4

2D Stress: 0.13

Transform: Fourth root

Resemblance: S17 Bray Curtis similarity

Wetbank drybank
1

2

3

4

2D Stress: 0.14

Ela 2

Transform: Fourth root

Resemblance: S17 Bray Curtis similarity

wetbank drybank
1

2

3

4

2D Stress: 0.14

Ela 3 Transform: Fourth root

Resemblance: S17 Bray Curtis similarity

wetbank drybank
1

2

3

4

2D Stress: 0.19

Ela 4

Transform: Fourth root

Resemblance: S17 Bray Curtis similarity

wetbank drybank
1

2

3

4

2D Stress: 0.12

Mol 1 Transform: Log(X+1)

Resemblance: S17 Bray Curtis similarity

wetbank drybank
1

2

3

4

2D Stress: 0.08

Mol 2

Transform: Fourth root

Resemblance: S17 Bray Curtis similarity

wetbank drybank
1

2

3

4

2D Stress: 0.14

Mol 3

Stellenbosch University  http://scholar.sun.ac.za



  

  

  

  

Figure 4.6 MDS ordinations of the wetbank and drybank compared temporally on 

relatively undisturbed sites of the Heks River (Hek 1-4) and sites subjected to fire disturbance 

on the Rondegat River (Ron 1-4). Blue – historic data, green – present data, 1 and 3 – wetbank, 

2 and 4 – drybank. 
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 Discussion 4.4

4.4.1 Do Fynbos Riparian communities (at a site scale) show significant change in 

community composition over a relatively short period of time? 

One would expect a site to be more similar to its historic data than to a different site all 

together since the temporal scale was relatively small at seven years.  This was however not 

the case, sites had stronger similarity to data collected during the same sampling period than 

with historic data collected from the same site.  A bias due to different observers is a 

possibility, however this was potentially kept to a minimum by the presence during 

2011/2012 observations of the historic sampler Mr. Reinecke.  Temporal differences are 

evident at the river scale.  Each river had a different pattern of change in plant community 

composition.  Statistically, none of the sites showed significant differences regardless of their 

condition (recovering, burnt or undisturbed).  The Elands River separated temporally during 

multivariate analyses of species composition data but showed little temporal change in plant 

diversity.  The Molenaars River sites showed an increase in plant diversity while the 

Rondegat River, subjected to fire disturbances, had a decrease in overall plant diversity as 

shown by the same biodiversity indices (Shannon and Fischer).  The Heks River like the 

Elands River, showed almost no change in diversity.  Sites subjected to disturbance 

therefore changed more in terms of the biodiversity indices (Shannon and Fischer) at a 

relatively small temporal scale than undisturbed sites.  This agrees with Callicott (2002) who 

describes temporal scales as being dynamic and reaching a climax community which after 

disturbance events restarts the successional processes till reaching equilibrium once more. 

The overall relative species abundance, which was used to calculate the measures of 

biodiversity of sites did not show significant historical change.  This could indicate that 

natural disturbance such as fire, in this case with overall biodiversity showing a slight decline 

temporally, does not change the overall community composition and diversity significantly.  

The sites on the Molenaars River that were recovering after clearing (Mol 1 and Mol 3) might 

not be exactly the same as the reference site (Mol 2) in terms of MDS ordinations but, no 

significant differences in species composition was noticeable between sampling periods at a 

site scale.  It is important then to acknowledge the differences between sampling efforts as 

shown with Cluster and MDS results, but also how little has changed within a site scale in 

relation to overall species diversity. 

The Western Cape fynbos is known for its resilience to disturbances such as fire and 

flooding (Cowling 1992) and thus the species diversity does not necessarily show major 

modifications in the medium term, while changes may be evident in the years immediately 

following disturbance.  A t-test revealed within site differences being present of different 
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growth forms, but produced no clear trend that would explain the temporal changes.  It 

appears that temporal changes are driven at a smaller scale within a site but not necessarily 

at the scale of the sites used in our study (approximately 200 m2). 

 

4.4.2 Do riparian vegetation composition at the lateral zone scale (wetbank and 

drybank) show differences based on relative species abundance? 

At a lateral zone scale, differences in species abundances over time were more apparent 

than at a site scale.  Undisturbed rivers such as the Elands and Heks Rivers showed less 

variation in species responsible for temporal changes than the recovering and burnt sites on 

the Molenaars and Rondegat Rivers.  Common species responsible for temporal changes in 

abundance were M. angustifolia, M. serrata, B. stellatifolium, I. prolifera, E. capensis, P. 

serratum and C. paniculata.  These species were almost always suggested by Simper 

analyses as drivers of change on each river used in this study.  Several other species were 

found to be drivers of change but mostly only on the Rondegat River.  This was expected 

since the sites on this river were burnt three years ago.  Most of the species not commonly 

indicated on the other rivers but on Rondegat River were either more terrestrial in nature 

such as P. scabrum, S. plumosa, U. sericea, P. grossularioides and P. schinzii, or known to 

resprout after fire such as M. angustifolia and B. neriifolia. 

Temporally the wetbank and drybank on rivers relatively undisturbed showed fewer 

differences than that of sites subjected to disturbances (MDS ordination).  The Molenaars 

sites showed Mol 1 and Mol 3 to have a clearer separation between the wetbank and 

drybank temporally than that of Mol 2.  Similarly the Rondegat River sites had a greater 

distance (indication of difference) present in the MDS ordinations that those on the Heks and 

Elands Rivers. 

 

 Conclusion 4.5

Reference conditions used in restoration of rivers and riparian zones are typically, though 

not exclusively, based on a pre-disturbance state.  The use of a medium term temporal 

reference condition is supported by the results of this study in that little variation in plant 

diversity at this scale was seen.  These changes are due to changes in relative abundances 

of similar species.  The species most commonly found to be drivers of changes are common 

species occurring in great abundances in most Western Cape Fynbos Riparian Vegetation 

communities, e.g. M. angustifolia, M. serrata, B. stellatifolium, I. prolifera and E. capensis.  
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The increased variation in species responsible for change at sites subjected to disturbances 

supports the theory that change is disturbance driven.  This is in support of the Flux of 

Nature paradigm, which suggests that no ecosystem is static but an ever changing dynamic 

entity (Pickett et al. 2007). 

