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ABSTRACT 
 

Petri disease and esca are devastating grapevine trunk diseases and compromise the 

sustainability of viticulture world-wide. Despite being extensively studied, knowledge of 

inoculum sources and mechanisms of spread of the causal pathogens is limited. Arthropods 

have been suspected to play a role in the spread of Petri disease and esca pathogens. 

However, little information is known about the extent to which arthropods are associated 

with these pathogens. This study aimed to determine whether arthropods occurring within or 

on declining grapevines, are associated with trunk disease pathogens and to identify 

arthropods associated with pruning wounds. The potential of selected arthropods to act as 

vectors of trunk disease pathogens was also investigated. 

Two vineyards exhibiting grapevine trunk disease infections were sampled weekly 

for two years for collection of arthropods. Arthropods were collected using pruning wound 

traps, visual searches as well as trunk and cordon traps. Fungal spores from surfaces of 

arthropods were collected in water. Samples were subjected to nested PCR using primers 

Pm1/Pm2 and Pch1/Pch2 to verify the presence of Phaeoacremonium spp. and 

Phaeomoniella chlamydospora, respectively. Water samples were also cultured and 

grapevine trunk disease pathogens obtained were identified by sequencing the internal 

transcribed spacers 1 and 2 and the 5.8S rRNA gene or the partial beta-tubulin gene. A total 

of 10 875 arthropod individuals, belonging to more than 31 families, were collected from 

declining grapevines. The most abundant arthropods included millipedes, ants, spiders and 

beetles. Portuguese millipedes and cocktail ants were associated with fresh grapevine 

pruning wounds. Thirty-three percent of the 5677 water samples analysed, contained 

propagules of pathogens associated with Petri disease and esca. Of these, 37 % were 

recovered from millipedes, 22 % from cocktail ants, 15 % from spiders and 10 % from 

beetles. All the major groups of grapevine trunk diseases were detected on the arthropods. 

Phaeoacremonium species were detected in 1242 samples while Phaeomoniella 

chlamydospora was identified from 855 samples. Other fungi isolated included members of 

the Botryosphaeriaceae, Diatrypaceae and Diaporthales.  

The potential of grapevine sap as a food source for Portuguese millipedes and 

cocktail ants was investigated, in vitro. Millipede individuals were offered a choice between 

water and grapevine sap while ants in nests were presented with grapevine sap, tuna and 

water and monitored for ingestion of sap. Both taxa preferred grapevine sap over the other 
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food items, indicating close association with pruning wounds. Subsequently, the ability of 

both taxa to transmit a DsRed-transformed Phaeomoniella chlamydospora isolate to fresh 

pruning wounds of canes in polystyrene strips, floating in water, and potted vines was 

tested. Arthropods were exposed to the fungus for 24 hours and transferred to the base of the 

plants and canes and were removed after three days. Isolations after a month revealed that 

millipedes and ants were capable of transmitting the fungus onto wounds and cause 

infection. Millipede faecal pellets were also evaluated as potential sources of inoculum. 

Millipedes were fed on Phaeomoniella chlamydospora for 24 hours, surface sterilised and 

allowed to defaecate in sterile Petri dishes overnight. Faecal material was collected, 

macerated in water and plated onto potato dextrose agar. Propagules of Phaeomoniella 

chlamydospora survived passage through the gut of millipedes and were passed out in a 

viable state to form colonies of Phaeomoniella chlamydospora.  

This study concludes that a wide variety of arthropods can be a source of inoculum 

of trunk diseases in vineyards. The results of the dissemination trial provides evidence that 

millipedes and ants are able to disseminate and infect vines with Phaeomoniella 

chlamydospora. It is therefore, highly likely that other grapevine trunk disease pathogens 

are transmitted in the same manner. This knowledge highlights the need for control of 

certain arthropods to be taken into consideration when managing grapevine trunk disease 

pathogens. 
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OPSOMMING 
 

Petri siekte en esca is verwoestende wingerd stamsiektes en verhinder die 

volhoubaarheid van wingerdproduksie wêreldwyd. Hierdie siektes is al intensief bestudeer, 

maar kennis rakende die inokulum bronne en meganismes van verspreiding van die 

veroorsakende patogene is beperk. Arthropoda is al vermoed om ‘n rol te speel in die 

verspreiding van Petri siekte en esca patogene, maar weinig informasie is bekend oor die 

mate waartoe arthropoda geassosieer is met die patogene. Hierdie studie het ten doel gestel 

om die arthropoda wat op of in wingerdstokke wat terugsterf voorkom te identifiseer en te 

bepaal watter van die arthropoda geassosieer is met stamsiekte patogene. Daar is ook ten 

doel gestel om die arthropoda wat geassosieer is met vars snoeiwonde te identifiseer en ook 

die moontlike vektor status van die stamsiekte patogene deur arthropoda. 

Arthropoda is weekliks vir twee jaar gekollekteer vanaf twee wingerde met 

stamsiekte infeksies. Snoeiwond lokvalle, visuele soektogte en stam- en kordon lokvalle 

was gebruik om arthropoda te vang. Swamspore van die oppervlak van die arthropoda is 

afgewas met water. Van hierdie water monsters is gebruik om dubbelvoudige polimerase 

ketting reaksies (PKR) te doen met die inleiers Pm1/Pm2 en Pch1/Pch2 om vir die 

teenwoordigheid van Phaeoacremonium spp. en Phaeomoniella chlamydospora 

onderskeidelik te toets. Die oorblywende water monster is gekweek op medium om die 

swamme teenwoordig te bepaal. Die wingerd stamsiekte patogene is verder geidentifiseer 

deur die DNS volgordes te bepaal van die interne getranskribeerde spasies 1 en 2 en die 

5.8S rRNS geen of ‘n gedeelte van die beta-tubulien geen. In totaal is 10 875 arthropoda, 

wat behoort tot 31 families, gekollekteer vanaf wingerde wat terugsterf. Die mees algemene 

arthropoda was duisendpote, miere, spinnekoppe en kewers. Die Portugese duisendpote en 

die wipstert mier is geassosieer met vars wingerd snoeiwonde. Van die 5677 water monsters 

wat geanaliseer is, het 33% propagules van die Petri siekte of esca patogene gehad. Van 

hierdie was 37 % afkomstig vanaf duisendpote, 22 % van wipstert miere, 15 % van 

spinnekoppe en 10 % van kewers. Al die hoofgroepe van wingerd stampatogene is 

opgespoor op die arthropoda. Phaeoacremonium species is opgespoor in 1242 monsters en 

Phaeomoniella chlamydospora is gevind in 855 monsters. Ander swamme wat ook geisoleer 

is sluit lede van die Botryosphaeriaceae, Diatrypaceae en Diaporthales in.  

Die potensiaal van wingerdsap as ‘n bron van voedsel vir Portugese duisendpote en 

wipstert miere is in vitro ondersoek. Duisendpoot invidue is ‘n keuse gegee tussen water en 
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wingerd sap terwyl mierneste ‘n keuse gehad het tussen water, wingerd sap en tuna. Die 

duisendpote en miere is gemonitor vir die inname van wingerdsap in die teenwoordigheid 

van die ander bronne. Beide die duisendpote en miere het wingerdsap verkies wat aandui dat 

hulle ‘n noue assosiasie met wingerd snoeiwonde het. Vervolgens is beide taksons getoets 

vir hul vermoë om ‘n DsRooi-getransformeerde Phaeomoniella chlamydospora isolaat te 

vektor na vars snoeiwonde op lote gemonteer op polistireen stroke wat in water dryf en op 

wingerd plante in potte.  Die duisendpote en miere is blootgestel aan die swam vir 24 uur en 

oorgedra na die basis van die plante en lote en is weer verwyder na drie dae.  Na ‘n maand is 

isolasies gedoen wat gewys het dat die duisendpote en miere die swam suksesvol kon oordra 

na die snoeiwonde en infeksie veroorsaak. Duisendpoot uitwerpsels is geëvalueer vir die 

potensiaal as inokulum bron. Duisendpote het gevoed op Phaeomoniella chlamydospora vir 

24 uur, daarna oppervlakkig gesteriliseer en toegelaat om oornag uitwerpsels te maak in 

steriele Petri bakkies. Uitwerpsels was gekollekteer, fyngemaak in water en op aartappel 

dekstrose agar uitgeplaat. Propagules van Phaeomoniella chlamydospora het die 

verteringskanaal van die duisendpote oorleef en het tipiese kolonies op die agar gevorm. 

Hierdie studie het vasgestel dat ‘n verskeidenheid van arthropoda ‘n bron van 

inokulum van stamsiektes in wingerd kan wees. Die resultate van die vektor proewe het 

gewys dat duisendpote en miere die vermoë het om Phaeomoniella chlamydospora te 

versprei na snoeiwonde wat die swam dan suksesvol geinfekteer het. Dit is daarom hoogs 

waarskynlik dat van die ander wingerd stamsiekte patogene ook versprei kan word op 

dieselfde manier. Hierdie kennis demonstreer dat die beheer van spesifieke arthropoda in ag 

geneem moet word in die bestuur van wingerd stamsiektes. 
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CHAPTER 1 

 

A REVIEW OF PETRI DISEASE AND ESCA AND THE ROLE OF 

ARTHROPODS IN THE DISPERSAL OF PLANT PATHOGENIC FUNGI 

 

1.1 Importance of Petri disease and esca  

Petri disease and esca are important grapevine trunk diseases as they have become a 

limiting factor for grapevine production. Their incidence and severity have increased in the 

last two decades and they have been reported in all the major viticultural areas around the 

world (Mugnai et al., 1999; Chicau et al., 2000; Larignon and Dubos, 2000; Edwards et al., 

2001b; Eskalen and Gubler, 2001; Fourie and Halleen, 2004a; Zanzotto et al., 2007; 

Gramaje et al., 2008). It has been suggested that the increase in the incidence and severity is 

a result of factors such as the changes in the nursery and vineyard management practices, 

lack of pruning wound protection and the deregistration of effective fungicides due to 

toxicity (Graniti et al., 2000). Both Petri disease and esca are an impediment to profitability 

and sustained production because they can shorten the productive life of vineyards 

dramatically (Rolshausen et al., 2010). They are responsible for graft failure, loss of vigor 

and productivity in established vines (Mugnai et al., 1999; Rumbos and Rumbou, 2001; 

Whiting et al., 2001). Vineyard managements costs can increase as a result of labour 

involved in remedial pruning and/or replanting in vineyards where there is poor vine 

establishment (Rumbos and Rumbou, 2001; Whiting et al., 2001; Rolshausen et al., 2010). 

The clusters of berries borne on esca-infected vines display dark spots on the epidermis, 

known as black measles (Reisenzein et al., 2000) and this can be a problem to table grape 

growers because such clusters are unmarketable (Rooney-Latham et al., 2005b). In addition, 

the wine produced from affected clusters can be of poor quality (Calzarano et al., 2001). 

 

1.2 Etiology of Petri disease and esca  

Petri disease is caused by a combination of Phaeomoniella (Pa.) chlamydospora (W. 

Gams, Crous and M.J. Wingf. and L. Mugnai) Crous & W. Gams and several 

Phaeoacremonium (Pm.) W. Gams, Crous & M.J. Wingf. species (Scheck et al., 1998; 

Mugnai et al., 1999; Groenewald et al., 2001). Twenty-five species of Phaeoacremonium 

have been isolated from declining grapevines (Table 1), but Pm. aleophilum W. Gams, 

Crous, M.J. Wingf. & Mugnai, is the most common and widely distributed (Crous et al., 
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1996; Mugnai et al., 1999; Mostert et al., 2006; Essakhi et al., 2008). Togninia Berl. 

teleomorphs have been described for seven of the 25 Phaeoacremonium species (Mostert et 

al., 2006). Perithecia of three of the Togninia species, have been found in nature namely, T. 

minima (Tul. & C. Tul.) Berl. (Rooney-Latham et al., 2005a), T. fraxinopennsylvanica (T.E. 

Hinds) Georg Hasner, Eyjolfsd. & J. Reid and T. viticola L. Mostert, W. Gams & Crous 

(Eskalen et al., 2005a, 2005b).  

A new definition of esca has been proposed and the term ‘esca’ is to be used when 

referring to wood decay (its original meaning) caused by basidiomycete fungi and the term 

‘grapevine leaf stripe’ (previously known as ‘young esca’) is to be used for the vascular 

disease caused by Pa. chlamydospora and Pm. aleophilum. The term ‘esca-proper’ will then 

be used when both esca and grapevine leaf stripe occur together in a vine (Surico, 2009). 

However, several other fungi, which are involved in other grapevine declines, have been 

isolated from esca-affected vines. Such fungi include species of the Botryosphaeriaceae, 

Diatrypaceace as well as Diaporthales (Fischer and Kassemeyer, 2003; Edwards and Pascoe, 

2004; Calzarano and Di Marco, 2007; Péros et al., 2008; White et al., 2011). However, for 

the purpose of this study, the biology of the pathogens that cause grapevine leaf stripe will 

be discussed with regards to esca.  

 

1.3 Symptoms of Petri disease and esca  

External symptoms of Petri disease include stunted growth, shortened internodes, 

reduced vigor, shoot dieback as well as a general decline of young grapevines resulting in 

plant death (Fourie and Halleen, 2004a; Retief et al., 2005; Gramaje et al., 2008). The 

common internal symptom is the black/brown wood streaking with the presence of gummy 

masses in the xylem vessels which have been found to originate from wounds or the graft 

union. The gummy masses, also known as black goo (Fig. 1A), appear as minute 

black/brown spots in cross section and as black/brown streaks when viewed longitudinally. 

Phaeomoniella chlamydospora and species of Phaeoacremonium have been isolated from 

these black spots of declining grapevines (Mugnai et al., 1999; Del Rio et al., 2001; Whiting 

et al., 2001).  

The term ‘esca’, in this context, will be used to include the occurrence of both the 

external and/or internal symptoms on vines. The leaves of esca-affected vines develop an 

interveinal foliar chlorosis or reddening resulting in a ‘tiger stripe’ pattern (Fig. 1B). 

Stellenbosch University  http://scholar.sun.ac.za



3 
 

However, these leaf symptoms are discontinuous, not occurring every year on diseased 

vines (Redondo et al., 2001; Marchi et al., 2006). The berries on affected vines become 

shrivelled and discoloured with minute black spots known as ‘black measles’(Fig. 1C) and 

dieback of the shoot tips occur (Mugnai et al., 1999; Reisenzein et al., 2000; Edwards and 

Pascoe, 2004). The severe form of esca, also known as apoplexy, is a sudden wilting of the 

entire plant including the clusters of berries. Apoplexy is thought to be favoured by hot 

summers, in particular when rainfall is followed by dry, hot weather (Mugnai et al., 1999; 

Peros et al., 2008). Internal symptoms of esca are similar to those of Petri disease but can be 

distinguished by white rot (Fig. 1D) in cross sections of trunks or cordons. The white rot is 

often surrounded by a thick black/brown margin (Mugnai et al., 1999; Koklu, 2000; 

Pollastro et al., 2000; White et al., 2011). White rot has been found in the trunk next to 

pruning wounds and extending into the basal parts of the plant, usually within a section of 

the internal tissue and can spread to the surface of the trunk (Fischer and Kassemeyer, 

2003).  

 

1.4 Sources and dispersal of Petri disease and esca pathogens  

Pathogens that cause Petri disease and esca are thought to occur as latent infections 

in the tissues of grapevines and that they probably become pathogenic after vines are 

subjected to stress. Such stress include water deficit and improper planting procedures 

(Mugnai et al., 1999; Whiting et al., 2001; Retief et al., 2005; Rooney-Latham et al., 2005c; 

Di Marco and Osti, 2009).  

Several inoculum sources for Pa. chlamydospora and Phaeoacremonium spp. have 

been identified. Rootstock mother vines and various propagation processes have been shown 

to be primary inoculum sources for these pathogens (Mugnai et al., 1999; Halleen et al., 

2003; Edwards and Pascoe, 2004; Aroca et al., 2010). Isolations have shown that these 

pathogens are present in apparently healthy rootstock mother vines (Fourie and Halleen, 

2004b) and cuttings (Halleen et al., 2003) as well as grafted nursery plants (Zanzotto et al., 

2001). Mycelial growth of Pa. chlamydospora (Pascoe and Cottral, 2000) and spores of Pm. 

aleophilum and Pm. inflatipes W. Gams, Crous & M.J. Wingf. (Feliciano and Gubler, 2001) 

have been observed within xylem vessels of grapevines. These findings led to the hypothesis 

that infection by these pathogens occur via spores or hyphae from mother vines into canes 

(Fourie and Halleen, 2002; Edwards et al., 2003). Different propagation processes and 

stages which include grafting, callusing and hydration tanks have been found to be sources 
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of inoculum for Petri disease pathogens. In 2001, researchers in Italy investigated the 

occurrence of Petri disease fungi on grafted vines and reported detecting Petri disease 

pathogens and suggested that contamination occurred after grafting (Zanzotto et al., 2001). 

