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Introduction

The goal of epidemiology is to identify

the biological, behavioral, and environ-

mental causes of health outcomes or

diseases and apply this knowledge to the

development of effective disease interven-

tions to improve public health [1–3].

Diseases are complex phenomena that arise

from various interacting processes, chal-

lenging epidemiologists to extract impor-

tant causal relationships from observational

and experimental data [1]. Infectious

diseases add a level of complexity because

infection occurs through (direct or indirect)

interaction between susceptible and infec-

tious individuals. The rate of new infections

depends on the number or proportion of

individuals who are susceptible and infec-

tious. These quantities themselves evolve

through time as new individuals become

infected. In other words, infectious disease

dynamics are nonlinear. The biological,

behavioral, evolutionary, and environmen-

tal nuances of each disease–host system

determine the dynamics of disease inci-

dence and have important implications for

designing and evaluating interventions.

Patterns of disease do not only arise from

individual-level characteristics (e.g., genet-

ics, behavior, age, sex, health status), but

also from the history of infection in the

greater population. Thus, consideration of

individual-level data independent of the

population context may be misleading

[4,5]. In fact, the number or proportion

of susceptible, infected, and immune indi-

viduals in the population often plays a

greater role in determining the current

individual-level risk of infection than an

individual’s characteristics [6,7].

Thus, population-level epidemiological

patterns emerge from the complex, inter-

acting processes governing pathogen biolo-

gy, host biology, host behavior, the envi-

ronment, and their interactions [4,8]. The

field of epidemiology has taken two broad

methodological approaches to understand

these interacting processes. While various

terms have been used to describe these two

subfields, we call them classical epidemiol-

ogy and dynamical epidemiology (see Text

S1 for more details). Classical epidemiology

builds on assumptions of independence

between individuals (or clusters thereof) to

identify correlations between risk (or pro-

tective) factors and disease, with the goal of

establishing a causal relationship between

them [1,3,9]. Dynamical (mechanistic) ep-

idemiology has largely developed from

ecology and its subfield, population dynam-

ics, along with other applications of math-

ematics to biological systems [10,11]. In

contrast to the correlational approach of

classical epidemiology, dynamical epidemi-

ology aims to understand disease dynamics

with nonlinear transmission models that

explicitly account for the interactions be-

tween individuals [5,8,12].
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Firmly rooted in empirical research,

classical epidemiology takes a phenome-

nalistic approach that focuses more on

whether a causal relationship exists [13]

than the mechanistic nature of the

relationship [5]. While extremely practi-

cal, this reductionist approach frequently

ignores the dependence between observa-

tions of infectious outcomes and can lead

to spurious conclusions [5,14,15]. Dy-

namical epidemiology, in contrast, focuses

on how mechanistic interactions between

individuals lead to population-scale pat-

terns and emphasizes understanding real-

istic dynamics. Ironically, this realism

often comes at the expense of being par-

tially or completely divorced from real

data, because detailed data on mechanis-

tic processes are rare. Further, dynamic

models frequently ignore sources of bias

or random error in the data, which can

dramatically alter model results [6,16].

For example, dynamic models often use

parameters from the literature to describe

mechanistic processes without careful

attention to the original source of the

parameter’s estimation and associated

bias or error therein. Model results are

also often used to claim strong conclu-

sions without comparing model outputs to

real epidemiological time series data.

Dynamic epidemiologists nevertheless at-

tempt to make robust conclusions using

sensitivity analyses that explore model

behavior over a large set of viable

hypothetical scenarios.

Both approaches have played successful

roles in public health [8,17–19], though

remaining rather distinct fields with studies

using dynamical models often published in

ecological, mathematical, or interdisciplinary

journals but rarely in epidemiological jour-

nals. Fifteen years ago Susser and Susser

(1996) advocated the more coherent disci-

pline of eco-epidemiology, with classical

epidemiology subsumed by a greater ecolog-

ical framework that considers mechanistic

processes at various physical, temporal, and

demographic scales [3,20,21]. And though,

in our experience, scientists at advanced

stages in either field are often largely

unaware of the other field’s existence,

projects integrating these approaches have

increased in research practice, often yielding

otherwise unattainable insight. For example,

using a dynamic model Lietman et al. (1999)