In terms of environmental practices it is useful to use a reference condition of ecological 

conditions of particular sites in the past when the specific area or site was in a better 

ecological condition.  It is however important not to ignore the results the Molenaars River 

produced in relation to its own reference condition (the natural site Mol 2).  Mol 2 is situated 

within the same longitudinal zone and was never invaded or cleared of alien invasive 

species.  The vegetation community at Mol 1 and Mol 3 might have recovered to a 

community consisting of dense canopy and large trees, but still diverged substantially from 

Mol 2.  This is in comparison to the sites on other rivers, which were more similar to their 

longitudinally paired sites (Ela 1 and Ela 2, Ron 3 and Ron 4 etc.).  This suggests that even 

though a site might be functionally recovered it will likely remain dissimilar to the reference 

condition.  The more recent approach of restoring a site to a better condition that it is 

presently in rather than trying to get it to a state it was in previously makes more sense 

especially since all sites showed small-scale changes (Meek et al. 2013; Palmer et al. 1997).  

Sieben and Reinecke (2008) provides a wetbank drybank reference description to aid 

restoration by means of re-vegetation instead of using natural recovery which is timely and 

has proven less successful and more expensive in the past (Blanchard and Holmes 2008; 

Pretorius et al. 2008; Reinecke et al. 2008).  This is in agreement with our results as the 

wetbank and drybank were found to be more comparable in their response to change as 

shown by MDS ordinations.  A wetbank and drybank re-vegetation recovery approach is 

supported with these results as opposed to natural recovery which in the case of the 

Molenaars River sites did not return to the exact same community composition proposed by 

the reference site (Mol 2). 

Even relatively undisturbed sites have ecological processes acting on the community.  

Hydrology for instance was not taken into account in this study but has been shown to 

impact the riparian community structure (Reinecke and Brown 2013).  By looking at more 

types of disturbances acting on different scales it would be more realistic to gain a better 

understanding of disturbance driven changes in the very dynamic and resilient Fynbos 

Riparian Vegetation of the Western Cape.  This is something that should be investigated 

further to aid the understanding of recovering dynamics and natural driven disturbances 

acting on the Fynbos Riparian community. 
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5 Synthesis 

 

 Introduction 5.1

This study sought to investigate the changes in riparian fynbos community composition and 

diversity in space and time.  This was based on the three physical dimensions (lateral, 

vertical and longitudinal) and the fourth temporal dimension (time) of interaction occurring on 

riverine habitats.  In the past, lateral zonation has been used to assess and describe 

changes in riparian vegetation but no comparison of lateral zonation has been conducted 

between longitudinal zones in upper reaches of Western Cape rivers: mountain stream, 

transitional and upper foothills (Rowntree and Wadeson 1999). 

The overarching aims of this study were to investigate and describe differences in riparian 

vegetation at a lateral zone scale across longitudinal zones of selected upland rivers in the 

Western Cape (the spatial dimension), and to assess changes in riparian vegetation 

communities over a relatively short time frame and with different disturbances impacting the 

communities between sample periods (the temporal dimension).  Each part of the study 

(spatial and temporal) had its own objectives.  For the spatial part, the objectives were: to 

identify and describe how plant community composition changes between longitudinal zones 

and secondly to evaluate and test the relationship between plant community composition 

and selected environmental variables.  For the temporal part of the study the objective was 

to assess the change in riparian community composition over time 

 

 Spatial scale 5.2

Spatial and temporal changes were investigated in this study to assess whether longitudinal 

positioning of sites and temporal scale influences riparian vegetation community 

composition.  Spatial changes in riparian vegetation were shown to occur at the river scale 

which supports the description of river signatures by King and Schael (2001).  This makes 

comparing sites and data between different rivers difficult and unreliable depending on the 

scale and aim of the comparisons.  Further a difference in species composition and 

abundances were evident at the longitudinal scale.  These changes were not significant 

therefore previous descriptions made by Reinecke et al. (2007) cannot be discarded, it 

merely showed a high variability being present in community composition due to bank shape 

and to a lesser extent the bank substrate (sediment calibre).  Mountain stream sites showed 

a strong relationship with elevation and the upper foothills with horizontal distance.  This 
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makes sense due to narrow valleys upstream with steep inclines in contrast to the open 

flattened out bank shape of foothill rivers.  Spatial constraints have a greater impact on the 

positioning and abundance of a species in the mountain stream than a species in the upper 

foothills.  In the upper foothills there is more space, as shown when change was plotted 

against elevation, and thus less competition over recruitment space than in the foothills 

(Galatowitsch and Richardson 2005).  This leads to better defined lateral zones and less 

overlapping in drybank and wetbank species.  It is important to consider the differences in 

location relative to longitudinal zones of sample sites and reference conditions when 

attempting to access, study or restore riparian communities. 

 

 Temporal scale 5.3

Temporally, no significant change in plant diversity at a river or site scale was evident.  At a 

lateral zone scale (wetbank-drybank scale), however, changes in species abundances were 

indicated as the drivers of temporal changes.  The species responsible for the temporal 

changes were relatively common riparian species.  These included I. prolifera, C. capensis, 

E. ramosa, P. serratum, M. angustifolia, M. serrata and B. stellatifolium.  Sites subjected to 

clearing of invasive species have been recovering for more than fifteen years (relatively old 

site) and even though the community was mature and contained most of the species present 

on the reference site (Mol 2) there was still a difference evident when the sites were 

compared using multidimensional scaling. 

Sites burnt in-between sampling periods showed more variation in the species responsible 

for changes.  These species were either more terrestrial in nature such as P. scabrum, S. 

plumosa, U. sericea, P. grossularioides and P. schinzii, or known to resprout after fire such 

as M. angustifolia and B. neriifolia.  When the wetbank and drybank were compared over 

time the burnt (Rondegat River) and recovering sites (Molenaars River) showed more 

variation in species abundances than the relatively undisturbed sites (Elands and Heks 

Rivers).  Whether a site will ever be considered “recovered” depends on the reference 

condition.  On the Molenaars River it was found that the recovering sites had a different 

community composition from that of the reference site Mol 2, but showed little difference in 

plant diversity temporally.  Common riparian species were found to still be present but it was 

the abundances of these species that were different.  For all intended purposes the 

Molenaars recovering sites could be classified as functionally recovered, but they do not 

show the same similarity in composition to Mol 2 than Ela 3 and Ela 4 for instance showed 

with Cluster and MDS analyses.  Perhaps a site should be considered as permanently 
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altered once it has been disturbed, but functionally recovered once a diverse and mature 

indigenous pant community has returned? 