Phaeomoniella chlamydospora was later found to be present in hydration tanks, grafting 

tools, callusing media and soil in South African nurseries (Retief et al., 2006). 

Phaeomoniella chlamydospora and some species of Phaeoacremonium were also detected 

in hydration tanks, scissors, grafting machines as well as in peat used for root development 

in Spanish nurseries, using PCR-based detection techniques (Aroca et al., 2010). Retief et 

al. (2006) suggested that mycelium and conidia present on the surfaces of grapevine cuttings 

probably wash off into the water during hydration or it oozes from the xylem vessels into 

the water.  

The potential of soil as a source of inoculum is shown through the recovery of Petri 

disease pathogens from soil in vineyards. Phaeoacremonium inflatipes was recovered from 

soil and standing water in Californian vineyards (Rooney et al., 2001). Phaeomoniella 

chlamydospora was detected, using molecular techniques, from soil samples collected from 

beneath rootstock mother vines known to be infected with the pathogen in South African 

(Damm and Fourie, 2005; Retief et al., 2006) and New Zealand (Whiteman et al., 2005) 

vineyards. Phaeomoniella chlamydospora has been suggested to be present in vineyard soils 

as mycelium, conidia, chlamydospores or fruiting structures (Retief et al., 2006). It has also 

been suggested that Pa. chlamydospora could be a soil-borne pathogen because of its ability 

to form chlamydospores in culture (Bertelli et al., 1998). The chlamydospores are also 

thought to form conidia that can germinate and penetrate roots of vines in nurseries and 

vineyards (Bertelli et al., 1998; Mugnai et al., 1999).  

Diseased grapevine wood act as inoculum sources for Petri disease pathogens in 

vineyards. Phaeomoniella chlamydospora was recovered from plant sap and on the outer 

bark of diseased grapevines (Rooney et al., 2001). Pycnidia of Pa. chlamydospora have 

been found to survive on grapevine bark tissue (Edwards and Pascoe, 2001) and are thought 

to be the sources of Pa. chlamydospora spores in the vineyards (Eskalen and Gubler, 2001). 

Phaeomoniella chlamydospora was found sporulating inside cracks of diseased vines 

(Edwards et al., 2001a; Edwards and Pascoe, 2001). Perithecia of Togninia species have 

been found on dead vascular tissue in deep cracks of trunks and cordons and on decaying 

pruning wounds of affected grapevines in vineyards (Eskalen et al., 2005a, 2005b; Rooney-

Latham et al., 2005a). Perithecia of T. viticola and T. fraxinopennsylvanica were also found 
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on ash trees located close to the vineyards in California (Eskalen et al., 2005a, 2005b). The 

presence of perithecia on ash trees illustrates the possibility of infected trees surrounding 

vineyards of being sources of inoculum (Eskalen et al., 2007a).  

In vitro studies conducted in California showed that ascospores of T. minima are 

released from perithecia after precipitation (Rooney-Latham et al., 2005b). The asci 

emerged through the ostiole and either accumulated at the ostiole or contracted and forcibly 

discharged the ascospores. It was then speculated that the same mechanism of spore release 

occurs in vineyards and the ascospores that are forcibly discharged are then aerially 

dispersed and could land on fresh grapevine pruning wounds and cause infection. Spore 

trapping studies conducted in Californian vineyards showed that Pa. chlamydospora and 

Pm. aleophilum can be spread as airborne inoculum (Eskalen and Gubler, 2001). Spore 

release for Pa. chlamydospora occurred during and after rainfall in late winter and early 

spring and coincided with pruning and pruning wounds, but spore release for Pm. 

aleophilum was not always correlated with rainfall. Larignon and Dubos (2000) also found 

that the occurrence of Pa. chlamydospora was correlated with rainfall and rainfall plays an 

important role in the release of aerial inoculum in French vineyards.  

The presence of spores of T. minima in the vineyards, in the absence of rainfall, 

could be explained by the ascospores that accumulate at the ostiole of perithecia of T. 

minima (Rooney-Latham et al., 2005a). These ascospores are then spread by irrigation 

practices or insects (Rooney-Latham et al., 2005a). Spores of T. minima were successfully 

isolated from drip irrigation puddles under grapevines in California, but were not isolated 

directly from irrigation water as it passed through the emitter (Rooney et al., 2001). This 

indicates that the water was contaminated after splashing over the vine. Insects may also 

contribute to the dispersal of ascospores because they are produced in a slimy droplet 

(Rooney-Latham et al., 2005a) which is ideal to stick or smear onto insects moving over the 

diseased wood. Evidence that aerial inoculum might not be the only mechanism of pathogen 

dispersal in the field is shown in recent studies in Italy (Michelon et al., 2007) and South 

Africa (Van Niekerk et al., 2010), which failed to trap spores of pathogens in the air using 

volumetric spore traps. The different spatial patterns of disease symptoms observed in 

vineyards affected by esca further supports the hypothesis that several mechanisms may be 

involved in the dispersal of pathogens. The different spatial patterns observed included a 

tendency for infected vines to be aggregated along rows (Mugnai et al., 1999; Pollastro et 

al., 2000), a random spatial pattern of infected vines (Reisenzein et al., 2000; Redondo et 
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al., 2001; Marchi et al., 2006) as well as both aggregation and random spatial patterns 

(Surico et al., 2000; Edwards et al., 2001b). These patterns can be attributed to different 

modes of dispersal which may include insects, propagation material, rain splash as well as 

air currents (Reisenzein et al., 2000; Surico et al., 2000).  

 

1.5 Disease management  

The eradication of Petri disease and esca fungi once they have colonised the 

grapevines is difficult (Mugnai et al., 1999; Di Marco et al., 2004). Several studies have 

shown that grapevines are infected during nursery propagation stages and therefore, 

propagation material and different nursery stages act as a source of inoculum for Petri 

disease and esca fungi (Zanzotto et al., 2001; Halleen et al., 2003; Aroca et al., 2010). In the 

vineyards, pathogens infect vines through pruning wounds (Eskalen and Gubler, 2001; 

Rolshausen et al., 2010) and therefore, these need to be protected. Various chemical, 

biological and cultural strategies have been studied to control Petri disease and esca of 

grapevines during the grapevine propagation process as well as in the vineyards. Disease 

management options are mostly preventative and limited to minimising infection risk (Hunt, 

2004).  

 

1.5.1 Chemical control  

Chemical strategies in the control of Petri disease and esca in nurseries mainly 

involve drenches and dips of propagation material in fungicides at the various propagation 

stages (Fourie and Halleen, 2004a, 2006; Gramaje et al., 2009). A number of chemical 

products have been tested to prevent or reduce Petri disease and esca infection of woody 

tissues of grapevine propagation material but no chemical product has been registered yet 

(Jaspers, 2001; Gramaje et al., 2009). Soaking propagation material prior to cold storage or 

grafting in fungicides such as benomyl, carbendazim and captan has been shown to be 

effective in reducing Petri disease pathogens in nursery plants (Fourie and Halleen, 2004a, 

2006). In 2007, California researchers reported that soaking dormant rootstocks and scions 

in ziram, thiram, thiophanate-methyl and lime sulphur, before grafting reduced incidence of 

Pa. chlamydospora and Pm. aleophilum in vines (Eskalen et al., 2007b). However, although 

some fungicides were found to be effective in controlling Petri disease fungi, some such as 

iprodione have been found to be poorly effective in reducing the germination and growth of 

Petri disease fungi (Jaspers, 2001; Gramaje et al., 2009). Petri disease and esca pathogens 
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are vascular pathogens that inhabit xylem vessels and the success of fungicide treatment in 

nurseries are therefore, limited by the inability of the fungicides to penetrate the wood tissue 

leading to poor efficacy (Waite and May, 2005).  

Pruning wound protection with chemicals has also been studied. Eskalen et al. 

(2007b) examined the potential of fungicides such as thiophanate-methyl, cyproconazole, 

boron and pyraclostrobin in protecting pruning wounds in the field against Pa. 

chlamydospora and Pm. aleophilum and found that these fungicides were effective. 

Rolshausen et al. (2010) later also found boron to be effective in controlling Petri disease 

fungi when the fungicide was applied directly on pruning wounds. Sodium arsenite has been 

used as a preventative application with great effect (Mugnai et al., 1999). The chemical was 

applied as a foliar spray or painted onto the trunk or arms of infected vines. However, due to 

its toxicity and negative impact on the environment, it has been banned from most countries 

(Mugnai et al., 1999; Di Marco et al., 2000).  

 

1.5.2 Biological control  

Studies have been carried out on the potential application of Trichoderma Pers. 

(Schumach) spp. in bio-control of Petri disease and esca in nurseries and the field. 

Trichoderma formulations have been found to be suitable agents in the protection of pruning 

wounds against infection by Petri disease and esca fungi (Hunt et al., 2001; Di Marco et al., 

2004; Kotze et al., 2011). Di Marco et al. (2004) reported that Trichoderma strains were 

able to reduce infection of grapevine cuttings and pruning wounds of potted vines by Pa. 

chlamydospora. The incidence of Pa. chlamydospora and Phaeacremonium species in 

grapevine rootstock material was reduced by soaking the rootstocks in Trichoderma 

formulations (Fourie and Halleen, 2004a). Kotze et al. (2011) reported that a Trichoderma 

isolate, USPP-T1, was effective in reducing the incidence of Pa. chlamydospora when 

tested on pruning wounds of field grapevines. The mechanisms used by Trichoderma 

include production of antibiotics, mycoparasitism, competition for nutrients and space with 

pathogenic fungi as well as stimulation of host resistance (Di Marco et al., 2004; Kotze et 

al., 2011).  

 

 

 

Stellenbosch University  http://scholar.sun.ac.za



8 
 

1.5.3 Cultural control practices  

Implementing traditional cultural practices remains essential in reducing the 

inoculum load and the spread of esca and Petri disease. Sanitary measures reduce inoculum 

originating from the vineyard and these include remedial pruning, which is cutting off dead 

arms below the diseased and discoloured wood, as well as uprooting dead or dying vines 

and removal of pruned material from the vineyard floor (Mugnai et al., 1999). However, the 

effectiveness of remedial pruning is dependent on whether all infected wood is removed 

ensuring that shoots used for training are not infected.  

Pathogens have been isolated from apparently healthy vines and hence occur as 

latent pathogens in the host becoming pathogenic when vines are stressed (Mugnai et al., 

1999; Whiting et al., 2001; Retief et al., 2005; Rooney-Latham et al., 2005c). Stress 

conditions such as improper soil preparation, fertilisation and irrigation, in vineyards can 

result in symptom expression of infected plants. Maintaining optimal fertilisation and 

irrigation, therefore, results in vines which are healthy. Vines that are grown in conditions 

where cultural practices are carried out according to the best recommendations are less 

susceptible to disease since they are not predisposed to stress conditions that favour 

pathogenic infections (Fourie et al., 2000).  

Treating propagation material with hot water for 30 minutes at 50 °C followed by 30 

minutes in cold water has been found to be effective in disinfecting shoots during the 

propagation process (Crous et al., 2001; Fourie and Halleen 2004a; Waite and May, 2005). 

However, there are conflicting reports on the effectiveness of hot water treatment. In vitro 

tests carried out by Whiting et al. (2001) found that Pa. chlamydospora and Pm. inflatipes 

were not killed by hot water treatment at 51 °C for 30 minutes and suggested that the 

treatment can not eliminate the pathogens in dormant canes. These findings were further 

confirmed by Rooney and Gubler (2001) who found hot water treatment at 51 °C for 30 

minutes to be ineffective in the control of Petri disease pathogens in inoculated dormant 

wood. A study carried out by Gramaje et al. (2008) evaluated the effect of hot water 

treatment in vitro on mycelial growth and germination of Petri disease pathogens. In this 

study, the authors did not inoculate dormant grapevine wood. This was done in the study by 

Gramaje et al. (2009) which showed that hot water treatment at 53 °C for 30 minutes was 

effective in controlling Petri disease pathogens. Habib et al. (2009) found that treating 
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infected planting material at 50 °C for 45 minutes reduced the frequency of isolation of Pa. 

chlamydospora compared to untreated controls. 

 

1.6 Dissemination of fungal pathogens by arthropods and development of plant disease  

Arthropods facilitate the development of plant diseases in several ways. They can 

serve as agents of dispersal of the pathogens, be responsible for inoculation and ingression 

as well as allowing pathogens to over-season in and/or on their bodies (Leach, 1940; Agrios, 

2005). A number of arthropods facilitate the entry of pathogens into plants through the 

wounds they make on plant parts, which can be either above or below ground. Arthropods 

feeding on plant parts predispose them to attack by pathogenic fungi by weakening the plant 

and creating wounds which can serve as ports of entry for fungi. Arthropods play a major 

role in the dispersal of fungal pathogens, although most transmission of fungi by arthropods 

is unintentional (Agrios, 2005). Spore dissemination occurs as a result of arthropods 

becoming contaminated with fungal reproductive propagules, either externally and/or 

internally, as they visit infected tissues. These can then transport the spores to uncolonised 

plants or plant parts (Agrios, 2005). Various arthropods have been implicated in the 

dispersal of different fungal pathogens including flies and springtails (Abbott, 2002; 

Lilleskov and Bruns, 2005), mites (Roets et al., 2011), beetles (Lilleskov and Bruns, 2005) 

and ants (El-Hamalawi and Menge, 1996). Arthropod morphology often help in spore 

acquisition as they have cuticular processes such as setae and microtrichia (fixed hairs 

consisting of very small pointed extensions of the cuticula) and body appendages such as 

legs, wings and antennae that serve as structures that can hook and distribute spores (Leach, 

1940).  

Ambrosia fungi are fungi which have obligate associations with arthropods 

(especially beetles in the Platypodidae and Scolytidae) and they are a source of food for 

these beetles (Batra, 1963; Cassar and Blackwell, 1996; Henriques et al., 2006). These fungi 

flourish inside tunnels made by the beetles, in dead trees, and are introduced into the plant 

when the beetles bore into xylem vessels and deposit the ectosymbiotic fungal spores 

(Cassar and Blackwell, 1996). In some instances, the fungi are transmitted in specialised 

glandular pouches called mycangia and usually only one fungal species is transmitted in the 

mycangium of female beetles (Cassar and Blackwell, 1996).  

Stellenbosch University  http://scholar.sun.ac.za



10 
 

Oak wilt is caused by the fungal pathogen, Ceratocystis fagacearum (Bretz) Hunt., 

which enters xylem vessels of oak trees through fresh wounds (Juzwik et al., 2004; Agrios, 

2005). Sap beetles (Coleoptera: Nitidulidae) are the primary spore vectors and are attracted 

to the aromatic volatiles produced by the growing fungus on the diseased trees (Juzwik et 

al., 2004). The beetles crawl over, and may tunnel into the mats as they feed on the fungal 

tissues, acquiring viable fungal propagules on their external surfaces, and internally as they 

ingest fungal material (Juzwik et al., 2004; Agrios, 2005). Successful disease transmission 

occurs when C. fagacearum infested sap beetles visit susceptible fresh wounds and 

fermented sap from older wounds on healthy oaks (Juzwik et al., 2004). The spores of the 

fungus have been shown to be able to survive for the entire period of hibernation of the 

beetles (Carter, 1973; Agrios, 2005).  

Dutch elm disease kills elm trees by clogging their xylem vessels thereby, blocking 

movement of water from the roots to other parts of the tree (Agrios, 2005). It is caused by 

Ophiostoma ulmi (Buisman) Melin & Nannf. and O. novo-ulmi Brasier which are spread by 

bark beetles (Scolytidae) (Jacobi et al., 2007). The fungi colonise the wood of dying or dead 

elm trees which is also where the bark beetle larvae develop. The fungi sporulate in the 

larval tunnels and the newly emerged adult beetles leave the tunnels carrying thousands of 

sticky spores on their bodies (Agrios, 2005). New infections occur when the spores from 

beetles are deposited on the moist, freshly wounded tissues of a susceptible tree, usually as a 

result of burrowing activities of beetles (Agrios, 2005). Fungal spores produced in infected 

wood can be carried upward in the tree via xylem sap and may cause additional infections 

(Agrios, 2005; Purcell and Almeida, 2005).  