found that trachoma (the leading cause of

infectious blindness worldwide) elimination

may be feasible by biannual treatment of

children with a single dose of azithromycin

[22]. They then formulated a cluster-ran-

domized controlled trial that verified this

finding empirically [23]. Finally, after fitting

a dynamic model to the empirical data

collected during this trial they demonstrated

that individual-level transmission efficiency

decreases with decreasing disease prevalence,

making elimination of the disease easier than

expected [24]. As a second example, Eisen-

berg et al. (2011) found that individual-level

antibiotic use proved insufficient to explain

geographic variation in the prevalence of

Escherichia coli antibiotic resistance, but that

this phenomenon could be explained by

interactions between village-specific antibiot-

ic use and transmission rates in a dynamic

model [15]. In both examples, a close

alliance between methods in classical and

dynamical epidemiology allowed systems

mechanisms to inform study design and vice

versa, yielding insight with a real potential to

improve public health.

Despite such successes, training options

within the fields remain distinct. Further-

more, the very few scientists with training in

both disciplines seldom receive formal in-

struction explaining how they complement

each other. Reflecting the severity of this rift,

a recent published symposium on the future

of epidemiological education lacked any

discussion of dynamical approaches [25–

28]. We do not believe that all dynamical

epidemiologists must be able to design

empirical studies nor that all classical

epidemiologists must be able to construct

dynamical models. However, understanding

the utility of and fundamental concepts

within each discipline will allow fruitful

collaboration between the fields as demon-

strated in the examples above. The ability to

think from both perspectives allows research-

ers to choose the most suitable set of methods

for a given question [1,3,9,20,21].

The annual Clinic on the Meaningful

Modeling of Epidemiological Data (MMED)

at the African Institute for Mathematical

Sciences in Muizenberg, South Africa, is

working to address this gap. African capacity

in epidemiology is in short supply despite the

continent’s disproportionate burden of dis-

ease and burgeoning new cohorts of African

students trained in biomathematics, biology,

and public health. MMED offers partici-

pants (ranging from undergraduate students

to professors) exposure to a broad range of

concepts and techniques from both classical

and dynamical epidemiology, while explicitly

highlighting how the two approaches com-

plement each other and fit into a larger

context. Selected lecture material from

MMED is provided in the Figures S1, S2,

S3, S4, S5, S6, S7, S8.

During MMED we designed the follow-

ing pedagogical tool to address the rift

between classical and dynamical epidemi-

ology in which participants not only design

studies and collect data prior to analysis, but

also observe pathogen transmission in a way

that reveals how epidemics are inherently

nonlinear stochastic (i.e., random) process-

es. The approach is hands-on, consisting of

the real-time simulation of a stochastic

Summary

Modern infectious disease epidemiology builds on two independently developed
fields: classical epidemiology and dynamical epidemiology. Over the past decade,
integration of the two fields has increased in research practice, but training
options within the fields remain distinct with few opportunities for integration in
the classroom. The annual Clinic on the Meaningful Modeling of Epidemiological
Data (MMED) at the African Institute for Mathematical Sciences has begun to
address this gap. MMED offers participants exposure to a broad range of concepts
and techniques from both epidemiological traditions. During MMED 2010 we
developed a pedagogical approach that bridges the traditional distinction
between classical and dynamical epidemiology and can be used at multiple
educational levels, from high school to graduate level courses. The approach is
hands-on, consisting of a real-time simulation of a stochastic outbreak in course
participants, including realistic data reporting, followed by a variety of
mathematical and statistical analyses, stemming from both epidemiological
traditions. During the exercise, dynamical epidemiologists developed empirical
skills such as study design and learned concepts of bias while classical
epidemiologists were trained in systems thinking and began to understand
epidemics as dynamic nonlinear processes. We believe this type of integrated
educational tool will prove extremely valuable in the training of future infectious
disease epidemiologists. We also believe that such interdisciplinary training will
be critical for local capacity building in analytical epidemiology as Africa
continues to produce new cohorts of well-trained mathematicians, statisticians,
and scientists. And because the lessons draw on skills and concepts from many
fields in biology—from pathogen biology, evolutionary dynamics of host–
pathogen interactions, and the ecology of infectious disease to bioinformatics,
computational biology, and statistics—this exercise can be incorporated into a
broad array of life sciences courses.
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outbreak among course participants, in-

cluding realistic data reporting, followed by

analyses from both epidemiological tradi-

tions. We believe this type of integrated

educational tool can stimulate the training

of a cohort of infectious disease epidemiol-

ogists who are well acquainted with both the

dynamical systems nature of epidemiologi-

cal processes as well as the empirical design

and analytical issues associated with inves-

tigating causal relationships between risk

factors and disease.