 

 Reference condition 5.4

Mol 2 showed changes present in species abundances indicating that no reference site is 

static (Flux of Nature paradigm).  The relevance then of a temporally selected reference 

condition based on species abundances becomes questionable.  A reference condition 

based on species presence or absence is more realistic since the diversity of species 

composition did not change significantly.  This would mean that, based on the spatial and 

temporal results of this study, a reference description based on species composition would 

be more suitable than a reference site or historic description.  The reason why species 

composition would be suitable across more basins, longitudinal zones and over time is that 

we found no evidence to suggest the absence of species but rather that the abundances of 

species varied greatly in space and time.  In space the same lateral zone indicator 

(dominant) species may not occur with the same high level of abundance elsewhere but it is 

present in the community.  Temporally species diversity may vary but the presence of the 

species is not lost.  Sieben and Reinecke (2008) described a wetbank and drybank 

description for restoration which agrees with Reinecke and Brown (2013) who was able link 

riparian zonation (wetbank and drybank scale) to hydrological regimes.  If disturbance and 

recruitment driven changes occur at the wetbank and drybank lateral scale then a reference 

description based on species occurrence of these two lateral zones should be suitable for 

restoration practices aimed at restoring the degraded site to a functionally healthier state. 

 

 Restoration and management 5.5

Spatio-temporal scales are important for ecological restoration.  Temporally, ecological 

processes act on the riparian community by means of disturbance regimes which can act 

spatially through landscapes and geomorphological changes, exchange of nutrients and 

biological provinces (Levin 1992; Sieben et al. 2009).  Understanding ecological spatio-

temporal scales can be useful for restoration practices for the process of developing 

scientific methods for recovery and the ultimate improvement of freshwater bodies (Bailey et 

al. 1998; Thorp et al. 2006).  By incorporating spatio-temporal scales into ecological 

restoration more achievable and effective goals for conservation of biodiversity and 

ecosystem management can be developed. 
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Figure 5.1 is a diagrammatic representation of the spatio-temporal perspective.  This shows 

that the scale of ecological study influences the time frame and space in which 

multidimensional changes in diversity occur.  The diversity is also on the opposite side of 

disturbance since the magnitude of disturbance influences the degree of change occurring 

within plant communities.  The smaller the temporal scale, the smaller the spatial scale of 

change as seen with changes of a within decadal scale <10 years) only being evident at a 

lateral zone (wetbank drybank) scale and not at a site or river scale.  The spatial functions 

over time and these two dimensions function within the dimension of space (Callicott 2002).  

They are inseparable as shown in this study by diversity, disturbances, longitudinal and 

lateral zones.  These scale dimensions should be considered when attempting to develop 

and manage freshwater ecosystems, especially in a Riparian Fynbos Vegetation community.  

The smaller the spatial scale, the smaller the temporal scale at which changes occur as 

seen with wetbank drybank comparisons of species abundances.  This relationship between 

the spatial and temporal dimension is depicted in Figure 5.1 which shows the scale of study 

influencing the time and apace in which changes occur. 

 

 

Figure 5.1 Spatio-temporal dimension of riverine environments.  The three physical 

dimensions of interaction is encapsulated within the time over which these 

exchanges/interactions occur.  The scale at which these interactions are studied influences 

the time and space at which they are observed and also the scale of changes driven by 

disturbance and diversity.  The smaller the ecological scale the smaller the scale of 

disturbances influencing the vegetation community composition. 

Time

Active channel

Lateral

VerticalLongitudinal

DisturbanceDiversity

Space

Scale
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In terms of environmental practices a reference condition and reference sites are of great 

use especially when the aim is restoration of a degraded ecosystem to a better ecologically 

functioning state.  Spatial and temporal templates then become very important especially 

when an area upstream or downstream sites seems to be in a better ecological state.  Do we 

restore the degraded area to the closest possible template upstream of downstream?  Do we 

use a previous description based on work previously done on a river?  A more realistic 

approach would be to use a general riparian vegetation description or a reference 

description developed for that particular longitudinal zone than to use a specific site 

description situated on the neighbouring basin or even a couple of hundred meters 

upstream.  This is in agreement with Sieben and Reinencke’s (2008) wetbank drybank 

descriptions used to guide restoration practices involving re-vegetating a degraded riparian 

area. 

The results support the use of a reference description for environmental management 

purposes but do not support the use of a static reference condition to be applied on all 

Fynbos Riparian Communities regardless of scale.  A small scale temporal template is 

feasible for management and restoration purposes but the spatial scale at which these 

templates are applied should be assessed in more detail.  Perhaps initiating a trajectory 

towards a more natural condition to that which it is presently in rather than trying to restore it 

to a previous or descriptive state makes more sense (Meek et al. 2013; Palmer et al. 1997). 

 

 Ecological Research and Recommendations 5.6

Spatial changes are more evident between basins than longitudinally and may make 

comparative ecological studies across basins less accurate than those based within one 

basin.  When research is conducted on more than one basin these “catchment signatures” 

may have very significant and idiosyncratic influences on ecological processes, which should 

be carefully considered and cross-basin comparisons should be avoided when a sample size 

(site) is small in scale.  Future research could look into basin/catchment signatures and the 

processes that cause these differences in plant species composition and spatial variation.  

Also this study did not take groundwater, climate, hydrology and soil ecology into account.  

These are important parts of the riparian riverine environment and play contributing roles in 

small scale disturbances, restoration initiatives and ecological wellbeing of an environment 

(Callicott 2002).  Further incorporation of the environmental attributes acting on the riparian 

vegetation community could provide more information on inter-basin differences, spatio-

temporal riparian scales and restoration initiatives for the future. 