Similar to beetles, fungal reproductive propagules can also be transported by other 

arthropods. Botrytis cinerea Pers.:Fr., a fungus which causes bunch rot of grapes, is 

vectored by larvae of the grape berry moth, Lobesia botrana Den. & Schiff. from infected to 

healthy grape berries (Fermaud and Le Menn, 1992). Argentine ants, Iridomyrmex humilis 

(Mayr), have been reported to vector Phytophthora citricola Sawada to healthy lauraceous 

trees, Persea indica (L.) Spreng and cause 73 % infection (El-Hamalawi and Menge, 1996). 

A wide variety of arthropods including beetles, springtails, oribatid mites and centipedes 

have also been found to carry the ectomycorrhizal fungus, Tomentella sublilacina (Ellis & 

Holw.), on their exoskeleton and internally (Lilleskov and Bruns, 2005). The corn earworm 

moth, Helicoverpa zea Boddie is a pest of sorghum and has also been shown to transmit 

Claviceps africana Frederickson, Mantle & de Millano and cause ergot infection on healthy 
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sorghum plants (Prom et al., 2003). Mites in the genus Trichouropoda Berlese were found 

to carry spores of the fungus Gondwanamyces proteae (M.J.Wingf., P.S.van Wyk & 

Marasas) G.J.Marais & M.J.Wingf. within pit mycangia at the base of their legs, vectoring 

spores in the flower heads of Protea repens (L.) L (Roets et al., 2011).  

 

1.7 Fungal adaptations for arthropod dispersal  

Fungi produce three general types of inoculum and these are vegetative mycelium, 

sclerotia and spores. Sclerotia and mycelium are poorly adapted to arthropod dissemination 

although the mycelium in plant parts eaten by arthropods can act as inoculum (Leach, 1940). 

The most common type of reproductive structure for fungi is spores, including asexual 

and/or sexual spores. Spore masses are often well adapted for arthropod dispersal (Leach, 

1940). Several fungal pathogens produce their spores in sticky exudates that become hard 

when dry and can easily be dispersed by the wind. However, before the spore droplets are 

dry, arthropods can play an important role in their dissemination (Leach, 1940). Any 

arthropod that comes into contact with moist, sticky spores can potentially act as a vector of 

these. Such sticky spores readily adhere to the legs, wings, bristles and other body parts and 

could easily be brushed off (Leach, 1940; Abbott, 2002) when the arthropods move about. 

Ascospores which are wet and produced in sticky masses and are associated with arthropods 

for dispersal have a better chance of reaching an infection court than those that are dispersed 

by wind and/or water because they are usually transported directly to possible infection 

courts (Leach, 1940; Carter, 1973) to initiate infection. It is also suspected that 

characteristics of ascomycetes such as evanescent asci, loss of forcible ascospore discharge, 

as well as long necked perithecia are a result of selection for arthropod dispersal (Cassar and 

Blackwell, 1996).  

The production of slimy droplets is common among hyphomycetes and ascomycetes, 

with the latter also often producing long necked perithecia (Abbott, 2002). For example, 

spores of the blue-stain fungi, Ceratostomella Sacc. species, are produced in sticky solutions 

under the bark making wind dissemination impossible (Leach, 1940). Sporulation of the 

blue-stain fungi occurs in tunnels and pupal chambers of bark beetles and the sporophores 

and perithecia point toward the centre of the tunnels such that the spore masses are in a 

perfect position for contaminating emerging arthropods (Leach, 1940). Hyphomycetous 

species such as Graphium Corda and Leptographium R.W. Davidson often produce large 

slimy droplets on top of elongated stalks which are tall enough to come into contact with 
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arthropods moving over the surface of the substratum they colonise (Abbott, 2002). Other 

species (Trichoderma Pers. and Acremonium Fr.) produce large numbers of small droplets at 

the apex of simple conidiophores whereas genera such as Microascus Zukal and 

Chaetomium Corda, extrude ascospores from the ascocarp neck in a droplet or cirrhi (spore 

masses) from where these can easily adhere to arthropods (Abbott, 2002).  

Spores of several fungal species are resistant to digestive enzymes found in the guts 

of insects since they stay viable after ingestion. For example, spores of the cotton wilt 

pathogen, Fusarium vasinfectum G.F.Atk), were disseminated in the faecal pellets of 

grasshoppers that ingested infected plant material (Leach, 1940). Some ambrosia fungi are 

transmitted in the crop of the female beetle, Xyleborus dispar Fabricius, which regurgitates 

them to initiate a culture in a new brood channel (Carter, 1973). Spores of the fungus, 

Claviceps paspali Stev., can survive the passage through the intestinal tract of the green fly 

Pyrellia coerulea (Wied.) (Carter, 1973). Other fungal genera such as Ceratocystis Ellis & 

Halst., can also produce conidia coated with mucous to prevent them from being digested 

from within the guts of the beetles which disseminate them (Carter, 1973). El-Hamalawi and 

Menge (1996) found that faeces of garden snails (Helix aspera Muller), when fed avocado 

plants (Persea americana Mill.) infected with Phytophthora citricola, contained viable 

propagules of the fungus. Inoculation of wounds of healthy avocado plants with these faeces 

resulted in 77 % infection (El-Hamalawi and Menge, 1996). Researchers in Spain were able 

to isolate Phytophthora citrophthora (R.E.Sm. & E.H.Sm.) Leonian, a pathogen that causes 

Phytophthora branch canker in citrus, from faeces of naturally infested Helix aspersa snails 

(Alvarez et al., 2009). Faecal pellets of the millipede, Harpaphe haydeniana (Wood), were 

also found to contain the fungus, Tomentella sublilacina. Inoculation of healthy seedlings of 

the Bishop Pine, Pinus muricata D. Don., with the millipede faeces revealed that the spores 

of Tomentella sublilacina were still viable after passing through the gut of the millipede 

(Lilleskov and Bruns, 2005). 

 

1.8 Potential dissemination of grapevine trunk disease pathogens by arthropods  

An ideal vector should be able to acquire the pathogen and transport it to 

uncolonised tissues for initiation of the disease in plants (Leach, 1940; Purcell and Almeida, 

2005). Many arthropods may carry plant pathogens but cannot transmit them to a particular 

part where infection may result and therefore are not vectors (Leach, 1940; Purcell and 

Almeida, 2005).  

Stellenbosch University  http://scholar.sun.ac.za



13 
 

Limited information is known about the role arthropods play in the dissemination of 

Petri disease and esca pathogens. Edwards et al. (2001a) speculated about the possible role 

of arthropods in the dispersal of Pa. chlamydospora. Rooney-Latham et al. (2005a) stated 

that wood-boring insects might play a role in the dispersal of T. minima. To date only 

Diplodia seriata De Not. (‘Botryosphaeria obtusa (Schwein.) Shoemaker’), which is 

sometimes isolated from esca-affected vines, has been found on rove beetles collected from 

pruning wounds in a vineyard (Epstein et al., 2008).  

Collembolans and mites were observed in the cracks and crevices on the bark of 

diseased grapevines (Edwards et al., 2001a) where pycnidia and sporulating hyphae of Pa. 

chlamydospora were found (Edwards et al., 2001a; Edwards and Pascoe, 2001). The 

sporulation of this pathogen in the same niche as the arthropods were found could promote 

effective, though incidental, dispersal of the pathogen to healthy vines. It is suspected that 

the collembolans and mites that carry fungal spores on their exoskeletons can deposit them 

onto open xylem vessels of pruned shoots (Edwards et al., 2001a). Furthermore, the 

sheltered nature of the cracks and crevices provides limited scope for other dispersal 

methods such as rain or wind and both the phialidic conidial heads and the pycnidial cirrhi 

of Pa. chlamydospora are presented in a way that they can readily come into contact with 

small arthropods (Edwards et al., 2001a).  

The perithecia of Togninia have long necks (Rooney-Latham et al., 2005a; Mostert 

et al., 2003) and have been found within trunks and cordons of diseased vines. Perithecia of 

Togninia are phototropic, thus their necks were found oriented towards openings of cracks, 

pruning wounds and insect tunnels (Eskalen et al., 2005a, 2005b; Rooney-Latham et al., 

2005a). In vitro tests to determine how ascospores of T. minima are released from perithecia 

showed that when perithecia were moistened, asci exude from the perithecial ostioles and 

accumulated in groups around the perithecial neck. This suggests that a similar mechanism 

of ascospore release occurs in infested vineyards following precipitation (Rooney-Latham et 

al., 2005b). The presence of perithecia clustered inside cracks and insect tunnels in 

grapevines supports the possibility of an association between insects and T. minima 

(Rooney-Latham et al., 2005a), and probable transmission of ascospores by insects. 

Similarly, the production of ascospores in slimy droplets favours the involvement of insects 

in their dispersal rather than aerial dispersal (Cassar and Blackwell, 1996).  
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In an investigation of Botryosphaeriaceae-related dieback of grapevines, Epstein et 

al. (2008) postulated that although pruning wounds were primarily infected with D. seriata 

conidia that are disseminated by windblown rain, some inoculum may be disseminated by 

other mechanisms. To test their theory, duct tape covered with a sticky substance, was 

placed over pruning wounds and from it, rove beetles (Staphilinidae) infested with D. 

seriata were recovered. Beetles have been found to vector numerous plant pathogens 

(Leach, 1940; Carter, 1973; Juzwik et al., 2004; Agrios, 2005) and therefore, the possibility 

of rove beetles acting as vectors of Petri disease and esca pathogens cannot be ruled out. 

Furthermore, Pm. rubrigenum W. Gams, Crous & M.J. Wingf. (a Petri disease fungus) was 

isolated from larvae of the oak bark beetles, Scolytus intricatus (Ratz.) (Scolytinae), and 

their galleries on oak trees, Querus robur L. and also from ash bark beetles, Leperisinus 

fraxini Panzer (Scolytinae) found under the bark of ash trees, Fraxinus excelsior L. 

(Kubatova et al., 2004).  

The mere association of an arthropod with diseased plants or the presence of 

inoculum on or in the arthropod’s body, however, does not establish that the arthropod is a 

vector of a pathogen. Any evidence that presents a certain arthropod as a vector of a plant 

pathogen should always meet Leach’s rules for proof of arthropod transmission (Leach, 

1940). These rules state that the: i) arthropod should have a close association with diseased 

plants, ii) arthropod should regularly visit healthy plants under conditions suitable for 

transmission of the disease, iii) arthropod should carry the pathogen in nature or following 

visitation to a diseased plant and iv) disease should be produced experimentally by 

arthropod visitation under controlled conditions.  

 

1.9 Aims of this study  

From the literature reviewed in this chapter it is evident that arthropods could be involved in 

the dissemination of Petri disease and esca pathogens on grapevines. The sporulation 

structures of Petri disease and esca fungi, which produce spore droplets either on 

conidiophores or on perithecial necks, hold the potential to be dispersed by arthropods. 

Spore droplets are ideal to stick onto the exoskeletons of arthropods crawling over and into 

the crevices or cracks of diseased tissues and possibly be deposited onto the exposed xylem 

vessels of healthy vines as the arthropods explore fresh pruning wounds.  
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The role possibly played by arthropods in the dissemination of these pathogens 

needs to be investigated and possible vectors identified. The objectives of this study, 

therefore, were to:  

i) determine which arthropods are associated with declining grapevines and freshly 

made pruning wounds,  

ii) determine whether pathogens associated with Petri disease and esca can be 

detected on the arthropods and 

iii) determine whether arthropods can vector Petri disease pathogens to pruning 

wounds.  
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Table 1. List of Phaeoacremonium species that have been found on grapevines and the respective teleomorphs described. 

Phaeoacremonium species Togninia species Reference 

Pm. aleophilum W. Gams, Crous, M.J. Wingf. & Mugnai T. minima (Tul. & C. Tul.) Berl* Crous et al. 1996 

Pm. alvesii L. Mostert, Summerb. & Crous  Mostert et al. 2005 

Pm. angustius W. Gams, Crous & M.J. Wingf.  Crous et al. 1996 

Pm. armeniacum A.B. Graham, P.R. Johnst & B. Weir  Graham et al. 2009 

Pm. australiense L. Mostert, Summerb. & Crous  Mostert et al. 2005 

Pm. austroafricanum L. Mostert, W. Gams & Crous T. austroafricana L. Mostert, W. Gams & Crous Mostert et al. 2006 

Pm. cinereum D. Gramaje, H. Mohammadi, Z. 

Banihasshemi, J. Armengol & L. Mostert 

 Gramaje et al. 2009 

Pm. croatiense Essakhi, Mugnai, Surico & Crous  Essakhi et al. 2008 

Pm. globosum  A.B. Graham, P.R. Johnst & B. Weir  Graham et al. 2009 

Pm. griseorubrum L. Mostert, Summerb. & Crous  Mostert et al. 2005 

Pm. hispanicum D. Gramaje, J. Armengol & L. Mostert   Gramaje et al. 2009 

Pm. hungaricum Essakhi, Mugnai, Surico & Crous   Essakhi et al. 2008 

Pm. inflatipes W. Gams, Crous & M.J. Wingf.      Crous et al. 1996 

Pm. iranianum L. Mostert, Gräf., W. Gams & Crous  Mostert et al. 2006 

Pm. krajdenii L. Mostert, Summerb. & Crous T. krajdenii L. Mostert, W. Gams & Crous Mostert et al. 2005 

Pm. mortoniae Crous & W. Gams   T. fraxinopennsylvanica (T.E. Hinds) Georg Hasner, 

Eyjolfsd. & J. Reid* 

    Groenewald et al. 2001 
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Table 1. Continued   

Phaeoacremonium species Togninia species Reference 

Pm. occidentale A.B. Graham, P.R. Johnst & B. Weir     Graham et al. 2009 

Pm. parasiticum (Ajello, Georg & C.J.K. Wang) W. Gams, 

Crous & M.J. Wingf. 

T. parasitica L. Mostert, W. Gams & Crous    Crous et al. 1996 

Pm. rubrigenum W. Gams, Crous & M.J. Wingf. T. rubrigena L. Mostert, W. Gams & Crous    Crous et al. 1996 

Pm. sicilianum Essakhi, Mugnai, Surico & Crous     Essakhi et al. 2008 

Pm. scolyti L. Mostert, Summerb. & Crous     Mostert et al. 2005 

Pm. subulatum L. Mostert, Summerb. & Crous     Mostert et al.  2005 

Pm. tuscanum Essakhi, Mugnai, Surico & Crous     Essakhi et al. 2008 

Pm. venezuelense L. Mostert, Summerb. & Crous      Mostert et al. 2005 

Pm. viticola J. Dupont  T. viticola L. Mostert, W. Gams & Crous*    Dupont et al. 2000 

 

* Indicates Togninia species which have been found in nature.
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CHAPTER 2 

 

ARTHROPODS AS CARRIERS OF PATHOGENS ASSOCIATED WITH PETRI 

DISEASE AND ESCA IN VINEYARDS 

 

2.1 ABSTRACT 

 

Petri disease and esca are devastating grapevine diseases found in all major grape 

growing countries and have been studied for several years. However, several questions 

remain uncertain regarding the epidemiology of the causal pathogens, specifically with 

regards to dissemination. Little information is known about the role of arthropods as 

possible spore vectors of these grapevine trunk disease pathogens. This study sets out to 

determine whether arthropods from declining grapevines are associated with trunk disease 

pathogens. Arthropods were collected from diseased vines, in two vineyards using trunk and 

cordon traps, visual searches and pruning wound traps, on a weekly basis over a two-year 

period. Fungal spores from the surfaces of arthropods were collected in water. Samples were 

subjected to nested PCR using primers Pm1/Pm2 and Pch1/Pch2 to verify the presence of 

Phaeoacremonium spp. and Phaeomoniella chlamydospora, respectively. Fungal taxa 

present in the water samples were also cultured. Grapevine trunk disease pathogens obtained 

from cultures were identified by sequencing the internal transcribed spacers 1 and 2 and the 

5.8S rRNA gene or the partial beta-tubulin gene. A total of 10 875 arthropods, belonging to 

more than 31 families, were collected from declining grapevines and pruning wound traps. 