The Emergence of an Infectious
Disease: Muizenberg
Mathematical Fever

At the 2010 and 2011 MMED Clinics

we instigated outbreaks of a novel infectious

agent, Muizenberg Mathematical Fever

(MMF), in our course participants. The

infectious agent was a paper form (Text S2).

Index cases were initiated through surrep-

titious distribution of a small number of

infection forms on the first day of the

Clinic. The paper provided simple instruc-

tions for newly infected individuals. Fol-

lowing the instructions, individuals used

random number generators in the free

statistical programming language R [29] to

determine a Poisson random number (see

Box 1) of potentially infectious contacts

they would generate. The infected individ-

ual would then print out new infection

forms from a webpage and discreetly hand

these to other participants without knowl-

edge of who had already been infected,

recording the time of those infectious

contacts. A Bernoulli random number

generator was similarly used to determine

whether or not an infection was symptom-

atic. Only symptomatic individuals would

report to our health care system (a specified

faculty member) that they were sick.

However, all new infections were reported

to a second faculty member via email for

tracking purposes. Recovery consisted of

delivering the infecting paper to a third

faculty member. Thus, each outbreak

generated two datasets: (1) a realistic

provider-based surveillance system that

recorded symptomatic cases and time of

symptom onset; and (2) an unrealistically

accurate knowledge of the underlying

transmission dynamics.

The outbreaks percolated through par-

ticipants before burning out, much like

Box 1. Teaching Tools

Prior to adopting this exercise, we recommend reviewing Datasets S1–S7, Figures S1–S8, Texts S1–S5, and
linked resources. These include:

N MMED lecture slides (Figures S1–S8)

N An example document that provides instructions that students are to carry out upon being exposed (this document doubles
as the infectious agent; being handed this document constitutes exposure to MMF)

N Data obtained (by the authors) from prior MMF outbreaks

N An example survey used to identify risk factors associated with contracting MMF and corresponding data.

N R code that organizers may experiment with to assist them in determining initial parameter values (for more information on
the R computing language and to download the latest version of R, please see http://www.r-project.org)

N Additional R code that provides illustrative exercises that can be performed using MMF data (e.g., identification of risk factors,
calculating measures of effect, confidence intervals, etc.)

N Additional online resources containing introductory materials on both epidemiological traditions

N Information on infectious diseases and epidemics to share with students (e.g., ProMED, Center for Disease Control website,
and other such resources)

Preparation guide

N Before implementation, organizers should set values for epidemiological parameters (initial number of infections, potential
protective factors, R0, the proportion symptomatic) that take into account the number of participants and the types of
analyses that students will perform; we suggest doing this by simulating outbreak dynamics and have provided example R
code Texts S3–S4.

N If a protective factor is induced (e.g., ‘‘vaccination’’ or other form of immunity), ensure that the number of immune individuals
will be sufficient for an effect to be detected and that the epidemic is likely to take off when accounting for immunity; also,
attempt to make the factor something that will be readily detectable via an appropriately designed questionnaire

N Prepare a full roster of participating individuals (i.e., those that could be exposed) for tracking purposes

N Provide some brief training for individuals so that they are able to generate the appropriate random numbers (note: while we
have had success with R, any software package that can generate Poisson and Bernoulli random variables could be used)

Tips for running the exercise as part of a course for credit

N To ensure timely and full participation, we suggest using incentives (e.g., linking participation to student evaluation, course
participation credit, etc.).

N Do not initiate the outbreak until the course list has been finalized (i.e., after the end of the drop/add period)

N If possible, provide a link to the infectious agent (i.e., the instruction document) that is only accessible to course participants
(e.g., through a Blackboard or Sakai site) and cannot be found by searching; this will help ensure that the epidemic is confined
to the closed population of course participants

N Make sure participants know whom they may and may not infect (e.g., provide a course roster to each student or refer them
to a course management website).

N Once the outbreak is underway, discretely remind participants to follow through accordingly (i.e., ‘‘I was expecting to receive
emails from some of you—don’t forget to follow up’’)

PLoS Biology | www.plosbiology.org 3 April 2012 | Volume 10 | Issue 4 | e1001295



epidemics of biological pathogens. While

we determined R0 (the number of suscep-

tible individuals infected by an index case

introduced into an entirely susceptible

population; see glossary in Text S1) and

the symptomatic proportion, participants’

behavior (e.g., who they infected and when

they did it) also affected disease dynamics.