Stellenbosch University  http://scholar.sun.ac.za



 References 5.7

Bailey, R.C., Kennedy, M.G., Dervish, M.Z. and Taylor, R.M., 1998. Biological assessment of 

freshwater ecosystems using a reference condition approach: comparing predicted 

and actual benthic invertebrate communities in Yukon streams. Freshwater Biology. 

39(4): 765-774 

Callicott, J. B. 2002.  Choosing appropriate temporal and spatial scales for ecological 

restoration. Journal of Bioscience. 2(27): 409–420. 

Donald, A.F, Palmer, M, Zedler, J., Hobbs, R.J, 2006.  Foundations of Restoration Ecology 

(The Science and Practice of Ecological Restoration Series).  Society for Ecological 

Restoration International.  Island Press, Washington, DC. 365 pp. 

Galatowitsch, S. and Richardson, D.M., 2005.  Riparian scrub recovery after clearing of 

invasive alien trees in headwater streams of the Western Cape, South Africa. 

Biological conservation 122: 509-521. 

King, J.M., Schael, D.M. 2001. Assessing the ecological relevance of a spatially-nested 

geomorphological hierarchy for river management. WRC Report No. 754/1/01. Water 

Research Commission, Pretoria. 276 p. 

Levin, S.A. 1992.  The Problem of Pattern and Scale in Ecology.  Ecology 73(6): 1943 – 

1967. 

Meek, C.S, Richardson, D.M., Mucina, L., 2013, Plant communities along the Eerste River, 

Western Cape, South Africa: Community descriptions and implications for 

restoration. Koedoe 55(1), 1055 - 1089. 

Palmer, M. A., Ambrose, R. F., Poff, N. L. 1997. Ecological theory and community 

restoration ecology.  Restoration Ecology 5:291–300. 

Reinecke, M.K., Brown, C. 2013. Links between riparian vegetation and flow.  Water 

Research Commission Report No 1981/1/13.  Pretoria, South Africa.  149pp. 

Reinecke, M.K., King, J.M., Holmes, P.M, Blanchard, R., Malan, H.L. 2007.  The nature and 

invasion of riparian vegetation zones in the South Western Cape.  Water Research 

Commission Report No 1407/1/07.  Pretoria, South Africa.  284pp. 

Rowntree, K.M., Wadeson, R.A. 1999.  A hierarchical geomorphological model for the 

classification of selected South African river.  Water Research Commission Report 

No 497/1/99.  Pretoria, South Africa.  314pp. 

Stellenbosch University  http://scholar.sun.ac.za



Sieben, E.J.J., Mucina, L., Boucher, C. 2009.  Scaling hierarchy of factors controlling riparian 

vegetation patterns of the Fynbos Biome at the Western Cape, South Africa.  Journal 

of Vegetation Science 20: 17-26. 

Sieben, E.J.J., Reinecke, M.K., 2008. Description of reference conditions for restoration 

projects of riparian vegetation from the species-rich Fynbos Biome. South African 

journal of Botany 74: 401-411. 

Thorp, J. H., Thoms, M. C., DeLong, M. D. 2006. The Riverine Ecosystem Synthesis: 

Biocomplexity in river networks across space and time.  River Research and 

Applications 22: 123-147. 

  

Stellenbosch University  http://scholar.sun.ac.za



6 Appendix 1 

 

Table 6.1 Raw data presented as species list indicating presence*/absence data 

sampled at study sites. 
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Acacia longifolia tree                         

Acacia longifolia sapling                         

Acacia mearnsii tree                         

Acacia mearnsii sapling             * *         

Acacia mearnsii seedling                         

Agathosma crenulata     * *                 

Anthospermum spathulatum   *     * * * * * *     

Aristea capitata     * * *               

Askidiosperma chartaceum                         

Aspalathus spinosa L. subsp. spino                 *       

Asparagus retrofractus                  * *   * 

Asparagus rubicundus                         

Asparagus suaveolens                 *       

Athanasia crithmifolia                      * * 

Athanasia trifurcata                         

Blechnum capense * * * *                 

Blechnum punctulatum              * *         

Boraginaceae sp.2         *   * *         

Brabejum stellatifolium tree * * * * * * * *   *   * 

Brabejum stellatifolium sapling * * * * * * * *         

Brabejum stellatifolium seedlings * * * * *   * * *       

Brachylaena neriifolia tree *                       

Brachylaena neriifolia sapling * * * * * * *         * 

Brachylaena neriifolia seedlings * * * * * * * *     * * 

Briza maxima                 *       

Brown stalk green leaf *     *                 

Calopsis paniculata *   * * * * * * * * * * 

Cannomois virgata         *             * 

Carpha glomerata               * * * * * 

Cassine peragua                         

Cassytha ciliolata      *   * *           * 

Centella villosa         *       *       

Cerastium capense                         

Chasmanthe aethiopica       *                 
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Chelianthes contracta                 *       

Cineraria alchemilloides                 *       

Cliffortia atrata                         

Cliffortia cf. polygonifolia                          

Cliffortia dregeana var. meyeriana       *                 

Cliffortia juniperina          *               

Cliffortia polygonifolia                         

Cliffortia ruscifolia *       * * * * *     * 

Cliffortia sp.1   *                     

Clutia sp.1   *                     

Conyza canadensis     *                   

Conyza sp.2                         

Crassula dejecta                   *     

Crassula sp.                * * *     

Cunonia capensis sapling *     *                 

Cunonia capensis seedling * *   *                 

Cyperus denudatus                 * *     

Digitaria debilis                         

Diospyros glabra * * * * * * * * * * * * 

Dipogon lignosus             *           

Dodonaea angustifolia         *   *   *       

Dodonaea viscosa sapling                   *     

Drossera capensis *         *     *   * * 

Ehrharta ramosa     *       * * * * * * 

Ehrharta rehmannii                  *       

Ehrharta setacea                         

Ehrharta sp.1 *                       

Ehrhata ramosa subsp. ramosa *                       

Elegia capensis * * * * * * * * * * * * 

Epischoenus gracilis * * *                   

Eragrostis curvula       *                 

Erica caffra * * * * *     *         

Erica curvirostris   *                     

Erica hispidula * * *                   

Erica pinea     * *                 

Eriocephalus              *   *       

Euclea tomentosa                    *     

Euryops abrotanifolius                    *     

Ficinia acuminata                         

Ficinia indica *   *                   
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Freylinia lanceolata tree                   *     