The most abundant arthropods included millipedes, ants, spiders and beetles. Thirty-three 

percent of the 5677 water samples analysed, contained propagules of Petri disease and esca 

pathogens. Of these, 37 % were recovered from millipedes, 22 % from cocktail ants, 15 % 

from spiders and 10 % from beetles. Phaeoacremonium species were detected in 1242 

samples while Phaeomoniella chlamydospora was identified from 855 samples. Other fungi 

isolated included members of the Botryosphaeriaceae, Diatrypaceae and Diaporthales. 

Arthropod numbers differed significantly between the two vineyards and collection years. 

Statistical analyses revealed that precipitation had no significant influence on the number of 

arthropods that tested positive for pathogens while average temperature significantly 

influenced the numbers of pathogen-carrying millipedes, spiders and ants. There was also a 

positive linear relationship between the total number of arthropods and those that tested 
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positive for pathogens. Managing the spread of grapevine trunk disease pathogens may 

therefore, need to include management of a wide range of different arthropod taxa. 

 

2.2 INTRODUCTION 

 

Petri disease and esca are a significant threat to grape production in various countries 

(Chicau et al., 2000; Fischer, 2002; Rolshausen et al., 2010; Gramaje and Armengol, 2011; 

White et al., 2011). Poor establishment of vines, reduced vine vigour and premature decline 

caused by these diseases result in the reduction of grape yield and quality and ultimately, 

leads to significant financial losses. Petri disease is caused by a combination of 

Phaeomoniella (Pa.) chlamydospora (W. Gams, Crous and M.J. Wingf. and L. Mugnai) 

Crous & W. Gams and Phaeoacremonium (Pm.) species W. Gams, Crous & M.J. Wingf. 

(Scheck et al., 1998; Mugnai et al., 1999; Groenewald et al., 2001) while combinations of 

these fungi and basidiomycetes cause esca (Surico, 2009). However, fungi from the 

Botryosphaeriaceae, Diatrypaceace and the Diaporthales, associated with black dead arm, 

Eutypa dieback and Phomopsis dieback, respectively have also been isolated from esca-

affected vines (Fischer and Kassemeyer, 2003; Edwards and Pascoe, 2004; Calzarano and 

DiMarco, 2007; Péros et al., 2008, White et al., 2011). Although these diseases have been 

studied over a number of years, several questions remained regarding the epidemiology of 

the causal pathogens. 

Numerous inoculum sources of Petri disease fungi have been identified. Propagation 

material has often been shown to be a primary inoculum source for Petri disease pathogens 

(Mugnai et al., 1999; Edwards and Pascoe, 2004; Aroca et al., 2010). These pathogens were 

present in apparently healthy rootstock mother vines (Fourie and Halleen, 2004), cuttings 

(Halleen et al., 2003) and grafted nursery plants (Zanzotto et al., 2001). The potential of soil 

as a source of inoculum in vineyards was established by the recovery of Pm. inflatipes W. 

Gams, Crous & M.J. Wingf. from soil in Californian vineyards (Rooney et al., 2001) and 

Pa. chlamydospora from soil in South African vineyards (Damm and Fourie, 2005; Retief et 

al., 2006). In addition to propagation material and soil, infected grapevine wood may also 

serve as a significant inoculum source for Petri disease pathogens in vineyards. 

Phaeomoniella chlamydospora was recovered from the outer bark of diseased grapevines 

through washings in water (Rooney et al., 2001). Pycnidia of Pa. chlamydospora have been 

found on grapevine bark tissue (Edwards and Pascoe, 2001) and are thought to act as an 
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inoculum source of Pa. chlamydospora spores in the vineyards (Eskalen and Gubler, 2001). 

Perithecia of Togninia minima (Tul. & C. Tul.) Berl., T. fraxinopennsylvanica (T.E. Hinds) 

Georg Hasner, Eyjolfsd. & J. Reid and T. viticola L. Mostert, W. Gams & Crous have been 

found clustered on dead vascular tissues in deep cracks on the trunks and cordons, within 

insect tunnels and on the surfaces of decaying pruning wounds of affected grapevines 

(Eskalen et al., 2005a, 2005b; Rooney-Latham et al., 2005). This indicates the possibility of 

the involvement of arthropods in the dissemination of ascospores exuding from the necks of 

the perithecia. These pathogens have also been isolated from ash trees in close proximity to 

vineyards in California which indicates that these hosts may also be potential sources of 

inoculum (Eskalen et al., 2005a, 2005b, 2007).  

The knowledge of how Petri disease and esca pathogens are dispersed from infected 

to healthy vines in established vineyards is limited. Spores of these pathogens have been 

collected from the air in vineyards in California (Eskalen and Gubler, 2001) and France 

(Larignon and Dubos, 2000) and can then penetrate vines through pruning wounds (Eskalen 

and Gubler, 2001; Rolshausen et al., 2010). The release of spores occurs mostly during 

winter and is linked with rainfall events (Eskalen and Gubler, 2001; Rooney et al., 2005; 

Serra et al., 2008). However, in recent studies where Petri disease fungi were present on 

pruning wounds, no airborne spores were detected (Michelon et al., 2007; Van Niekerk et 

al., 2010). It is thus, assumed that air currents are not the only dispersal mechanism of these 

pathogens in established vineyards. Some support for this can be found in the analyses of 

spatial distribution patterns of esca-diseased symptomatic grapevines, which showed that 

infected vines can either be aggregated along rows (Mugnai et al., 1999; Pollastro et al., 

2000) or distributed in a random spatial pattern (Reisenzein et al., 2000; Redondo et al., 

2001; Marchi et al., 2006) or both (Surico et al., 2000; Edwards et al., 2001b). The different 

spatial patterns of disease symptoms observed in these cases is attributed to various modes 

of dispersal of the causal pathogens, including air currents, insects and infected propagation 

material (Reisenzein et al., 2000; Surico et al., 2000).  

One of the adaptations of fungi for arthropod dispersal is the production of spores in 

sticky exudates (to facilitate attachment to arthropod exoskeletons) (Leach, 1940). These 

become hard when dry and wind subsequently, can become an effective dispersal agent 

(Leach, 1940). Any arthropod that comes into contact with these sticky spores can 

potentially act as a vector. Such sticky spores readily adhere to the legs, wings, bristles and 

other arthropod body parts and can be easily brushed off (Leach, 1940; Abbott, 2002) when 
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these move about. Some ascomycetes produce long-necked perithecia with necks often 

oriented towards the centre of insect galleries in plant material. This provides an ideal 

position for attachment of spores to emerging insects (Abbott, 2002). Togninia species 

produce such long-necked fruiting bodies (oriented towards the centre of insect galleries and 

openings of the wood) within cracks of diseased grapevine wood (Rooney-Latham et al., 

2005). Sticky droplets of ascospores are produced at the tips of the perithecia during wetter 

periods (Rooney-Latham et al., 2005). This suggests a strong possibility that the spores of 

taxa in this genus may be disseminated via arthropods under field conditions.  

Arthropods may play a greater role in the spread of Petri disease and esca pathogens 

than is currently suspected. Evidence of possible entomochoric dispersal is shown in the 

isolation of Phaeoacremonium rubrigenum W. Gams, Crous & M.J. Wingf. from larvae and 

galleries of the oak bark beetle, Scolytus intricatus (Ratz.) (Scolytinae) and from the ash 

bark beetle (Leperisinus fraxini Panzer) (Scolytinae) (Kubatova et al., 2004). Diplodia 

seriata De Not., a pathogen sometimes isolated from esca-affected vines (Armengol et al., 

2001) was also isolated from rove beetles collected from grapevine pruning wounds 

(Epstein et al., 2008). In addition, Edwards et al. (2001a) observed an association of 

collembolans and mites with sporulating structures of Pa. chlamydospora, produced in 

cracks and crevices of diseased grapevines in Australia, and suggested that these could play 

a role in the dissemination of this pathogen. 

Little information is currently known about the extent of the association between 

arthropods and Petri disease and esca pathogens, even though arthropods are suspected to 

play a primary role in the spread of these. If arthropods are found to play a major role in 

disease transmission in grapevines, the management of arthropods must form part of an 

integrated disease management strategy. The objectives of the study were therefore, to 

identify arthropod taxa associated with both diseased grapevines (inoculum source) and 

fresh pruning wounds (the inoculation area) and to determine whether the reproductive 

propagules of Petri disease and esca pathogens are present on these. We also investigated 

whether the numbers of arthropods found to carry grapevine trunk disease pathogens are 

influenced by rainfall and temperature in the field. 
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2.3 MATERIALS AND METHODS 

 

2.3.1 Selection of vineyards  

Two wine grape vineyards with a known history of grapevine trunk diseases were 

selected in the Western Cape of South Africa; a 36-year-old Pinotage vineyard at 

Nietvoorbij in Stellenbosch and a 25-year-old Chenin blanc vineyard in Rawsonville. The 

region has a Mediterranean climate with cool, wet winters and warm, dry summers. The 

vineyards are 64 km apart and separated by the Du Toitskloof mountains.  

 

2.3.2. Arthropod collection  

Three collection techniques were used in order to maximize arthropod catches from 

selected vines and included trunk and cordon traps, visual surveys and pruning wound traps. 

 

2.3.2.1 Trunk and cordon traps  

Trunk and cordon traps, made from corrugated fiberboard, were placed on thirty 

vines per vineyard. Grapevines on which the traps were placed, were selected on the basis of 

poor growth and the presence of dead spurs or arms, typical of grapevine trunk disease 

infections. Selected vines also showed signs of arthropod activity like borer holes and the 

presence of crawling insects within cracks and crevices. Disease symptoms indicated the 

possible presence of inoculum of trunk disease fungi. Three traps were placed on each vine; 

one around the trunk (between the graft union and the cordons) and one on each of the 

cordons. Traps were 100 mm wide and held in place with a thin metal cord (Fig. 1A). Traps 

were monitored weekly from mid-May to the end of November, for two years (2010 and 

2011), and all arthropods sheltering in these were collected. The sampling period roughly 

coincides with winter pruning and the removal of unwanted shoots (in spring and early 

summer) which result in many wounds. Arthropods collected were grouped into 

morphospecies and stored in sterile 14-ml McCartney bottles either separately or in groups 

of up to 20 individuals of the same arthropod morphospecies until further processing in the 

laboratory. Only individuals collected from the same plant were grouped per bottle, with the 

number of individuals placed together dependent on the size of individuals (the bigger the 

fewer per vial).  
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2.3.2.2 Visual surveys 

Diurnal visual surveys for arthropods were conducted once a week in the same 

vineyards and over the same period as for the trunk and cordon traps. Surveys were 

conducted on a random number of diseased vines. Surveys were conducted by actively 

searching for arthropods at the surface, under loose bark and in the cracks and crevices on 

the trunks, arms and at the base of diseased vines. Collected arthropods were treated 

similarly as those collected from the trunk and cordon traps. In addition to the diurnal 

surveys, three active nocturnal surveys were also conducted in the Pinotage vineyard, just 

after pruning to assess possible arthropod activity on wounds at night. 

 

2.3.2.3 Pruning wound traps 

Thirty apparently healthy vines in close proximity to the vines with trunk and cordon 

traps were selected in both vineyards. One shoot from each vine was pruned in mid-June, 

another (on the same plant) 4 weeks later (July), and a third shoot was pruned in August. 

These times represented the three most commonly employed pruning periods (early, mid 

and late pruning). It also resulted in pathogen-susceptible pruning wounds over an extended 

(12-week) period. The shoots were pruned back to two buds before placement of pruning 

wound traps. Pruning wound traps were designed to collect arthropods that were attracted to 

the wounds. Traps were constructed from transparency paper (to avoid attracting arthropods 

due to color) that was cut in a circular shape (150 mm in diameter), folded into a funnel 

shape that was kept in position using metal staples. The bottom of the funnel was cut 

slightly larger than the width of the pruned shoot to which the trap was fastened, secured to 

the shoot using a drawing pin and painted with a sticky substance (Plantex, Chempac, South 

Africa) to trap arthropods that crawled onto wounds. The traps were placed over the pruning 

wound in such a manner that more than half the length of the shoot was covered and two 

thirds of the cup extended above the top of the pruned cane (Fig. 1B). Traps were replaced 

once a week for 4 weeks for each pruning time. Removed traps were inspected for 

arthropods using a stereomicroscope. Arthropods were collected and treated as previously 

described.  
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2.3.3 Arthropod identification 

All arthropods collected were initially identified to the highest taxonomic level 

possible using general field guides and text books (Picker et al., 2004; Scholtz and Holm, 

2008) and the help of specialists when available. The family and species names of a few 

arthropods were determined by Dr. Francois Roets (Department of Conservation Ecology 

and Entomology, University of Stellenbosch). Ants were identified by Dr. Pia Addison 

(Department of Conservation Ecology and Entomology, University of Stellenbosch) and 

spiders were identified by Prof. Ansie Dippenaar-Schoeman (Arachnology unit of the 

Agricultural Research Council-Plant Protection Research Institute).  

 

2.3.4 Screening of arthropods for presence of Petri and other grapevine trunk disease 

pathogens 

 

2.3.4.1 Washing of arthropods and identification of fungal pathogens using plating 

techniques 

All collected arthropods (living) were aseptically removed from the glass bottles and placed 

into sterile eppendorf tubes filled with 2 ml sterile water. Samples were vortexed for 60 

seconds to loosen any fungal spores present on their exoskeletons (Roets et al., 2006). 

Arthropods were removed and placed into 2-ml eppendorf tubes that contained 100 % 

ethanol and stored at room temperature for later identification. One milliliter of the water 

was transferred onto potato dextrose agar (PDA,  Biolab, South Africa) amended with 

chloromycetin (250mg/L) in three Petri dishes and spread evenly with a sterile L-shaped 

rod. Petri dishes were incubated at 23 – 24 °C, exposed to approximately 12 hours day light 

and 10 hours of darkness and monitored for four weeks for growth of pathogens. Cultures 

containing grapevine trunk disease pathogens were hyphal-tipped and aseptically transferred 

onto fresh PDA dishes to create pure cultures. Identification was achieved using cultural and 

morphological characteristics as well as DNA sequencing of all Botryosphaeriaceae, 

Diaporthales and Diatrypaceae. Phaeomoniella chlamydospora was identified by its unique 

cultural and morphological characteristics (Crous and Gams, 2000). Phaeoacremonium 

species were also identified using cultural and morphological characteristics (Mostert et al., 

2006) as well as DNA sequencing, however, due to the high numbers of cultures obtained, a 

representative number of the samples collected in a week were sequenced. 
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2.3.4.2 Identification of fungal pathogens obtained from water washings using 

molecular techniques 

 

2.3.4.2.1 DNA extraction from water  

The protocol described by Retief et al. (2005) was followed for extraction of DNA 

from the remaining 1-ml water samples obtained from the washing of arthropods. However, 

the protocol was modified in the amount of CTAB extraction buffer (2 % CTAB, 1 M Tris, 

pH 7.5; 5 M NaCl; 0.5 M EDTA, pH 8.0) added and the addition of glass beads. The 1-ml 

sample (left from arthropod washings) was first centrifuged (Spectrafuge 24D, Labnet 

international Inc., USA) for 10 minutes at 15 800 x g and the supernatant discarded. The 

pellet was re-suspended in 1 ml CTAB extraction buffer. Glass beads (0.5 g) were added to 

the solution and the tubes were shaken for 5 minutes at 30 1s⎯¹ frequency using a Mixer Mill 

type MM 301 (Retsch Gmbh & Co.KG, Germany) and incubated at 65 °C for 1 hour. After 

incubation, 400 µl of chloroform: isoamyalcohol (24:1) was added and tubes inverted to mix 

the contents and centrifuged at 15 800 x g for 15 minutes. The watery supernatant was 

transferred to new 1.5-ml eppendorf tubes where 50 µl of 7.5 M ammonium acetate (pH 7.0) 

and 600 µl of cold isopropanol were added and the tubes were incubated at -20 °C for 1 

hour before being centrifuged at 15 800 x g for 10 minutes, and the supernatant discarded. 

Thereafter, 1 ml of cold 70 % ethanol was added to each tube and the tubes were incubated 

at -20 °C for 30 minutes, centrifuged at 15 800 x g for 5 minutes and the supernatant was 

discarded. DNA pellets were dried at room temperature overnight and 50 µl of double 

distilled water was added before storage at 4 °C. 