The unpredictable nature of these events

added to the realism of our outbreak.

During the 2011 outbreak, we dictated that

repeat attendees would be immune to

MMF, thereby seeding a protective (risk)

factor for participants to find during the

analytical stage of the exercise.

Figure 1. Muizenberg Mathematical Fever epidemic time series. Epidemic time series for the outbreaks at the 2010 (A) and 2011 (B)
outbreaks. The former and latter outbreaks differ by their different basic reproductive numbers (defined as the average number of people an
infectious individual infects if the rest of the population is susceptible; R0 = 1.23 and 1.82, respectively), the initial number of infectious individuals in
the population (2 and 4, respectively), and the number of individuals immune at the start of the outbreak (0 and 14, respectively). (C and D)
demonstrate how the effective reproductive number (Reff; average number of individuals each infected person infects) changes during the course of
the outbreak as the number of susceptibles decreases and that the epidemic begins to burn out when Reff decreases below 1 and infectious
individuals no longer replace themselves with new infections. The script for production of and further detail on this figure are given in Text S3.
doi:10.1371/journal.pbio.1001295.g001

Table 1. Examples of epidemiological methods that can be used during the exercise.

Field Study Analysis Data Goal Pedagogical Value

Risk factor Case-control
or cohort

Logistic or Poisson
regression (generalized
linear model)

Disease outcomes,
risk factors

Understand what variables
increase (or decrease) risk
of disease/infection

Exposure to survey design, data
entry and cleaning, and statistical
methods; understand effects of
confounding and bias in data
analysis

Mathematical Estimation of R0

and infectious
period

Probability distribution
fit to infectious contact
data and infectious
periods

Contact tracing data
and observed
infectious periods

Characterize individual
heterogeneity in infectiousness
and overall pathogen
contagiousness

Understand utility of contact
tracing data in characterizing
disease dynamics, understand R0

as an epidemic threshold,
understand how individual
variation can affect disease
dynamics

Outbreak
simulation

Stochastic SIR individual-
based model with
Gillespie algorithm

Estimates of R0,
incubation and
infectious periods

Understand how outbreak size
is affected by immune
proportion

Awareness of effects of
stochasticity in outbreaks of small
sizes, gain intuition for how
simulation can be used to answer
applied questions

Further explanation and R scripts are provided in Texts S1, S3, and S4.
doi:10.1371/journal.pbio.1001295.t001
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Outbreak Investigation

Initiation of the MMF outbreaks resulted

in a complex epidemiological process

(Figure 1) that produced several datasets.

These data gave participants the opportu-

nity to apply a variety of methods from

both classical epidemiology and dynamical

epidemiology to both characterize and

understand the transmission process. Many

participants were well trained in dynamical

epidemiology, but lacked strong empirical

skills. Thus, we placed an emphasis on

understanding all the steps from data

generation to analysis [25]. Participants

learned to clean raw datasets, putting them

into analyzable form, formed small groups

and chose one or more research goals, and

then selected the appropriate methods to

achieve those goals (Table 1), thereby

learning concepts such as confounding,

selection bias, information bias, and ran-

dom error as they proceeded to identify risk

factors for disease exposure (Box 2;

Figure 2). In order to collect data for a

retrospective cohort study participants

crafted surveys (Text S5), learning aspects

of survey design. Participants conducting

mathematical analyses learned the relation-

ship between susceptible depletion and

epidemic fadeout (Box 2; Figure 1), simu-

lated the effect of vaccination or immunity

on outbreak dynamics (Figure 3), and

explored how heterogeneity in disease

network structure affects transmission dy-

namics and, subsequently, disease inci-

dence. Groups then presented their results,

describing their goals, methods, results, an

interpretation of these results, and any

shortcomings. Importantly, these presenta-

tions revealed methods’ assumptions and

utilities, clarifying how the various risk

factors and mathematical methods differ

from and complement each other. After

their presentations groups were asked

various questions to assess their under-

standings of the various concepts and

methods presented (Box 3). A complete

how to description of the exercise (including

R scripts for reproducing the various

projects, Figures 1–3, the necessary data-

sets, and other analyses) and additional

variations thereof are given in Texts S3, S4

and Datasets S1, S2, S3, S4, S5, S6, S7.