Freylinia lanceolata sapling                 * *     

Freylinia lanceolata seedlings                         

Halleria elliptica             * *         

Halleria lucida tree     * *                 

Halleria lucida sapling     * *                 

Halleria lucida seedling     *                   

Hartogiella schinoides tree *                       

Hartogiella schinoides sapling * *                     

Hartogiella schinoides seedlings   *   *                 

Hebenstretia lanceolata          * *             

Heeria argentea sapling           *             

Helichrysum scabrum                      *   

Hemarthria altissima                          

Hermannia sp.            * * *         

Homalanthus populifolius sapling                   *     

Hymenolepis sp.1                         

Ilex mitis tree *   * *                 

Ilex mitis sapling     *                   

Indigofera frutescens                *         

Ischyrolepis fraterna     *                   

Ischyrolepis gaudichaudianus var gaud.                   *     

Ischyrolepis gossypina                         

Ischyrolepis subverticillata * * * *                 

Ischyrolepis tenuissima     *                   

Ishyrolepis sieberi       *                 

Isolepis digitata *                       

Isolepis prolifera * *   * * * * * * * * * 

Juncus effusus                       * 

Juncus lamatophyllus                         

Lachnospermum fasciculatum         *     *         

Laurembergia repens               *         

Leonotis cf. leonurus                *         

Leucadendron salicifolium   * *                   

Manulea juncea              * *         

Maytenus acuminata tree       *                 

Maytenus acuminata sapling       *                 

Maytenus oleoides tree       *                 

Maytenus oleoides sapling       * *         *     

Merxmuellera cincta     *                   
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Metalasia cf. Acuta               *         

Metalasia dregeana DC.                         

Metrosideros angustifolia tree * * *   * * * * * * * * 

Metrosideros angustifolia sapling * * * * * * * * * * * * 

Metrosideros angustifolia seedling * * * * * * * * * * *   

Morella serrata tree *   * * * * *   * * * * 

Morella serrata sapling * * * * * * * * * * * * 

Morella serrata seedlings * * * *   * *   * * * * 

Nemesia diffusa Benth.             * *         

Notobubon tenuifolium          * *   *         

Oftia africana                         

Olea capensis  sapling                   *     

Othonna parviflora               *         

Panicum cf. schinzii                * * *     

Panicum schinzii *                       

Paraserianthes lophantha tree                         

Paraserianthes lophantha seedling                         

Passerina sp.                 *       

Passerina vulgaris     *                   

Pelargonium grossularioides          *   * *         

Pelargonium scabrum         * *     * *   * 

Pelargonium sp.1                         

Pellaea pteroides       *                 

Pennisetum macrourum     *       *   * *     

Pentameris distichophylla *   * *                 

Pentaschistis aurea       *                 

Pentaschistis pallida       *   *           * 

Pentaschistis patula          *   * *       * 

Phylica oleaefolia sapling         * * * * * *   * 

Platycaulos callistachyus                         

Platylophus trifoliatus tree * * * *                 

Platylophus trifoliatus sapling     *                   

Platylophus trifoliatus seedlings     *                   

Poaceae sp.2   * *                   

Podalyria sp.1 * * * *                 

Prionium serratum * *         * * * *     

Prismatocarpus fruticosus              * *       * 

Protea laurifolia *     * *               

Pseudobaeckia africana *   * *                 

Pseudoselago recurvifolia             *           
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Pseudoselago sp.2             * *         

Psoralea angustifolia                  *       

Psoralea aphylla usitata         * *   * *       

Psoralea pinnata * * * *                 

Psoralea sp.2     *                   

Pteridium aqualinum * * *   * * * *         

Restio multiflorus * * * *                 

Restio perplexus                         

Restionaceae sp.1                         

Restionaceae sp.2                         

Restionaceae sp.4                         

Restionaceae sp.6     * *                 

Restionaceae sp.7                         

Searsia angustifolia      *       *   * * * * 

Searsia lucida forma elliptica     *             *     

Searsia tomentosa             * *         

Rubiaceae sp.2               *         

Rubus sp. 2       *                 

Salix mucronata tree     *                   

Salix mucronata sapling     *                   

Salix mucronata seedling     *                   

Schizaea tenella *   * *                 

Secamone alpinii         *           * * 

Senecio rigidus                   *     

Species 100     * *                 

Species 101                         

Species 102                 * *     

Species 103                 *       

Species 104                 *       

Species 105         * * * * * *   * 

Species 107                 *       

Species 108             * * *       

Species 109                 *       

Species 110                 *       

Species 111         *   *   *       

Species 112             *   *       

Species 113         *           * * 

Species 114             * *         

Species 115           * * *     *   

Species 116         * * * *         
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Species 117             *           

Species 118             *           

Species 119             *           

Species 12                         

Species 121         *   * *       * 

Species 122               *         

Species 123         * *   *         

Species 124           *   *         

Species 125               *         

Species 126         *     *     * * 

Species 127         * *         *   

Species 128         * *             

Species 129         *               

Species 130         *               

Species 131                     *   

Species 132                     * * 

Species 133                     * * 

Species 14                         

Species 8 *                       

Stoebe plumosa     * *   * * * *   * * 

Struthiola myrsinites                         

Taraxacum officinale     *                   

Thesium nudicaule              *           

Todea babara *   * * * * * *   *     

Tribolium uniolae     * * *           *   

Ursinia sericea             * *       * 

Willdenowia glomerata       * * *               

Wimmerella arabidea             * *         

Zantedeschia aethiopica                          
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7 Appendix 2 

Table 7.1 Species list of historic and present (*) data collected from sample plot level accurate permanently marked sites in the Western 

Cape, South Africa. 
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Acacia longifolia 2-5 
        