 

2.3.4.2.2 DNA extraction from pure cultures 

Mycelium from actively growing cultures was placed in 2-ml eppendorf tubes and 

0.5 g of glass beads and 600 µl CTAB were added. The same equipment and protocol used 

for the DNA extraction from water samples was used. However, tubes were shaken for 7 

minutes prior to incubation at 65 °C for 30 minutes. After incubation, 400 µl 

chloroform:isoamylalcohol (24:1) was added and the tubes mixed by inverting them ten 

times and centrifuged at 15 800 x g for 7 minutes. The supernatant was collected and 250 µl 

of cold ammonium acetate solution (7.5 M) and 600 µl cold isopropanol were added and 

mixed by inverting. Tubes were incubated for 15 minutes at -20 °C and centrifuged at 15 

800 x g for 15 minutes. The supernatant was discarded and 1 ml of cold 70 % ethanol added 
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before centrifuging at 15 800 x g for 5 minutes. The supernatant was discarded and the 

pellets were left to dry at room temperature overnight. Pellets were dissolved in 100 µl 

double distilled water and stored at 4 °C. 

 

2.3.4.2.3 Detection of Petri disease fungi using nested PCR  

The primary PCR reaction amplified the internal transcribed spacers (ITS1 and 

ITS2) and the 5.8S ribosomal RNA gene with the universal fungal primers ITS1 and ITS4 

(White et al., 1990). The reaction contained 5 µl of DNA isolated from the water samples, 1 

× PCR buffer, 2.5 mM MgCl2, 1 µg/µl BSA, 0.2 mM of dNTPs, 0.25 mM of each primer 

and 0.65 U of Bioline Taq polymerase in a total reaction volume of 25 µl. Reaction 

conditions consisted of an initial denaturation step at 94 °C for 3 minutes followed by 35 

cycles of 30 s at 94 °C, 30 s at 52 °C and 60 s at 72 °C and a final extension step at 72 °C 

for 7 minutes. 

Two separate secondary PCRs were conducted to detect Pa. chlamydospora with the 

species-specific primer pair Pch1/Pch2 (Tegli et al., 2000) and species of Phaeoacremonium 

with the genus-specific primer pair Pm1/Pm2 (Aroca and Raposo, 2007). The Pch1/Pch2 

primer pair reaction volume of 25 µl, consisted of 1 PCR buffer, 1.5 mM MgCl2, 1 μg/μl 

BSA, 0.2 mM dNTPs, 0.30 mM of each primer, 0.65 U of Bioline Taq polymerase and 1 μl 

of DNA. Reaction conditions consisted of an initial denaturation step at 94 °C for 3 minutes 

followed by 35 cycles of 30 s at 94 °C, 30 s at 57 °C and 40 s at 72 °C and a final step at 72 

°C for 7 minutes. The concentration of the reagents for PCR using primer pair Pm1/Pm2 

were the same except that 3 mM of MgCl2, 0.8 mM of dNTPs and 0.5 mM of each primer 

were used. Reaction conditions consisted of an initial denaturation step at 94 °C for 5 

minutes followed by 30 cycles of 30 s at 94 °C, 30 s at 57 °C and 50 s at 72 °C and a final 

step at 72 °C for 7 minutes. All PCR reactions were performed in a GeneAmp PCR system 

9700 (Applied Biosystems, USA). 

PCR products were separated by electrophoresis on a 1 % (w/v) agarose gel in 1 

TAE running buffer (0.4 M Tris, 0.05 M NaAc and 0.01 M EDTA, pH 7.5). The gel was 

stained with ethidium bromide and visualised under ultraviolet (UV) light using a 

GeneGenius Gel Documentation and Analysis System (Syngene, UK) and a 100 bp ladder 

(Promega) was used as molecular size marker. The expected length of PCR product for the 
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Pch primers was 360 bp (Tegli et al., 2000) and for the Pm primers 415 bp (Aroca and 

Raposo, 2007).  

 

2.3.4.2.4 PCR from DNA isolated from fungal cultures  

The ITS1, ITS2 and the 5.8S ribosomal RNA gene was amplified as previously 

described for the identification of species in the Botryosphaeriaeceae, Diatrypaceaecae and 

the Diaporthales. The β-tubulin gene was amplified using the primers T1 (O’ Donnel and 

Cigelink, 1997) and Bt2b (Glass and Donaldson, 1995) to identify species of 

Phaeoacremonium. Two µl of DNA were used in each PCR. A 25 µl reaction was carried 

out for the primers T1 and Bt2b and it consisted of 1  Buffer, 1.5 mM MgCl2, 1 μg/μl BSA, 

0.2 mM dNTPs, 0.30 mM of each primer and 0.65 U of Bioline Taq polymerase. Reaction 

conditions consisted of an initial denaturation step at 94 °C for 5 minutes followed by 36 

cycles of 45 s at 94 °C, 30 s at 58 °C and 90 s at 72 °C and a final step at 72 °C for 6 

minutes. Visualisation of PCR products followed that outlined above.  

 

2.3.4.2.5 Sequencing of PCR products 

The PCR products were purified using the Invitek MSB® Spin PCRaparel 250 

(Germany) kit. Because of the high number of amplified samples from the nested PCR, only 

a subset of the PCR products obtained was sequenced. DNA sequencing reactions were 

performed using the Big Dye system (version 3.1 dye terminators, Applied Biosystems, 

USA). The total reaction volume was 10 µl and contained 5  Buffer, 0.4 mM of each 

primer. The conditions consisted of an initial denaturation step at 95 °C for 60 seconds 

followed by 30 cycles of 10 s at 95 °C, 5 s at 50 °C and 4 minutes at 60 °C and a final step 

at 60 °C for 30 s. The electrophoresis of the products was performed on an ABI 3130XL 

Genetic Analyser at the Central Analytical Sequencing Facility at Stellenbosch University. 

Sequences obtained for both directions were evaluated using the software, Geneious 3.5.6 

(Biomatters Ltd., New Zealand) and manually edited using Sequence Alignment Editor v. 

2.0a11. Species identification was done by using the megablast function of the NCBI’s 

GenBank nucleotide database (www.ncbi.nlm.nih.gov). 
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2.3.4.2.6 Restriction enzyme identification of Phaeoacremonium spp. from PCR products 

Sequence analysis of the PCR products that were amplified using the Pm1/Pm2 

primer pair showed that DNA from other fungi such as Diplodia seriata was also amplified. 

As a result, restriction maps of the ITS sequences generated with the Pm1/Pm2 primer pair 

were defined using the NEBcutter V2.0 (New England Biolabs Inc.) to generate 

discriminate profiles for the Phaeoacremonium species. The restriction enzyme Hpy 188I 

(New England, Biolabs) resulted in unique fragment profiles to identify Phaeoacremonium 

species. The conditions for enzyme digestion were as follows: 1 µl of enzyme, 17 µl of PCR 

product and 2 µl of enzyme buffer in a final reaction volume of 20 µl and digested for an 

hour at 37 °C. Restriction fragments were separated on an ethidium bromide-stained 3 % 

agarose gel using 1 TAE buffer in the electrophoresis tank. An undigested PCR product 

was used as a control for non-digestion and a 100 bp molecular size marker was used to 

determine the size of each band. The digestion profile was visualized under UV light as 

described above.  

 

2.3.4.3 Detection of grapevine trunk pathogens from pruning wounds on which 

pruning wound traps were placed 

The basal internodes of the pruned canes collected before the placement of the 

pruning wound traps were taken to the laboratory for fungal isolation to verify the presence 

or absence of trunk disease pathogens. This would indicate pathogens present in the shoots 

prior to pruning. The pruned pieces were surface sterilized by immersion in 70 % ethanol 

for 30 seconds, 2 minutes in 3.5 % sodium hypochlorite and again for 30 seconds in 70 % 

ethanol. Shoots were then split longitudinally and small wood fragments (1  2 mm) were 

cut from either side of the pith and plated onto PDA in two Petri dishes. Dishes were 

incubated at 23  24 °C, exposed to approximately 12 hours day light and 10 hours of 

darkness and monitored daily for fungal growth for four weeks. For each of the three 

pruning times, the four-week-old pruning wounds were pruned off and taken to the 

laboratory for isolation of trunk disease pathogens. The same isolation procedure was 

followed. To determine whether arthropods could be involved in infection of pruning 

wounds, arthropods collected from pruning wounds traps were also screened for trunk 

disease pathogens as described above.  
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2.3.5 The influence of environmental factors on the presence of trunk disease 

pathogens on arthropods  

Environmental variables measured and tested were total rainfall and average 

temperature for each week that arthropods were collected. Total rainfall was determined by 

adding the daily amount of rainfall for the seven days of each week of collection. The 

average temperature was determined by adding the daily average temperature and dividing 

the total by seven. The weather data was obtained from the Nietvoorbij and Rawsonville-

Blaarfontein weather stations. 

The effect of site (the two vineyards) and collection years (2010 and 2011) on both 

the total abundance of arthropods (inclusive of all taxa collected during the study) and the 

three most abundant arthropod taxa collected were statistically determined with Chi-squared 

(χ²) tests using the Freq Procedure of SAS statistical software (Version 9.2, SAS Institute 

Inc., USA). We therefore, tested the null hypothesis that abundances of arthropods and these 

groups of arthropods were equal between sites (Chenin blanc and Pinotage vineyards) and 

years (2010 and 2011). In addition, the degree of linear relationship between the abundance 

of the arthropod groups mentioned above and those that carried trunk disease pathogens, and 

rainfall and average temperature were determined using Pearson’s correlations using the 

Corr Procedure of SAS statistical software (Version 9.2, SAS Institute Inc., USA).  

 

2.4 RESULTS 

 

2.4.1 Arthropod collection 

 

2.4.1.1 Arthropods associated with declining grapevines 

The number of arthropod individuals per taxon collected from the Pinotage and 

Chenin blanc vineyards are shown in Table 1. Only those that were collected more than 

twice and/or those that tested positive for grapevine trunk disease pathogens at least once 

are included. The remainder were considered as either rare or not being able to acquire 

spores of the pathogens of interest. 

Arthropods collected from grapevines in the two vineyards belonged to more than 31 

families. In total, 10 875 arthropod individuals were collected during the two years of 

sampling and of these, 6402 were from the Chenin blanc and 4473 were from the Pinotage 
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vineyard. The trunk and cordon traps yielded the highest number of arthropod individuals 

(7858), followed by the pruning wound traps (1765 individuals) and the visual searches 

(1252 individuals). The majority of the arthropod individuals collected belonged to the 

Diplopoda (millipedes), Araneae (spiders), Coleoptera (beetles), Hymenoptera (ants and 

wasps), Collembolla (springtails), Orthoptera (crickets), Blattodea (cockroaches), 

Dermaptera (earwigs), Thysanoptera (thrips) and Hemiptera (bugs).  

Ants were represented by cocktail ants, Crematogaster peringueyi Emery, and 

Argentine ants, Linepithema humile (Mayr) as well as the common pugnacious ants, 

Anoplolepis custodiens (F. Smith). Most abundant beetle families represented in the 

collection included the Coccinellidae (ladybird beetles), Elateridae (click beetles), 

Curculionidae (weevils) and Staphylinidae (rove beetles). The spiders were represented by 

the Gnaphosidae (ground spiders), Clubionidae (sac spiders), Miturgidae (long-legged sac 

spiders), Salticidae (jumping spiders), Corinnidae (dark sac spiders), Philodromidae 

(running crab spiders), Lycosidae (wolf spiders) and Theridiidae (web spiders). The families 

of Hemiptera included Pentatomidae (stinkbugs), Cicadellidae (leafhoppers), Reduviidae 

(assassin bugs), Pyrrhocoridae (cotton stainers) and Pseudococcidae (mealybugs). 

Orthopterans mainly consisted of species in the family Gryllidae (crickets). Only a single 

species of millipede was collected namely, the Portuguese millipede, Ommatoiulus moreleti 

(Lucas). The abundance of these taxa differed between the two vineyards. For example, 

cockroaches, click beetles, cocktail ants and pugnacious ants were more abundant in the 

Chenin blanc vineyard whereas Argentine ants, millipedes and earwigs were abundant in the 

Pinotage vineyard (Table 1).  

 

2.4.1.2 Arthropods collected from pruning wound traps  

Traps placed around freshly made pruning wounds trapped several arthropod 

morphospecies (Table 2). The main arthropod taxa consistently captured on the pruning 

wound traps included cocktail ants, beetles, spiders, wasps, springtails, earwigs, thrips and 

stinkbugs. Millipedes were not commonly captured on the pruning wound traps but they 

were observed in large numbers on the freshly made pruning wounds during the night in the 

Pinotage vineyard (Figs. 2A, B). Millipede faeces were observed on many pruning wounds 

in vineyards during the day. Similarly, cocktail ants were observed in large numbers on the 

freshly made wounds during the day in the Chenin blanc vineyard (Fig. 2C). In addition, a 

sac spider (Cheiracanthium furculatum Karsch) was observed on a pruning wound at night 
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in the Pinotage vineyard (Fig. 2D). Rove beetles, springtails, thrips and wasps were only 

captured using the pruning wound traps and not by any other collection method.  

 

2.4.2 Screening of arthropods for presence of Petri and other grapevine trunk disease 

pathogens 

Millipedes, spiders and cocktail ants yielded the target pathogens fairly consistently 

using both plating (culturing) and molecular techniques and subsequently, numerous 

individuals tested positive for pathogens (Tables 1 and 2). The numbers of arthropods that 

tested positive for grapevine trunk disease pathogens, for some taxa, exceeded 40 %. 

Overall, a total of 1873 out of 5677 (33 %) samples tested positive for trunk pathogens, of 

which 37 % (685/1873) was recovered from millipedes, 22 % (420/1873) from cocktail ants, 

15 % from spiders whereas various unidentified beetles and cockroaches contributed 4 % 

each to the total number of positive samples. Rove beetles contributed 3 % while Argentine 

ants, earwigs and ladybird beetles contributed 2 % of the positive samples, respectively. 

Springtails, crickets, common pugnacious ants, click beetles, stinkbugs, parasitic wasps and 

various unidentified arthropods contributed 1 %, respectively. The remaining taxa 

contributed less than 1 % to samples that tested positive for grapevine trunk disease 

pathogens using both plating and molecular techniques.  

 

2.4.2.1 Identification of fungal pathogens obtained from water washings using plating 

techniques 

The grapevine trunk disease pathogens identified from the fungal cultures obtained 

from the water samples included Pa. chlamydospora, Phaeoacremonium species, species 

from the Botryosphaeriaceae, Diatrypaceae as well as Diaporthales. The BLAST results of 

the species identifications are provided in Table 3. Grapevine trunk disease pathogens were 

isolated from several arthropod species from both vineyards and monitoring seasons. Some 

trunk pathogens were predominant in one vineyard over another (Table 4). For example, 

Phaeoacremonium sicilianum Essakhi, Mugnai, Surico, and Crous was the most common 

species of Phaeoacremonium associated with arthropods and mainly from those in the 

Chenin blanc vineyard. The most common species in the Botryosphaeriaceae was D. seriata 

isolated mostly from arthropods collected in the Pinotage vineyard. Spencermartinsia 

viticola (A.J.L. Phillips & J. Luque) A.J.L. Phillips, A. Alves & Crous was second in 

abundance of the Botryosphaeriaceae isolates and was commonly found on arthropods from 
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the Chenin blanc vineyard. Cryptovalsa ampelina (Nitschke) Fuckel and Phomopsis viticola 

(Sacc.) Sacc. were the most commonly isolated pathogens within the Diatrypaceae and 

Diaporthales, respectively.  

 

2.4.2.2 Identification of fungal pathogens obtained from water washings using 

molecular techniques 

 

2.4.2.2.1 Detection of Petri disease fungi using nested PCR 

Five thousand six hundred and seventy-seven water samples, collected during the 

two seasons from both vineyards, were tested using species-specific primers for Pa. 

chlamydospora and genus-specific primers for Pheaoacremonium species. Examples of 

amplification results for primer pairs Pch1/Pch2 and Pm1/Pm2 are shown in Figs. 3 and 4, 

respectively. Seven hundred and twenty-one samples tested positive for the presence of Pa. 

chlamydospora, whereas 1020 samples tested positive for Phaeoacremonium species (Table 

5). Sequencing of a subset of the PCR products (182 samples) for Phaeoacremonium spp. 

indicated that the most common species associated with the collected arthropods was Pm. 

sicilianum (75 %) and T. minima (15 %). However, due to the non-specificity of the PCR, 

18 of the samples sequenced were generated from DNA of D. seriata, Sphaeropsis sapinea 

(Fr.) Dyko & B. Sutton and various unidentified taxa. Seventy-three of the PCR products 

generated using the primer pair Pch1/Pch2 were sequenced and all were confirmed to be 

from Pa. chlamydospora. 