Conclusion

This educational approach provides a

much-needed conceptual integration of

risk factor and mathematical approaches

in epidemiological training, illuminating

their strengths, weaknesses, and how they

complement each other. Further, this

exercise is of interest and understandable

to students in other fields. Much of the

exercise is simple enough to be performed

by adequately trained high school students

and could therefore even serve as an early

introduction to infectious disease epidemi-

ology. The exercise is also perfectly suited

to undergraduate or graduate courses in

epidemiology, infectious diseases, public

health, biomathematics, computational

biology, statistics, and nonlinear dynamics.

Such tools will stimulate training of

epidemiologists able to think from both

the classical and dynamical perspectives.

Particularly in developing countries where

training is only slowly becoming more

interdisciplinary, exercises such as MMF

teach participants how subfields of public

health complement each other and pro-

duce professionals more able to collabo-

rate across disciplines.

The most recent updates to supplemen-

tary material as well as an online webpage

for running the epidemic without use of R

are available at http:/lalashan.mcmaster.

ca/theobio/mmed/index.php/MMF.

Box 2. Concepts at a Glance

Understanding Concepts in the Natural History of a Disease

N Introduction to the concepts of incubation, latency, infectiousness, being a/symptomatic, virulence, pathogenicity, immunity,
transmissibility, pathogen evolution

Classical Epidemiology

N Epidemiological study designs (e.g., case-control and cohort studies)

N Outbreak investigation methodology (case definition, contact tracing, epidemic curves)

N Measures of effect (e.g., odds ratios, relative risk)

N Confounding, bias, and interaction

Dynamical Epidemiology

N Introduction to a simple Susceptible-Infected-Recovered (SIR) model

N Introduction to concepts of the basic and effective reproduction numbers, attack rate, and herd immunity

N Using dynamic models to answer public health questions (e.g., using models as a means to explore counterfactual instances
of disease occurrence)

Biostatistics and Probability

N Probability distributions and generation of random variables

N Regression, confidence intervals, and hypothesis testing

N Parameter estimation (e.g., maximum likelihood estimation)

Practical Experience with Broad Application

N Questionnaire design

N Data collection, cleaning, visualization, and analysis

N Verbal communication skills (i.e., presentation of results)

PLoS Biology | www.plosbiology.org 5 April 2012 | Volume 10 | Issue 4 | e1001295



Figure 2. Demonstration of information and confounding bias with simulated outbreak data. (A) Muizenberg Mathematical Fever 2011
outbreak data to illustrate how using a case definition with imperfect sensitivity (symptomatic disease) can cause nondifferential misclassification bias
(the category of information bias where exposed and unexposed individuals are equally likely to be misclassified). Nondifferential misclassification
biases the association between a risk factor and a disease outcome towards the null hypothesis of no association (odds ratio = 1). While attendance at
the prior year’s clinic was actually protective (black square and 95% CI), this bias was sufficient to cause the confidence interval for the odds ratio of
this very protective variable to overlap (gray). (B) illustrates how a risk factor (arrival a day or more early to the clinic) that has no real association to a
disease outcome can appear associated through confounding. Individuals who had attended the clinic in prior years were less likely to come to the
clinic early and were also protected (i.e., A). Consequently, early attendance appeared associated with a higher risk of disease in a univariate analysis
(gray) though the CI contains the null hypothesis of no association in a multivariate analysis that adjusts for prior attendance (black). The script for
production of and further detail on this figure are given in Text S3.
doi:10.1371/journal.pbio.1001295.g002

Figure 3. Utility of stochastic simulation to study the effect of vaccination on future outbreaks. (A) Five stochastic simulations of
Muizenberg Mathematical Fever outbreaks using transmission parameters fit from the 2011 outbreak data but with only one infected individual
initiating the outbreak (instead of four) but the same proportion initially immune (25%). In comparison to Figure 1A, the outbreak would appear less
likely to take off (with four simulated outbreaks burning out by Wednesday) if only one infected individual initiated the outbreak. (B) shows the
distribution of outbreak size (total number infected before burnout) among simulated outbreaks in populations with different immune proportions
at the outbreak initiation. The black line shows the median outbreak size among 1,000 stochastic simulations for each immune proportion and the
gray regions show 10% quantiles of outbreak size. Only small levels of immunity are necessary to make outbreaks rare (with a fifth of the population
immune 50% of simulated outbreaks never exceed more than two secondary cases), but just by chance larger outbreaks still occur. The script for
production of and further detail on this figure are given in Text S3.
doi:10.1371/journal.pbio.1001295.g003
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Supporting Information

Dataset S1 Line list of MMF infec-
tions from MMED 2010.
(CSV)

Dataset S2 Contact tracing data
from MMED 2010.
(CSV)

Dataset S3 Line list of MMF infec-
tions from MMED 2011.
(CSV)

Dataset S4 Contact tracing data
from MMED 2011.
(CSV)

Dataset S5 Risk factor data from
MMED 2011, collected using the
survey in Text S5.
(CSV)

Dataset S6 Risk factor data from
MMED 2010.