* * 
   

* 
                Acacia longifolia seedling 

        
* * 

   
* 

                Acacia mearnsii 0.3-2 
        

* * 
 

* * * 
     

* 
 

* 
        Acacia mearnsii 2-5 

        
* * 

 
* * * 

                Acacia mearnsii seedling 
  

* 
     

* * * * 
                  Agathosma crenulata 

    
* * * * * 

         
* 

           Agathosma sp.1 
          

* 
                   Agrostis lachnantha 

        
* 

   
* 

                 Anthospermum spathulatum 
  

* * 
      

* * 
  

* * 
 

* 
 

* 
 

* * * * * 
    Apocynaceae sp. 1 

  
* 

                           Arctotis revoluta 
                        

* 
     Aristea capitata * 

   
* * * * 

      
* * 

              Askidiosperma chartaceum 
  

* 
        

* 
                  Aspalathus spinos 

 
 

       
* 

             
* 

      Asparagus africanus 
    

* 
                         Asparagus retrofractus 

         
* 

             
* 

 
* 

   
* 

Asparagus rubicundus 
  

* 
                   

* 
       Asparagus suaveolens 

         
* 

             
* 

      Asteraceae sp.18 
  

* 
                           Asteraceae sp.19 

  
* 

                           Asteraceae sp.20 
              

* 
 

* 
             Asteraceae sp.3 

          
* 

                   Athanasia crithmifolia 
                           

* 
 

* 

Athanasia trifurcata 
           

* 
                  Blechnum australe * 

                 
* 

 
* 

         Blechnum capense 
 

* * * * * * * 
        

* 
   

* 
         Blechnum punctulatum 

                   
* 

 
* 

        Boraginaceae sp.2 
               

* 
   

* 
 

* 
        Brabejum stellatifolium 0.3-2 * * * * * * * * * * * * * * * * * * * * * * 
  

* 
   

* 
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* 

Brabejum stellatifolium 2-5 * * * * * * * * * * * * * * * * * * * * 
 

* * 
  

* 
   

* 
Brabejum stellatifolium 
seedlings * * * * * * * * * 

 
* * * * * * * 

 
* * * * 

 
* 

  
* 

 
* 

 Brachylaena neriifolia 0.3-2 * * * * * * * * * 
   

* * * * * * * * * 
     

* 
 

* * 

Brachylaena neriifolia 2-5 * * * 
     

* * 
  

* * * 
 

* 
   

* 
   

* 
   

* 
 Brachylaena neriifolia 

seedlings * * * * * * * * 
     

* * * * * 
 

* * * * 
   

* * * * 

Briza maxima 
                       

* 
      Brown stalk green leaf 

 
* 

     
* 

          
* 

           Calopsis paniculata * * * 
 

* * * * * * 
 

* * * * * * * * * * * * * * * * * * * 

Cannomois virgata 
  

* 
   

* 
 

* 
      

* 
             

* 

Carpha glomerata 
         

* 
   

* 
       

* * * * * 
 

* 
 

* 

Cassytha ciliolata 
     

* 
         

* 
 

* 
           

* 

Centella villosa 
               

* 
       

* 
      Cerastium capense 

           
* 

                  Chasmanthe aethiopica 
       

* 
                      Chelianthes contracta 

  
* 

                    
* * 

     Cineraria alchemilloides 
                       

* 
      Cliffortia atrata 

        
* 

  
* 

                  Cliffortia cf. polygonifolia 
           

* 
                  Cliffortia dregeana  

       
* 

                      Cliffortia juniperina 
               

* 
              Cliffortia polygonifolia 

           
* 

                  Cliffortia pterocarpa 
  

* 
                           Cliffortia ruscifolia * * * 
   

* 
       

* * * * 
 

* 
 

* * * * 
   

* * 

Cliffortia sp.1 
   

* * 
    

* 
 

* 
 

* 
                Clutia cf. ericoides 

              
* 

 
* 

             Clutia sp.1 
   

* 
                          Conyza canadensis 

     
* 

       
* 

                Conyza sp.2 
        

* 
 

* * 
                  Crassula dejecta 

                         
* 

    Crassula rupestris 
                      

* 
 

* 
   

* 
 Crassula sp. 

                     
* 

 
* 

 
* 

    Cryptocarya angustifolia 2-5 
        

* 
                     Cryptocarya angustifolia 

seedling 
        

* * 
                    Cullumia ciliaris 

  
* 

 
* 
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Cunonia capensis 0.3-2 
 

* * 
    

* 
                      Cunonia capensis 2-5 * 

 
* 

                           Cunonia capensis seedling 
 

* * * 
  

* * 
                      Cyclopia sp.1 * 

 
* 

 
* 

 
* 

                       Cyperaceae sp.1 
  

* 
 

* 
                         Cyperus denudatus 

         
* 

        
* 

   
* * * * * 

 
* 

 Digitaria debilis 
           

* 
                  Digitaria sanguinalis 

        
* 

   
* 

                 Diospyros glabra * * * * * * * * * 
 

* * 
 

* * * 
 

* * * * * * * * * * * * * 

Dipogon lignosus 
                   

* 
          Dodonaea angustifolia 

               
* 

   
* 

   
* 

      Dodonaea viscosa 0.3-2 
              

* 
       

* 
 

* * * 
   Dodonaea viscosa seedling 

                      
* 

       Drosera spp. * 
       

* 
 

* 
   

* 
   

* 
 

* 
     

* 
 

* 
 Drossera capensis 

 
* 

               
* 

     
* 

   
* 

 
* 

Ehrharta ramosa 
     

* 
     

* 
       

* 
 

* 
 

* 
 

* 
 

* 
 

* 
Ehrharta ramosa subsp. 
aphylla 

  
* 

          
* * 

               Ehrharta rehmannii 
                      

* * * 
 

* 
 

* 
 Ehrharta sp.3 

            
* 

                 Ehrharta sp.5 
        

* 
 

* 
                   Ehrhata ramosa subsp. 