 

2.4.2.2.2 Restriction enzyme identification of Phaeoacremonium spp. from PCR products 

It was possible to distinguish between Phaeoacremonium spp. and other fungal taxa 

by their restriction fragment length polymorphism patterns. The Hpy188I-digested amplicon 

for Phaeoacremonium species resulted in two prominent bands. One was a smaller band of 

approximately 145 bp for T. minima and 153 bp for Pm. sicilianum, and a larger band of 

approximately 170 bp for both species. The enzyme digestion of D. seriata and S. sapinea 

DNA also resulted in two fragments, one of approximately 128 bp and another of 

approximately 260 bp. Digestion of the other unidentified fungi with the enzyme Hpy 188I 

resulted in two fragments, one of approximately 225 bp and another of approximately 254 

bp. Of the 1062 PCR products that were digested, 856 had the diagnostic banding pattern of 

Phaeoacremonium species.  
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2.4.2.3 Detection of grapevine trunk pathogens from pruning wounds on which 

pruning wound traps were placed 

Isolations from the initial pruning of shoots showed that 12 shoots (for both years 

and vineyards) were infected with either Pa. chlamydospora (4 shoots), Pm. aleophilum 

(found together with Pa. chlamydospora in 1 shoot), Phomopsis viticola (3 shoots) or D. 

seriata (5 shoots) prior to the placement of the traps. Thirty-eight wounds became infected 

with the above mentioned pathogens during the experimental time. Sixteen wounds were 

infected with Pa. chlamydospora, 11 with D. seriata, nine became infected with Phomopsis 

viticola and two became infected with Pm. aleophilum. Table 6 summarizes the fungi 

isolated from pruning wounds, which were clean from Petri disease fungi, but were infected 

during the experimental time, and the arthropod taxa from which either Pa. chlamydospora 

or Phaeoacremonium species was detected on the same wound. In the Pinotage vineyard, no 

arthropod collected from pruning wound traps tested positive for the specific trunk disease 

fungus that was isolated from the same pruning wound. However, in the Chenin blanc 

vineyard, five arthropod taxa collected from pruning wound traps tested positive for the 

same trunk disease fungi that were also isolated from the pruning wounds on which these 

traps were placed. During 2010, four pruning wounds that became infected with trunk 

pathogens were associated with arthropods that tested positive for the same fungi. Two of 

these wounds contained two arthropod morphospecies each, which tested positive for the 

same pathogen. Only a single wound in 2011 tested positive for a trunk disease pathogen 

(Table 6).  

 

2.4.3 The influence of environmental factors on the presence of trunk disease 

pathogens on arthropods  

Chi-squared tests revealed that arthropod abundance differed significantly between 

sites (χ²d.f=1 = 342.16, P < .0001) and years (χ²d.f=1 = 66.91, P < .0001). Higher numbers of 

arthropods were collected during 2011 than 2010 at both sites. The Chenin blanc vineyard 

had a higher number of arthropods collected compared to the Pinotage vineyard. Millipedes 

were found to be more abundant in the Pinotage vineyard compared to the Chenin blanc 

vineyard (χ²df=1 = 208.27, P < .0001) and a higher number of individuals was collected in 

2011 in comparison to 2010 (χ²df=1 = 122.01, P < .0001) for both vineyards. Spiders were 

found to be more abundant in the Chenin blanc vineyard compared to the Pinotage vineyard 

(χ²df=1 = 215.55, P < .0001) and 2010 had a higher number of spiders compared to 2011 
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(χ²df=1 = 11.42, P = .0007) for both vineyards. Cocktail ants were more abundant in the 

Chenin blanc vineyard (χ²df=1 = 2440.52, P < .0001), however, there was no significant 

difference (χ²df=1 = .5448, P = .4172) between the number of ants collected in 2010 and 2011 

for both vineyards. Arthropods were present throughout the monitoring period in both 

vineyards with millipedes, spiders and cocktail ants as the most abundant taxa (Figs. 5 and 

6). Arthropods confirmed to carry trunk disease pathogens were also collected throughout 

the monitoring period (Figs. 7 and 8).  

Significant correlations found were between the total number of arthropods 

(Categories: arthropods (all taxa included), millipedes, ants and spiders) and the numbers 

that tested positive for grapevine trunk diseases (Table 7). All of these correlations were 

positive indicating that an increase in arthropod numbers was coupled with an increase in 

numbers of positive arthropods. In terms of environmental variables, average temperature 

had a significant negative correlation with the total number of ants, number of positive ants, 

total number of spiders and number of positive spiders as well as a significant positive 

correlation with number of millipedes and positive millipedes. Rainfall had a significant but 

weak positive correlation with the total number of arthropods, total numbers of ants and 

total number of spiders (Table 7). However, no significant correlation was found between an 

increase in rainfall and the numbers of arthropods that tested positive for grapevine trunk 

pathogens (Table 7). The proposed guidelines regarding the strength of the correlation 

coefficient, used in this study, are provided in Table 8. 

 

2.5 DISCUSSION 

 

A large diversity of arthropod morphospecies collected from declining grapevines 

was found to carry fungi associated with Petri disease and esca. These were often collected 

from within the cracks and crevices of diseased vines. This indicates that cracks and 

crevices within diseased grapevines provide a protective habitat for arthropods seeking 

shelter in a habitat with low structural diversity, which probably also explains why the trunk 

and cordon traps yielded the highest number of collected arthropods. A lot of different taxa, 

each with different ecology and dispersal potential, will present the fungi with numerous 

different ways of being dispersed.  

As pruning wounds are the main portals of entry of Petri disease fungi and pathogens 

associated with esca in vineyards (Eskalen and Gubler, 2001; Rooney-Latham et al., 2005; 
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Rolshausen et al., 2010; Van Niekerk et al., 2011), any of the arthropods associated with 

wounds and that have been shown to carry spores of the fungi could potentially vector the 

fungi to healthy plants. Arthropod taxa that were consistently observed and/or collected 

from pruning wound traps included millipedes, beetles, spiders, wasps, springtails, earwigs, 

ants, thrips and stinkbugs. All except for the thrips tested positive for trunk disease 

pathogens at least once. Most of these arthropods are likely to be attracted to the plant sap 

exuded from these wounds as it is very rich in sugars (Van der Meer et al., 1990). For 

example, shortly after sunset, large numbers of Portuguese millipedes were observed 

feeding directly on the plant sap flowing from freshly made wounds. Millipedes are usually 

detritivores (Crawford, 1990) but often also feed on roots, fruits and germinating seeds of 

living plants (Baker, 1978; Ebregt et al., 2007). Similarly, cocktail ants were observed in 

large numbers on fresh pruning wounds feeding on plant sap. These are known to prefer 

sugary and high protein foods (Longino, 2003; Mgocheki and Addison, 2009; 

Nyamukondiwa and Addison, 2011). Predatory arthropods such as spiders commonly found 

at wounds are probably also attracted to these since numerous potential prey items are found 

at these sites. Based on abundance of individuals that tested positive for trunk disease 

pathogens and the numbers of individuals found in association with pruning wounds, 

millipedes, ants and possibly spiders seem to be the most likely candidates for arthropod 

vectored dispersal of the grapevine trunk disease pathogens mentioned in the present study. 

The presence of fungal pathogens on arthropods is not uncommon. Fungal pathogens 

have been isolated from the bodies of different kinds of arthropods, including beetles 

(Russin et al., 1984; Webber, 1990; Lilleskov and Bruns, 2005), mites (Talbot, 1952; Roets 

et al., 2006) and springtails (Talbot, 1952; Lilleskov and Bruns, 2005). However, for 

grapevine trunk disease pathogens, there is very limited information to suggest that 

arthropods could acquire spores of the causal organisms. Arthropods reported to carry Petri 

disease and esca fungi include non-grapevine associated bark beetles (Kubatova et al., 

2004), rove beetles (Epstein et al., 2008) and possibly also mites and collembolans 

(Edwards et al., 2001a). The potential of arthropod taxa such as millipedes, ants, other 

beetle taxa and spiders to serve as vectors of grapevine trunk disease pathogens is therefore, 

novel.  

Arthropod abundance differed significantly between vineyards and years. The 

geographical location and differential seasonal conditions of these vineyards probably 

resulted in differences in the numbers of arthropods collected. The abundance of many 
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morphospecies is also linked to a specific locality. For example, the cocktail ant species, 

Crematogaster peringueyi, is found abundantly in certain wine growing areas in the 

Western Cape of South Africa (such as in the Chenin blanc vineyard included in our study), 

but is less widespread in other areas (Kriegler and Whitehead, 1962). A significant positive 

linear relationship was found between the total number of arthropods and the number of 

arthropods that tested positive for grapevine trunk disease pathogens. This therefore, shows 

that the risk of contamination of pruning wounds with trunk disease pathogens would 

increase with an increase in spore bearing arthropods, especially with those associated with 

pruning wounds. If these arthropods aid in infections, any control effort for the spread of 

grapevine trunk disease pathogens should also include the control of arthropod numbers. 

Previous studies have described a link between the occurrence of Petri disease 

pathogens in vineyards to the occurrence of rainfall (Eskalen and Gubler, 2001; Rooney-

latham et al., 2005). However, in our study an increase in rainfall had no apparent influence 

on the abundance of arthropods found to carry pathogens. If fungal sporulation is indeed 

linked to rainfall, our results may suggest that pathogens are capable of surviving for 

extended periods of time on the exoskeleton of arthropods and therefore, could be detected 

on arthropods independent of rainfall events. The results may also suggest that fruiting 

bodies are able to produce and release spores over longer periods than previously believed. 

Average temperature had a significant positive association with millipede abundance. This 

is consistent with their reproduction cycle, where they lay eggs in winter (at low 

temperatures) and emerge in spring/early summer when their numbers increase until autumn 

(Baker, 1978; Widmer, 2006). The number of cocktail ants was negatively correlated with 

average temperature. The activities of ants in time are largely determined by their 

physiological status, especially their tolerance to ranges of temperatures and humidity. Most 

diurnal ants have been reported to be more active at dawn and at dusk and the activities 

declining around midday (Hölldobler and Wilson, 1990). This could explain why the 

numbers of cocktail ants decreased with the increase in temperature during the sampling 

periods. A significant negative correlation between the number of spiders and average 

temperature was also observed. This is consistent with a study by Soomro et al. (2010) who 

observed a decline in the population of spiders with increase in temperature during an 

investigation of spider activities on sunflower. The same trend was also observed in a study 

by Martins et al. (2004) who found that the numbers of the sun spider, Mummucia 

coaraciandu Martins, Bonato, Machado, Pinto-Da-Rocha & Rocha, are negatively 
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correlated with mean temperature, but showed no correlation with monthly rainfall. It 

should be noted, however, that correlation analysis just measures an association between 

variables and it does not provide a direct explanation of the relationships (Taylor, 1990). 

A diverse range of trunk disease pathogens was isolated from a wide variety of 

arthropod taxa. No pathogen was restricted to a specific arthropod taxon. Also, in some 

instances, a single arthropod individual was found to carry more than one trunk disease 

pathogen simultaneously. It is known that different grapevine decline pathogen species can 

occur in a single esca-diseased vine (Ari, 2000; Armengol et al., 2001; Edwards and Pascoe, 

2004; White et al., 2011) and therefore, arthropods could easily come into contact with 

spores of numerous taxa if these sporulate at the same time. All of the major fungal taxa 

associated with grapevine trunk diseases were isolated in this study. Phaeomoniella 

chlamydospora and Phaeoacremonium species were found more abundantly than species of 

the Botryosphaeriaceae, Diatrypaceae and Diaporthales. This is because these fungi were 

detected using both the traditional plating and molecular techniques. The molecular methods 

resulted in much higher numbers of samples that were positive for these pathogens because 

they are sensitive and have the ability to detect both viable and nonviable propagules of 

pathogens (Rawsthorne et al., 2009). It is noteworthy that the most abundant 

Phaeoacremonium species isolated from the surface of arthropods in this study was Pm. 

sicilianum instead of Pm. aleophilum, which is the most common species isolated from 

grapevines world-wide. Phaeoacremonium sicilianum was first reported in South Africa by 

White et al. (2011), being the second most common species associated with esca diseased 

vines after Pm. aleophilum. Therefore, its importance seems to be major. Interestingly, some 

other fungal taxa known to be pathogenic to other crops than grapevines, such as 

Aplosporella prunicola Damm & Crous [isolated from dieback symptoms of Prunus L. trees 

(Damm et al., 2007)], Diplodia medicaginis Brunaud [isolated from alfalfa, Medicago 

sativa L. (Phillips et al., 2008)] and Diplodia scrobiculata J. de Wet, Slippers & M.J.Wingf. 

[pathogen on Pinus L. spp. (Bihon et al., 2011)] were recovered from arthropods. Their 

presence on arthropods from vineyards suggests that the arthropods could transport viable 

propagules from other hosts, such as pine or stone fruit trees, that are commonly planted 

around vineyards. The pathogenicity of these fungi on grapevines is currently unknown and 

therefore, it remains unclear if their presence on arthropods occurring on grapevines is of 

economic importance. 
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The potential exists for any contaminated arthropod to brush off pathogens onto 

pruning wounds and cause infection. If any of these arthropods taxa feed on the fungi, there 

is also a distinct possibility that fungal propagules will be easily transferred to healthy plants 

during feeding on sap and/or they may acquire propagules from the sap. Circumstantial 

evidence suggests that arthropods have been able to transfer infective spores to fresh 

pruning wounds during the study period. Some wounds were found to be infected with trunk 

disease pathogens after initial isolations from shoots failed to show their presence. A few 

arthropod taxa including a Cheiracanthium C.L. Koch species (spider), C. peringueyi (ant), 

collembolan (springtail) and a coccinellidae species (beetle) were found to carry spores of 

the same fungus that was isolated from the same wound that the arthropod was collected 

from. Even though aerial inoculum cannot be ruled out, this suggests that arthropods do 

have the potential to inoculate healthy grapevines with pathogenic fungi. 

The presence of diverse arthropod taxa in high abundance in vineyards and their 

ability to acquire numerous different pathogens poses numerous disease management 

problems. Having an arthropod as a possible disease vector means that three organisms 

(pathogen, host and vector) require attention to effectively control disease spread instead of 

the standard two (host and pathogen) (Leach, 1940). The formulation of a good control 

strategy against grapevine trunk diseases is therefore, more complicated because the biology 

and ecology of all three organisms would need to be reasonably well understood (Purcell 

and Almeida, 2005). In this study, we have identified the most likely arthropods to vector 

Petri disease and esca pathogens as Portuguese millipedes and cocktail ants because they 

were found to be abundant, carried pathogens consistently and were directly linked to 

pruning wounds. However, data for spider species such as Cheiracanthium spp. also agreed 

with these criteria. Since spiders are considered good biological control agents of pests, this 

presents additional management problems. The specific role of each of the arthropod taxa 

identified in this study, to potentially vector trunk disease pathogens should thus, be 

carefully evaluated in future studies.  

Pruning wound protection has been the main focus of efforts to combat the incidence 

of grapevine trunk diseases in the vineyard (Serra et al., 2008; Rolshausen et al., 2010). 

Since arthropods carrying inoculum were found on fresh pruning wounds, and there is a 

possibility of the inoculum being deposited on the wounds, it is therefore, worthwhile to 

protect pruning wounds. Elimination of vectors with insecticides is usually the first step that 

is considered in controlling diseases caused by insect-borne pathogens (Purcell, 2006). 
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Although they have been effective in reducing the spread of insect-borne diseases (Purcell, 

2006), insecticides have diverse toxic effects on beneficial insects (such as predators and 

parasitoids) (Thomson, 2012). Several methods should be combined to achieve effective 

control (Purcell, 2006). Sanitation (removal of infected plants and pruning debris) in the 

vineyard is recommended as a cultural practice to reduce inoculum load (Mugnai et al., 

1999). Arthropods use cracks and crevices of diseased vines as habitats. Removing dead or 

diseased vines therefore, will not only reduce inoculum in the vineyard, but also reduce 

populations of the potential vectors as well as reduce the numbers of the arthropods carrying 

fungal spores. Alternatively, instead of controlling the numbers of arthropods in the 

vineyard, efforts can be focused on blocking their movement to pruning wounds. This could 

be achieved by applying sticky barriers near the wounds or the use of baits at the base of the 

plants (Purcell, 2006). Ants are routinely controlled in vineyards as part of the mealybug 

control program (Nyamukondiwa and Addison, 2011). In South African vineyards, ant 

control methods include insecticidal sprays and chemical stem banding (Addison, 2002). 