(CSV)

Dataset S7 Infectious period data
from the MMF outbreak at MMED
2011.

(CSV)

Figure S1 Lecture slide 1: introduc-
tion to disease dynamics.

(PDF)

Figure S2 Lecture slide 2: introduc-
tion to dynamics of vector-borne
diseases.

(PDF)

Figure S3 Lecture slide 3: demo-
graphic stochasticity.

(PDF)

Figure S4 Lecture slide 4: study
design and analysis in epidemiology.

(PDF)

Figure S5 Lecture slide 5: introduc-
tion to statistical philosophy.

(PDF)

Figure S6 Lecture slide 6: introduc-
tion to likelihood.

(PDF)

Figure S7 Lecture slide 7: likeli-
hood fitting and dynamic models I.

(PDF)

Figure S8 Lecture slide 8: likeli-
hood fitting and dynamic models II.

(PDF)

Text S1 This file includes a glossa-
ry and detailed information for

Box 3. Evaluation Tools

Questions to gauge knowledge and understanding of the exercise
For students with little or no prior knowledge or technical training (i.e., high school level and early undergraduates)

N What is the difference between an infectious disease and a communicable disease?

N How might you collect information on a disease outbreak?

N What might cause an outbreak to end?

For students with some prior knowledge and/or technical training (i.e., advanced undergraduates and graduate students)

N What determines how many cases occur in an outbreak?

N What determines how long an outbreak lasts and when the peak occurs?

N Why aren’t data a perfect representation of reality?

N Is it possible to predict whether an epidemic will occur when a pathogen is introduced into a population?

N How and why might an individual’s risk of infection change over the course of an outbreak? When is average individual risk
the highest?

N What individuals are most likely to be infected in an outbreak of communicable disease?

N Why do some pathogens cause epidemics while others do not?

N Why don’t all individuals in a population have to be vaccinated to prevent an epidemic?

Evaluative activities
For students with little or no prior knowledge or technical training

N Have students describe the life cycle of MMF by matching infectious disease terms (such as ‘‘latent period’’ and ‘‘transmission
event’’) to aspects of the exercise and discussing in relation to a real pathogen

N Have students plot and explain data (e.g., the epidemic curve, the cumulative incidence through time, the distribution of
infectious contacts, latent periods, and infectious periods)

For students with some prior knowledge and technical training

N Have students describe the epidemic curve, explain differences in data collection that might influence aspects of the
observed curve (e.g., a case definition that relies on symptoms or reporting)

N Have students estimate parameters (such as those describing the latent and infectious period distributions) on a dataset from
another source

N Have students pick a real immunizing infection with available estimates of the latent period, infectious period, and
transmissibility (R0) are available and then reparameterize the stochastic simulations using the code available or their own
code to compare the expected dynamics of MMF and their chosen pathogen

N Have students discuss what aspects of the epidemic dynamics and data collection determine the ease with which a classical
epidemiology study can detect which individual-level risk factors are associated with a higher probability of infection.

N Have students conduct exercises/analyses as described and present on their projects, including data collection, cleaning, and
analysis as well as any unexpected difficulties they encountered

PLoS Biology | www.plosbiology.org 7 April 2012 | Volume 10 | Issue 4 | e1001295



instructors on implementation of
the exercise, including ideas for
development of group projects and
description of possible variations.
(DOC)

Text S2 The infection notification
form used as the infectious agent.
Before use, the form should be tailored to

the specific course or classroom setting by

adjusting the parts of the form highlighted

in yellow. Instructors may also want to

change the name of the ‘‘disease’’ to fit the

context of their course.

(DOC)

Text S3 Code for producing the
figures in the article.
(TXT)

Text S4 Code for conducting anal-
yses described in Text S1.
(TXT)

Text S5 Survey developed by
MMED participants following the
2011 MMF outbreak to gather data
on potential risk factors.

(PDF)
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