ramosa * * 
  

* 
      

* 
    

* 
 

* 
           Ehrhata sp.2 * 

 
* 

                           Elegia asperiflora 
    

* 
 

* 
                       Elegia capensis * * * * * * * * 

 
* 

    
* * * * * * * * * * * * * * * * 

Elytropappus intricata 
              

* 
 

* 
     

* 
   

* 
 

* 
 Epischoenus gracilis * * * * * * 

                        Eragrostis curvula 
       

* * 
 

* * * 
                 Eragrostis sarmentosa 

                      
* 

 
* 

 
* 

   Erica caffra 
 

* * * * * * * * * 
 

* * * * * * 
   

* * 
        Erica canescens 

  
* 

                           Erica curvirostris 
   

* 
                          Erica hispidula 

 
* 

 
* 

 
* 

                        Erica nudiflora 
          

* 
                   Erica pinea 

     
* * * 

                      Eriocephalus 
         

* 
         

* 
   

* 
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Euclea tomentosa 
         

* 
               

* 
    Euryops abrotanifolius 

              
* 

         
* * 

    Ficinia acuminata 
              

* 
 

* 
             Ficinia capitella 

  
* 

     
* 

                     Ficinia indica 
 

* * 
  

* 
   

* 
        

* 
   

* 
 

* 
   

* 
 Ficinia sp.2 * 

                             flat white hair stringy leaf 
          

* 
                   Freylinia lanceolata 0.3-2 

          
* 

            
* * * * 

 
* 

 Freylinia lanceolata 2-5 
        

* * * * * * 
        

* 
 

* * * 
 

* 
 Freylinia lanceolata seedlings 

           
* * * 

                Gnaphalium sp.1 
        

* 
 

* 
                   Hackea sericia 

  
* 

                           Halleria elliptica 
        

* 
         

* * 
 

* 
        Halleria lucida 0.3-2 

     
* 

 
* 

                      Halleria lucida 2-5 
    

* * 
 

* 
                      Halleria lucida seedling 

     
* 

                        Hartogiella schinoides 0.3-2 
 

* * * 
  

* 
       

* 
   

* 
           Hartogiella schinoides 2-5 

 
* 

                            Hartogiella schinoides 
seedlings * 

 
* * 

  
* * 

      
* 

               Hebenstretia lanceolata 
               

* 
 

* 
            Heeria argentea 0.3-2 

                
* * 

            Helichrysum cf. odoratissimum 
                  

* 
           Helichrysum odoratissimum 

    
* 

                         Helichrysum scabrum 
                           

* 
  Helichrysum sp.1 

                  
* 

           Hemarthria altissima 
           

* 
                  Hermannia sp. 

                 
* 

 
* 

 
* 

        Homalanthus populifolius 0.3-2 
                         

* 
    Hymenolepis sp.1 

          
* * 

 
* 

                Ilex mitis 0.3-2 * 
 

* 
 

* * * 
 

* 
                     Ilex mitis 2-5 * * 

   
* 

 
* 

                      Ilex mitis seedlings 
      

* 
                       Indigofera frutescens 

                     
* 

        Ischyrolepis fraterna 
    

* * * 
                       Ischyrolepis gaudichaudianus. 

             
* 

         
* * 

  
* 
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Ischyrolepis gossypina 
                            

* 
 Ischyrolepis subverticillata * * 

 
* 

 
* 

 
* 

     
* 

                Ischyrolepis tenuissima 
     

* 
                        Ishyrolepis sieberi * 

 
* 

    
* 

      
* 

       
* 

   
* 

   Isolepis digitata 
 

* 
                

* 
       

* 
 

* 
 Isolepis prolifera * * 

 
* 

   
* * * * * * * * * * * * * * * * * * * * * * * 

Juncus capensis 
        

* * 
  

* 
                 Juncus effusus 

    
* 

   
* 

 
* 

 
* * 

    
* 

          
* 

Juncus exsertus 
         

* 
                    Juncus lamatophyllus 

        
* * * * * * 

    
* 

 
* 

         Kiggelaria africana 0.3-2 
                  

* 
     

* 
     Kiggelaria africana seedlings 

                        
* 

     Lachnospermum fasciculatum 
               

* 
     

* 
        Laurembergia repens 

        
* 

         
* 

  
* 

        Leonotis cf. leonurus 
                     

* 
        Leucadendron salicifolium 

  
* * * * 

   
* * * 

                  Manulea juncea 
                   

* 
 

* 
        Mariscus thunbergii  

  
* 

               
* 

 
* 

 
* 

 
* 

 
* 

 
* 

 Maytenus acuminata 0.3-2 
      

* * 
                      Maytenus acuminata 2-5 

      
* * 

                      Maytenus oleoides 0.3-2 
       

* 
       

* 
         

* 
    Maytenus oleoides 2-5 

       
* 

          
* 

           Maytenus oleoides seedlings 
                  

* 
     

* 
 

* 
   Merxmuellera cincta 

     
* 

                        Metalasia cf. Acuta 
                     

* 
        Metalasia densa  

  
* 

                           Metalasia dregeana 
              

* 
               Metalasia muraltiifolia 

  
* 

                           Metrosideros angustifolia 0.3-2 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

Metrosideros angustifolia 2-5 * * * * * * 
  

* * * * * * * * * * * * * * * * * * * * * * 
Metrosideros angustifolia 
seedling * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

 Mohria caffrorum 
         

* 
                    Morella serrata 0.3-2 * * 

 
* * * * * * * * * * * * * * * * * * * * * * * * * * * 

Morella serrata 2-5 * * 
  

* * * * 
  

* * * * * * * * * * * 
 

* * * * * * * * 

Morella serrata seedlings * * * * * * * * * * * * 
 

* * 
 

* * * * * 
 

* * * * * * * * 
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Myrsine africana 
              

* 
               Nemesia diffusa Benth. 

                   
* 

 
* 

        Notobubon tenuifolium 
               

* 
 

* 
   

* 
        Oftia africana 

           
* * 

   
* 

             Olea capensis  0.3-2 
                         

* 
    Olea sp.1 0.3-2 

                        
* 

     Oncinema lineare 
        

* 
                     Oscularia ornata 

                    
* 

 
* 

     Osteospermum ciliatum 
    

* 
 

* 
                       Othonna parviflora 

           
* 

         
* 

        Othonna quinquidentata 
    

* 
 

* 
                       Panicum cf. schinzii 

          
* 

 
* 

        
* 

 
* 

 
* 

    Panicum schinzii 
 

* 
           

* 
        

* 
 

* 
 

* 
   Paraserianthes lophantha 0.3-

2 
            

* 
                 Paraserianthes lophantha 2-5 

           
* * * 

                Paraserianthes lophantha 
seedling 

           
* 

 
* 

                Paspalum urvillei 
        

* 
    

* 
    

* 
           Passerina sp. 