However, the use of chemical stem barriers has been found not to be effective in controlling 

cocktail ants because they are arboreal (Addison, 2002). The use of toxic baits has been 

suggested to probably offer effective control of these ants (Mgocheki and Addison, 2009) 

because food is shared among nest mates (Longino, 2003). 

It is important to note that the mere association of arthropods with diseased plants or 

the presence of inoculum on the arthropod’s body cannot be used to conclude that a certain 

arthropod is a vector of a disease. Any evidence that presents a certain arthropod as a vector 

of a plant disease should always meet Leach’s postulates for proof of arthropod transmission 

(Leach, 1940). This study has shown that several arthropod species can acquire Petri disease 

and esca pathogens. However, further experiments are required to assess whether arthropods 

can vector trunk disease pathogens to healthy pruning wounds. Only once this is established, 

it can be ascertained whether it is necessary to include arthropod control as part of an 

integrated management strategy to prevent pruning wound infections by trunk disease 

pathogens.  
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Table 1. Arthropods collected using visual surveys, pruning wound traps as well as trunk and cordon traps during surveys of declining Chenin 

blanc and Pinotage vineyards for 2010 and 2011. Total percentage of arthropod individuals per taxon that tested positive for trunk disease 

pathogens, using both plating and molecular techniques, are presented in brackets. 

Order (common names) Family     Chenin blanc Pinotage 

          Genus/ Species Number of arthropod 

individuals (% positive) 

Number of arthropod 

individuals (% positive) 

  2010 2011 2010 2011 

Diplopoda (Millipedes) Julidae     

         Ommatoiulus moreleti Lucas 425 (50) 1325 (47) 1093 (73) 1620 (46) 

Hymenoptera (Ants and wasps)   Parasitic wasps (numerous taxa)          85 (25) 0 114 (4) 0 

 Formicidae     

       Crematogaster peringueyi Emery 1187 (47) 1347(53) 10 (0) 8 (25) 

       Linepithema humile Mayr 4 (25) 28 (18) 32 (22) 143 (50) 

      Anoplolepis custodiens (F. Smith)  33 (0)  17 (47)  0 3 (0) 

Coleoptera (Beetles) Staphylinidae 102 (17) 98 (43) 15 (0) 24 (24) 

 Coccinellidae 94 (14) 44 (20) 90 (8) 136 (15) 

 Elateridae 23 (35) 24 (13) 1 (0) 1 (0) 

 Curculionidae 7 (29) 7 (57) 10 (40) 3 (0) 

 Various beetles 203 (17) 97 (25) 88 (10) 59 (17) 

    

Stellenbosch University  http://scholar.sun.ac.za



60 
 

Table 1. Continued 

Order (common names) Family     Chenin blanc Pinotage 

          Genus/ Species Number of arthropod 

individuals (% positive) 

Number of arthropod 

individuals (% positive) 

  2010 2010 2011 2011 

Orthoptera (Crickets) Gryllidae 7 (43) 10 (50) 9 (0) 5 (60) 

Unidentified arthropods Various taxa 19 (37) 6 (0) 29 (48) 4 (0) 

Blattodea (Cockroaches)  36 (42) 154 (48) 1 (0) 1 (0) 

Hemiptera (True bugs) Pentatomoidea 51 (14) 16 (19) 1 (100) 13 (15) 

 Pseudococcidae  6 (33) 6 (67) 0 3 (33) 

 Cicadellidae 10 (0) 0 4 (0) 4 (0) 

 Pyrrhocoridae 0 11 (55) 0 0 

 Reduviidae 0 0 0 11 (18) 

Collembolla (Springtails)  71 (55) 15 (7) 426 (17) 29 (7) 

Thysanoptera (Thrips)  7 (0) 7 (0) 6 (0) 1 (0) 

Dermaptera (Earwigs) Labiduridae 1 (0) 11 (18) 75 (41) 41 (32) 

Araneae (Spiders) Ammoxenidae     

         Ammoxenus sp. Simon 2 (100) 0 0 0 

 Araneidae     

         Neoscona blondeli Simon 0 0 9 (11) 1 (0) 

        Neoscona hirta C. L. Koch 0 0 3 (67) 0 
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Table 1. Continued      

Order (common names) Family     Chenin blanc Pinotage 

          Genus/ Species Number of arthropod 

individuals (% positive) 

Number of arthropod 

individuals (% positive) 

  2010 2010 2011 2011 

Araneae (Spiders) Araneidae     

       Neoscona quincasea Roberts 1 (0) 0 2 (0) 0 

       Neoscona subfusca C. L. Koch 2 (50) 0 8 (38) 5 (20) 

 Clubionidae     

      Clubiona pulchella Canestrini 6 (33) 13 (23) 13 (46) 5 (20) 

     Clubiona africana Lessert 0 1 (0) 1 (0) 0 

      Clubiona sp. 1 Latreille 3 (33) 4 (25) 18 (28) 3 (33) 

     Clubiona sp. 2 3 (0) 1 (100) 0 0 

 Corinnidae     

    Afreceto martini  

Eresidae 

7 (14) 

 

26 (38) 

 

0 3 (33) 

     Dresserus sp. 1 (0) 1 (100) 0 1 (0) 

 Gnaphosidae     

      Asemesthes sp. Simon 0 1 (100) 4 (0) 1 (0) 

     Camillina sp. Berland 19 (26) 21 (33) 9 (0) 6 (33) 

      Drassodes sp. C. L. Koch 2 (0) 0 2 (50) 1 (0)  
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Table 1. Continued 

Order (common names) 

 

Family     

 

Chenin blanc 

 

Pinotage 

          Genus/ Species Number of arthropod 

individuals (% positive) 

Number of arthropod 

individuals (% positive) 

  2010 2010 2011 2011 

Araneae (Spiders) Gnaphosidae     

     Pterotricha auris Tucker 0 0 0 7 (57) 

     Scotophaeus relegates Purcell 5 (60) 5 (0) 1 (0) 2 (0) 

     Upognampa biamenta Tucker 0 0 1 (0) 1 (0) 

     Xerophaeus capensis Purcell 5 (20) 8 (75) 4 (0) 7 (14) 

     Xerophaeus sp. Purcell 0 2 (50) 0 0 

    Zelotes sp. Koch 13 (23) 11 (36) 9 (22) 19 (37) 

 Linyphiidae     

      Meioneta sp. Hull 1 (0) 0 1 (0) 1 (0) 

      Pelecopsis janus Jocque 2 (0) 43 (30) 0 1 (0) 

 Lycosidae     

       Allocosa lawrencei Sundevall 2 (0) 0 0 2 (50) 

      Pterartoriola sagae Purcell 3 (67) 8 (25) 0 3 (33) 

 Miturgidae     

         Cheiracanthium furculatum Karsch 55 (25) 24 (30) 13 (8) 6 (67) 

      

Stellenbosch University  http://scholar.sun.ac.za



63 
 

Table 1. Continued 

Order (common names) Family     Chenin blanc Pinotage 

          Genus/ Species Number of arthropod 

individuals (% positive)  

Number of arthropod 

individuals (% positive) 

  2010 2010 2011 2011 

Araneae (Spiders) Miturgidae     

        Cheiracanthium sp. C.L. Koch 19 (32) 17 (47) 7 (14) 4 (25) 

 Oxyopidae     

        Oxypes sp. 1  1 (0) 0 0 1 (100) 

       Oxypes sp. 2 0 0 0 3 (67) 

 Salticidae     

       Cyrba dotata Blackwall 23 (22) 4 (0) 1 (0) 2 (0) 

       Evarcha sp. Clerck 1 (0) 3 (33) 0 0 

      Heliophanus modicus Blackwall 17 (29) 0 1 (0) 0 

      Heliophanus sp. Blackwall 0 4 (50) 0 0 

     Thyene sp. Simon 0  2 (50) 0 0 

 Sparassidae     

      Olios sp. Walckenaer 0 1 (100) 6(17) 1 (0) 

 Philodromidae     

      Philodromus thanatellus Strand 1(0) 2 (50) 6 (17) 3 (67) 

    Thanatus vulgaris Simon 4 (0) 1 (0) 2 (100) 1 (0) 
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Table 1. Continued 

Order (common names) 

 

Family 

 

Chenin blanc 

 

Pinotage 

          Genus/ Species Number of arthropod 

individuals (% positive)  

Number of arthropod 

individuals (% positive) 

  2010 2010 2011 2011 

Araneae (Spiders) Philodromidae     

        Thanatus thanatellus Simon 0 1 (0) 4 (25) 7 (14) 

       Tibellus minor Thorell 0 0 0 1 (100) 

 Thomisidae     

      Xysticus sp. C. L. Koch 0 1 (0) 1 (0) 1 (100) 

 Theridiidae     

       Euryopis episinoides Walckenaer 178 (26) 101 (30) 11 (36) 3 (0) 

       Latrodectus geometricus C. L. Koch 0 2 (0) 0 1 (0) 

       Steatoda capensis Sundevall 0 0 0 1 (100) 

      Theridion sp. 1 Walckenaer 8 (38) 11 (18) 11 (18) 2 (0) 

     Theridion sp. 2 0 0 3 (67) 0 

 Unidentifiable spiders  22 (20)  11 (43)  12 (17) 6 (60) 

*The percentages were calculated as the number of arthropod individuals that carried trunk disease pathogens divided by the total number of arthropod individuals collected. 

*Only arthropods that were collected more than twice and/or those that tested positive for grapevine trunk disease pathogens at least once are included. 
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Table 2. Arthropods collected from pruning wound traps in Chenin blanc and Pinotage vineyards during 2010 and 2011. Total percentage of 

arthropod individuals per taxon that tested positive for trunk disease pathogens, using both plating and molecular techniques, are presented in 

brackets. 

Order  Family     Chenin blanc Pinotage 

          Genus/ Species Number of arthropod individuals 

(% positive) 

Number of arthropod individuals 

(% positive) 

  2010 2011 2010 2011 

Diplopoda  Julidae     

        Ommatoiulus moreleti 1 (0) 2 (100) 0 5(0) 

Hymenoptera  Parasitic wasps (numerous taxa)   85 (25) 0 114 (4) 0 

 Formicidae     

      Crematogaster peringueyi 112 (30) 57(35) 10 (0) 6 (17) 

      Linepithema humile    1(0) 8 (0) 17 (6) 19 (42) 

     Anoplolepis custodiens    1 (0)  3(0)  0  0 

Coleoptera  Staphylinidae 102 (17) 98 (43) 15 (0) 24 (24) 

 Coccinellidae 9 (33) 5 (40) 10 (0) 0 

 Elateridae 0 0 3(33) 0 0 

 Curculionidae 0 2 (50) 10 (0) 3 (0) 

 Various beetles 144 (11) 50 (28) 68 (13) 42 (14) 

Unidentified arthropods Various taxa 11 (55) 5 (0) 23 (17) 3(0) 
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Table 2. Continued    

Order    Family     Chenin blanc Pinotage 

          Genus/ Species Number of arthropod individuals 

(% positive) 

Number of arthropod individuals 

(% positive) 

  2010 2011 2010 2011 

Hemiptera Pentatomoidea 7 (43) 4(25) 0 7 (0) 

 Cicadellidae 9 (0) 0 2 (0) 0 

Collembolla   69 (57) 14 (7) 395 (17) 29 (7) 

Thysanoptera   7 (0) 7 (0) 6 (0) 1 (0) 

Dermaptera  Labiduridae 1 (0) 1 (0) 1 (0) 0 

Araneae  Araneidae     

        Neoscona subfusca 1 (0) 0  1 (0) 

 Clubionidae     

       Clubiona pulchella 0 0 1 (100) 0 

        Clubiona sp. 1 1(100) 1(100) 2(50) 1 (0) 

 Gnaphosidae     

        Zelotes sp. 0 0 2 (50) 0 

 Linyphiidae     

       Pelecopsis janus 0 41(32) 0 1 (0) 

 Miturgidae     

       Cheiracanthium sp. 2 (100) 3 (33) 0 0 
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Table 2. Continued    

Order    Family     Chenin blanc Pinotage 

          Genus/ Species Number of arthropod individuals 

(% positive)  

Number of arthropod individuals 

(% positive) 

  2010 2011 2010 2011 

Araneae Salticidae     

       Cyrba dotata 9 (0) 0 0 0 

       Heliophanus modicus 2(50) 0 0 0 

 Philodromidae     

      Philodromus thanatellus 0 1(100) 1 (0) 1(0) 

       Thanatus vulgaris 3 (0) 0 1 (100) 0 

      Thanatus thanatellus 0 1 (0) 1 (0) 2 (0) 

 Theridiidae     

     Euryopis episinoides 3 (33) 1 (0) 0 0 

    Theridion sp. 1 0 3 (0) 0 0 

 Unidentifiable spiders 3 (0) 4 (25) 2 (0) 3 (0) 

*The percentages were calculated as the number of arthropod individuals that carried trunk disease pathogens divided by the total number of arthropod individuals collected 

*Only arthropods that were collected more than twice and/or those that tested positive for grapevine trunk disease pathogens at least once are included 

 

 

Stellenbosch University  http://scholar.sun.ac.za



68 
 

Table 3. BLAST (from Genbank) identification results of the fungal species isolated from the surface of arthropods collected from vineyards.  

Fungal taxon Total number 

of cultures 

Representative 

culture 

Compared to 

GenBank accession 

% 

Similarity 

% 

Gaps 

Phaeoacremonium sicilianum Essakhi, Mugnai, Surico & 

Crous 

225 PMC 220 FJ 872409.1 99 0 

Togninia minima (Tul. & C. Tul.) Berl. 90 PMC 397 AY 179939.1 99 1 

Phaeoacremonium parasiticum (Ajello, Georg & C.J.K. 

Wang) W. Gams, Crous & M.J. Wingf. 

8 PMC 240 HQ 605022.1 99 0 

Phaeoacremonium alvesii L. Mostert, Summerb. & Crous 2 PMC 206 EU 883990.1 97 3 

Diplodia seriata De Not. 65 PMC 161 JQ 659282.1 99 0 

Diplodia scrobiculata J. de Wet, Slippers & M.J. Wingf. 2 PMC 198 DQ 458899.1 98 0 

Diplodia mutila (Fr.) Mont. 1 PMC 121 JQ 411412.1 99 0 

Diplodia medicaginis Brunaud 1 PMC 361 EU 673318.1 99 0 

Spencermartinsia viticola (A.J.L. Phillips & J. Luque) 

A.J.L. Phillips, A. Alves & Crous 

19 PMC 174 AY 905555.1 99 0 

Spencermatinsia sp. 4 PMC 224 EU 673323.1 99 0 

Neofusicoccum parvum (Pennycook & Samuels) Crous, 

Slippers & A.J.L. Phillips 

2 PMC 160 AY 228097.1 99 0 

Neofusicoccum australe (Slippers, Crous & M.J. Wingf.) 

Crous, Slippers & A.J.L. Phillips 

1 PMC 202 EU 375516.1 99 0 
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Table 3. Continued 

Fungal taxon 

 

Total number 

of cultures 

 

Representative 

culture 

 

Compared to 

GenBank accession 

 

% 

Similarity 

 

% 

Gaps 

Cryptovalsa ampelina (Nitschke) Fuckel 21 PMC 109 AY 920391.1 100 0 

Eutypella australiensis Trouillas, Sosnowski & Gubler 1 PMC 207 HQ 692479.1 100 0 

Eutypella sp. (Pers.) Sacc. 2 PMC 130 HQ 008913.1 88 4 

Eutypa lata (Pers.) Tul. & C. Tul. 1 PMC 123 AY 462541.1 99 0 

Phomopsis viticola (Sacc.) Sacc. 14 PMC 173 FJ 790861.1 99 0 

Diaporthe helianthi Munt.-Cvetk., Mihaljč. & M. Petrov 2 PMC 128 AJ 312353.1 99 0 

Aplosporella prunicola Damm & Crous 2 PMC 339 EF 564376.1 100 0 
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Table 4. Number of arthropod samples (one sample = 1 - ≤20, depending on size of 

individual arthropods) that tested positive for grapevine trunk disease pathogens assessed 

using culturing techniques. Percentages of samples that tested positive for pathigens are given 

in brackets. Samples were collected from Chenin blanc and Pinotage vineyards during 2010 

and 2011 using trunk and cordon traps, pruning wound traps and visual searches. 