                       
* 

      Passerina vulgaris 
     

* 
       

* 
                Pelargonium grossularioides 

               
* 

   
* 

 
* 

        Pelargonium scabrum 
              

* * * * 
    

* * * * 
  

* * 

Pelargonium tabulare 
                  

* 
           Pellaea pteroides 

       
* 

                      Pennisetum clandestinum 
         

* 
                    Pennisetum macrourum 

    
* * * 

 
* 

 
* * * * 

     
* * 

 
* * * * 

    Pentameris distichophylla * * * 
 

* * * * 
                      Pentameris thuarii 

      
* 

                       Pentaschistis aurea 
       

* 
                      Pentaschistis pallida * 

      
* 

         
* 

           
* 

Pentaschistis patula 
               

* 
   

* 
 

* 
       

* 

Pentaschistis sp. 2 
              

* 
               Pentaschistis sp.1 

          
* 

                   Persicaria lapathifolia 
        

* 
 

* 
 

* 
                 Peucedanum galbanum 

          
* 

     
* 

             Phylica imberbis 
  

* 
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Phylica oleaefolia 0.3-2 
              

* * 
 

* 
 

* 
 

* 
 

* * * 
  

* * 

Phylica oleaefolia 2-5 
                      

* 
 

* 
     Phylica oleaefolia seedling 

              
* 

               Platycaulos callistachyus 
        

* * * * 
 

* 
                Platycaulos subcompressus 

  
* 

                           Platylophus trifoliatus 0.3-2 * 
 

* 
 

* * 
                        Platylophus trifoliatus 2-5 

 
* * * 

 
* 

 
* 

                      Platylophus trifoliatus 
seedlings 

     
* 

                        Poaceae sp. 8 
              

* 
               Poaceae sp.2 

   
* 

 
* 

  
* 

 
* * * * 

                Poaceae sp.3 
        

* 
 

* 
                   Podalyria sp.1 * * 

 
* * * * * 

                      Podalyria sp.3 
             

* 
                Prionium serratum * * * * 

    
* 

 
* 

 
* * 

     
* * * * * * * 

    Prismatocarpus fruticosus 
                   

* 
 

* 
       

* 

Protea laurifolia * * 
    

* * 
       

* 
              Pseudobaeckia africana * * * 

  
* * * 

                      Pseudognaphalium luteo-
album 

          
* 

 
* * 

                Pseudognaphalium undulatum  
         

* 
                    Pseudoselago recurvifolia 

                   
* 

          Pseudoselago sp.2 
                   

* 
 

* 
        Psoralea angustifolia 

                       
* 

      Psoralea aphylla usitata 
               

* 
 

* 
   

* 
 

* 
      Psoralea pinnata 

 
* 

 
* 

 
* 

 
* 

                      Psoralea sp.1 
  

* 
       

* 
                   Psoralea sp.2 

     
* 

                
* 

 
* 

     Pteridium aqualinum * * * * * * 
  

* 
 

* * 
  

* * * * * * * * 
        Pycreus polystachyos 

        
* 

                     Quercus robur 0.3-2 
             

* 
                Quercus robur 2-5 

             
* 

                Quercus robur seedling 
             

* 
                Restio multiflorus 

 
* 

 
* * * 

 
* 

     
* 

                Restio perplexus * 
                             Restionaceae sp. 9 

                  
* 

           Restionaceae sp.1 
        

* 
 

* * 
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Restionaceae sp.2 
        

* * * * 
 

* 
                Restionaceae sp.3 

        
* 

                     Restionaceae sp.4 
  

* 
     

* 
 

* * 
                  Restionaceae sp.6 

     
* 

 
* * 

                     Rhamnaceae sp.1 
          

* 
                   Rhus angustifolia 

     
* 

   
* * * 

 
* 

    
* * 

  
* * * * * * * * 

Rhus lucida forma elliptica 
     

* 
            

* 
 

* 
 

* 
 

* * * 
 

* 
 Rhus tomentosa 

                   
* 

 
* 

        Rubiaceae sp.1 
  

* 
 

* 
 

* 
                       Rubiaceae sp.2 

                     
* 

        Rubus sp. 2 
       

* 
                      Rubus sp.1 

        
* * 

                    Salix mucronata 0.3-2 
    

* * 
  

* * * * * 
         

* 
       Salix mucronata 2-5 

    
* * 

  
* * * * * 

                 Salix mucronata seedling 
    

* * * 
   

* 
 

* 
         

* 
 

* 
     Salvia sp.1 

                        
* 

     Schizaea tenella * * * 
  

* 
 

* 
      

* 
 

* 
             Secamone alpinii 

               
* 

           
* 

 
* 

Senecio rigidus 
                         

* 
    Setaria sp.2 

          
* 

 
* 

                 Solanum sp.1 
            

* 
                 Stoebe plumosa 

  
* 

  
* * * 

   
* 

  
* 

  
* 

 
* 

 
* * * 

  
* * * * 

Stoebe sp.1 
          

* 
 

* 
                 Stoebe spiralis 

    
* 

 
* 

                       Struthiola myrsinites 
           

* 
                  Struthiola sp.1 

             
* 

                Taraxacum officinale 
     

* 
       

* 
                Tetraria c.f. flexuosa 

    
* 

                         Thamnochortus lucens 
      

* 
                       Thesium nudicaule 

                   
* 

          Thesium sp.1 
              

* 
               Todea babara * * * 

 
* * * * 

      
* * * * * * * * 

   
* 

    Tribolium uniolae 
     

* 
 

* 
       

* 
           

* 
  Ulmus sp. 1 * 

                             Ursinia abrotanifolia 
  

* 
 

* 
                         Ursinia sericea 

                   
* 

 
* 

       
* 
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Vellereophyton dealbatum 
            

* * 
                Wahlenbergia rubiodes  

              
* 

               Willdenowia glomerata 
     

* 
 

* 
       

* 
              Willdenowia incurvata 

              
* 

 
* 

           
* 

 Wimmerella arabidea 
                  

* * * * 
  

* 
     Zantedeschia aethiopica 

           
* 

                  Zyrphelis montana 
  

* 
      

* 
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