Pathogen     Chenin blanc           Pinotage 

 2010 (%) 2011 (%) 2010 (%) 2011 (%) 

Phaeomoniella chlamydospora 32 (2) 75 (4) 20 (2) 23 (2) 

Phaeoacremonium sicilianum 69 (4) 150 (8) 4 2 

Togninia minima 13 (1) 27 (2) 17 (2) 33 (3) 

Phaeoacremonium parasiticum 1  0 1 6 

Phaeoacremonium alvesii 1  0 1 0 

Diplodia seriata 6  5  31 (3) 23 (2) 

Diplodia mutila 0  0 1 0 

Spencermartinsia viticola 9 (1) 9 (1) 0 1 

Spencermartinsia sp. 0 3  1 0 

Neofusicoccum parvum 0 0 2 0 

Neofusicoccum australe 0 0 1 0 

Cryptovalsa ampelina 12 (1) 7  1 1 

Eutypella australiensis 1  0 0 0 

Eutypella sp. 2  0 0 0 

Eutypa lata 0 0 1 0 

Phomopsis viticola 1  8  2 3 

Diaporthe helianthi 0 0 2 0 

Total number of samples tested 1619 1854 931 1273 
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Table 5. Number of arthropod samples (one sample = 1 - ≤20, depending on size of 

individual arthropods) that tested positive for Petri disease pathogens assessed using nested 

PCR. Samples were collected from Chenin blanc and Pinotage vineyards during 2010 and 

2011 using trunk and cordon traps, pruning wound traps and manual searches. 

Pathogen      Chenin blanc       Pinotage Total    

 2010 (%) 2011 (%) 2010 (%) 2011 (%)  
aPhaeomoniella chlamydospora 202 (12) 209 (11) 142 (15) 168 (13) 721 
bPhaeoacremonium spp. 227 (14) 456 (25) 62 (7) 275 (22) 1020 

Total number of samples tested 1619 1854 931 1273  

aThe species-specific primer-pair of Tegli et al. (2000) was used to identify Pa. chlamydospora. 
bThe genus-specific primer pair of Aroca and Raposo (2007) was used to identify species of Phaeoacremonium. 

 

 

 

 

 

 

 

 

 

 

 

 

Stellenbosch University  http://scholar.sun.ac.za



72 
 

Table 6. Arthropods, collected from pruning wound traps set in the Chenin blanc vineyard, that were associated with newly infected pruning 

wounds including the Petri disease fungi that were isolated from these, respectively.  

Trap 

no. 

Pruning time Pathogen isolated from Arthropod taxa Time of isolation from 

arthropod after pruning 

Pathogen isolated 

from arthropod 

  Freshly 

pruned shoot 

4-week old pruning 

wound 

   

1 June 2010 - Pa. chlamydospora Cheiracanthium sp. 1 week Pa. chlamydospora 

1 June 2010 - Pa. chlamydospora Collembolla 4 weeks Pa. chlamydospora 

2 June 2010 - Pa. chlamydospora Coccinellidae 2 weeks Pa. chlamydospora 

4 June 2010 - Pa. chlamydospora Unidentified species 1 week Pa. chlamydospora 

4 June 2010 - Pa. chlamydospora C. peringueyi 4 weeks Pa. chlamydospora 

8 June 2010 - Phaeoacremonium sp. C. peringueyi 3 week Phaeoacremonium sp. 

15 June 2011 - Pa. chlamydospora C. peringueyi 1 week Pa. chlamydospora 
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Table 7. Pearson correlation coefficients for association between abundance of various arthropod taxa and groups collected and environmental 

variables. 

 Rainfall Average 

temp. 

Number of 

arthropods 

Positive 

arthropods 

Number of 

millipedes 

Positive 

millipedes 

Number 

of  ants 

Positive 

ants 

Number 

of spiders 

Positive 

spiders 

Rainfall _          

Average Temp -0.38a _         

Number of 

arthropods 

.22b .01 _        

Positive 

arthropods 

.11 .11 .85a _       

Number of 

millipedes 

.11 .19c .68a .84a _      

Positive 

millipedes 

.04 .24b .67a .89a .95a _     

Number of ants .23b -0.25b .48a .27b -0.08 -0.08 _    

Positive ants .14 -0.19c .44a .33b -0.06 -0.07 .89a _   

Number of 

spiders 

.19c -0.27b .32b .11 -0.22b -0.17 .53a .48a _  

Positive spiders .15 -0.33b .20b .17 -0.14 -0.09 .28b .30b .67a _ 

*Values in bold indicate significant associations: a < .001, b < .01, c < .05.
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Table 8. Guidelines proposed to describe the strength of the correlation coefficient. 

Strength of association/relationship Correlation coefficient, r 

 Positive Negative 

Weak .1 to .3 -0.1 to -0.3 
Moderate .3 to .5 -0.3 to -0.5 
Strong   .5 to 1.0 -0.5 to -1.0 
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Figure 5. Total number of arthropods collected for each month from the Pinotage vineyard, for the years 2010 (-10) and 2011 (-11). 

Collection was done from May (M) until November (N).  
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Figure 6. Total number of arthropods collected for each month from the Chenin blanc vineyard, for the years 2010 (-10) and 2011 (-11). 

Collection was done from May (M) until November (N).  
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Figure 7. Percentages of arthropods that tested positive for grapevine trunk disease pathogens, calculated for each month from the Pinotage 

vineyard, for the years 2010 (-10) and 2011 (-11). Collection was done from May (M) until November (N).  
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Figure 8. Percentages of arthropods that tested positive for grapevine trunk disease pathogens, calculated for each month from the Chenin 

blanc vineyard, for the years 2010 (-10) and 2011 (-11). Collection was done from May (M) until November (N).  
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CHAPTER 3 

 

 ANTS AND MILLIPEDES AS VECTORS OF PHAEOMONIELLA 

CHLAMYDOSPORA TO GRAPEVINE PRUNING WOUNDS  

 

3.1 ABSTRACT 

 

Phaeomoniella chlamydospora is one of the causal organisms of Petri disease and 

esca, which are important trunk diseases on grapevines globally. However, limited 

information exists on its epidemiology. In this study, we investigated the potential of 

Portuguese millipedes and cocktail ants to vector this fungus to fresh pruning wounds. We 

determined whether sap formed after pruning of shoots is a potential food source for these 

taxa, in vitro. Millipedes were offered a choice between grapevine sap and water in Petri 

dishes and monitored for ingestion of sap. Laboratory-kept colonies of ants were presented 

with a choice of grapevine sap, water and tuna and monitored to identify feeding preferences. 

Both arthropod species preferred grapevine sap over the other items presented to them, 

implying that they would visit fresh pruning wounds for sap. Subsequently, it was determined 

whether both arthropod taxa can effectively transmit a DsRed transformed Pa. 

chlamydospora isolate to fresh wounds and cause infection in vitro. Arthropods were exposed 

to the fungus for 24 hours and transferred to the base of pruned healthy plants (potted) and 

pruned healthy shoots (in polystyrene strips floating in water) and were removed after three 

days. Isolations from pruning wounds, one month later, confirmed that both arthropod species 

were able to vector the fungus to pruning wounds and cause infection. The fungus was not 

isolated from control plants. Since millipede feacal matter is often observed on wounds under 

field conditions, the survival of infective spores through the gut of these was also determined. 

Millipedes were exposed to Pa. chlamydospora for 24 hours, surface-sterilized and allowed 

to defecate in sterile Petri dishes. Feacal pellets were recovered, macerated in water and 

plated onto potato dextrose agar. The fungus was recovered from pellets in a viable state. 

These results provide compelling evidence that arthropods need to be taken into consideration 

when managing Petri disease and esca pathogens. 
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3.2 INTRODUCTION 

 

Petri disease and esca are important grapevine trunk diseases that cause economic 

losses in vineyards and are reported in all viticultural areas around the world (Chicau et al., 

2000; Armengol et al., 2001; Fischer, 2002; Edwards and Pascoe, 2004; Rooney-Latham et 

al., 2005b; Zanzotto et al., 2007; White et al., 2011). Phaeomoniella (Pa.) chlamydospora 

(W. Gams, Crous and M.J. Wingf. and L. Mugnai) Crous & W. Gams and Phaeoacremonium 

(Pm.) species W. Gams, Crous & M.J. Wingf. are the causal agents of Petri disease (Scheck 

et al., 1998; Mugnai et al., 1999; Groenewald et al., 2001) while basidiomycetes together 

with Petri disease fungi cause esca (Surico, 2009).  

Previous studies on the dispersal of Petri disease pathogens in established vineyards 

has indicated a role of aerial spores that can infect vines through fresh pruning wounds 

(Larignon and Dubos, 2000; Eskalen and Gubler, 2001). However, recent studies failed to 

detect spores of these fungi in the air. Michelon et al. (2007) failed to trap spores of these 

pathogens, in an Italian vineyard, using glass microscope slides and volumetric spore traps. 

Similarly, volumetric spore traps used in a vineyard in Stellenbosch, South Africa, showed an 

absence of spores of these fungi in the air despite their isolation from pruning wounds (Van 

Niekerk et al., 2010). This suggests that these pathogens may not be primarily dispersed by 

air. One of the potential agents for dispersal of these pathogens includes arthropods (Chapter 

2). 

Petri disease fungi sporulate on diseased grapevine wood (Edwards and Pascoe, 2001; 

Eskalen et al., 2002; Eskalen et al., 2005a, 2005b; Rooney-Latham et al., 2005a). 

Phaeomoniella chlamydospora produces pycnidia on old pruning wounds or in cracks and 

crevices of grapevine wood (Edwards and Pascoe, 2001; Eskalen et al., 2002). Perithecia of 

Togninia (Tul. & C. Tul.) Berl, the teleomorph of Phaeoacremonium, are found in cracks and 

crevices on trunks and cordons of diseased vines, and have long necks (Mostert et al., 2003; 

Rooney-Latham et al., 2005a) that are oriented towards openings of cracks in the bark, 

pruning wounds and/or insect tunnels (Rooney-Latham et al., 2005a; Eskalen et al., 2005a, 

2005b). Sticky droplets of ascospores are produced at the tips of these (Rooney-Latham et al., 

2005a), an adaptation usually associated with arthropod spore dispersal (Leach, 1940; Abbott, 

2002). Sporulation of Petri disease fungi has been linked to the occurrence of rainfall 

(Eskalen and Gubler, 2001; Rooney-Latham et al., 2005a; Serra et al., 2008) and the cracks 
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and crevices of diseased vines may provide a protected humid environment favourable for 

sporulation (Serra et al., 2008). These environments are also favourable habitats for 

numerous arthropods. Sporulation of these pathogens in areas that are often occupied by 

arthropods indicates a possible role of arthropods in spore dissemination. In Chapter 2, more 

than 31 families of arthropods collected from grapevines in South Africa were found to be 

carriers of trunk disease pathogens. However, no direct experimental evidence exists to 

implicate any arthropod species as a vector of trunk disease pathogens.  

Dissemination of fungal spores by arthropods occurs as a result of arthropods being 

contaminated with the fungi while visiting infected plants and then transporting the spores to 

healthy plants (Agrios, 2005). Arthropods can only be considered effective vectors if they are 

able to transfer spores to healthy plants under conditions that are suitable for inoculation and 

infection (Leach, 1940). Portuguese millipedes, Ommattoiulus moreleti (Lucas), and cocktail 

ants, Crematogaster peringueyi Emery are associated with grapevine pruning wounds 

(Chapter 2), presumably to feed on the sugar-rich grapevine sap, and consistently yielded 

grapevine trunk disease pathogens from their exoskeletons (Chapter 2). However, it has not 

been experimentally demonstrated that these arthropods can inoculate pruning wounds of 

healthy grapevines with spores and cause infection.  

Fungal spores may be transported either externally on the exoskeleton of arthropods 

(El-Hamalawi and Menge, 1996; Kluth et al., 2002; Storer et al., 2004), or internally through 

the digestive tract (Leach, 1940; El-Hamalawi and Menge, 1996; Prom and Lopez, 2004; 

Lilleskov and Bruns, 2005). External transport of fungal spores has been established for 

numerous pathogens (El-Hamalawi and Menge, 1996; Kluth et al., 2002; Storer et al., 2004) 

and also for the grapevine trunk pathogens (Kubatova et al., 2004; Chapter 2). An increasing 

number of studies indicate that faecal material of arthropods may contain viable propagules 

of pathogens which make faeces a possible important source of inoculum contributing 

significantly to fungal dispersal (Leach, 1940; Carter, 1973; Prom and Lopez, 2004). For 

example, Fusarium vasinfectum (G.F.Atk) can be disseminated in the faecal pellets of 

grasshoppers that ingest infected tissues (Leach, 1940). Similarly, spores of Claviceps paspali 

Stev. can pass through the intestinal tract of the green fly Pyrellia coerulea (Wied.) in a 

viable state (Carter, 1973). Prom and Lopez (2004) recovered viable spores of Claviceps 

africana Freder., Mantle & De Milliano from excreta of adult corn earworm moths, 

Helicoverpa zea (Boddie) after being fed on ergot-infected sorghum panicles. Interestingly, 
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the passage of fungal spores through the digestive tract of arthropods and small mammals 

may even enhance their germination (Stanghellini and Russel, 1972; Cork and Kenagy, 1989; 

Castillo-Guevara et al., 2011). Faecal matter provide an immediate supply of moisture and 

nutrients and can be seen as a concentrated ‘spore pocket’ (Castillo-Guevara et al., 2011) 

when compared to dispersal by agents such as wind. This increases chances for survival of 

spores, as with dispersal agents such as wind, some spores may land on nutrient poor 

substrates. Faecal pellets of millipedes were observed on many pruning wounds on 

grapevines (Chapter 2) and if spores of grapevine trunk disease pathogens can survive the 

journey through the digestive tract of these, it is likely that millipede faecal pellets act as 

inoculum sources on pruning wounds. 

The aims of this study were therefore, to determine whether Portuguese millipedes 

and cocktail ants are attracted to and/or can feed on grapevine sap and to determine whether 

these arthropods could acquire inoculum of a Pa. chlamydospora and disseminate it to 

grapevine pruning wounds to cause infection. This study also investigated whether millipedes 

can feed on material containing Pa. chlamydospora and excrete the propagules in a viable 

state.  

 

3.3 MATERIALS AND METHODS 

 

3.3.1 Grapevine sap as food source for millipedes and ants 

 

3.3.1.1 Millipedes 

Millipedes (O. moreleti) were collected by hand from the arms and trunks of 

grapevines as well as from plant debris on the soil surface in a Cabernet Sauvignon vineyard 

at Nietvoorbij, Stellenbosch, South Africa, during July 2012. Individuals were placed in 9 cm 

diameter Petri dishes and starved for 8 hours. Grapevine sap was collected by cutting shoots 

from Cabernet Sauvignon grapevines and collecting the sap at the surface with a pipette. One 

drop (200 µl) of water and one drop (200 µl) of sap was placed at opposite sides of the Petri 

dish ca. 60 mm apart and ca. 15 mm from the side. The positioning of the water or sap 

samples in the Petri dishes was such that, in half of the plates the vine sap was on the right 

and in the other half, the sap was on the left. The experiment was replicated with 30 different 
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millipede individuals serving as replicates. In addition, 20 millipede individuals were 

presented with two 200 µl drops of water only in the same experimental setup. 

The starved millipedes were placed at the edge of the Petri dishes, halfway between 

the two drops (Fig. 1A). Observations of millipedes were made every 30 minutes (ca. 1 min 

observation time) for a total observation period of 4 hours. The experiment was conducted at 

night (main activity period of millipedes) and repeated once. The drop from which the 

millipedes were presumably feeding (with mouthparts on the drop) was noted and the total 

number of individuals observed to ingest water, sap or nothing was recorded. The millipedes 

were indicated to have ingested a substance regardless of how many times they were 

observed to feed and were indicated to have fed on both items if they were found to feed on 

both drops during the experiment. The number of millipedes that ingested or did not ingest a 

substance, during the two nights of experimentation, was combined. A Chi-squared (χ²) test 

was conducted using the Freq Procedure of SAS statistical software (Version 9.2; SAS 

Institute Inc., USA) to test the null hypothesis that the number of millipedes that ingested a 

substance was independent of the identity of the substance.  

 

3.3.1.2 Cocktail ants 

Grapevine wood that contained nests of cocktail ants (C. peringueyi) were collected 

from a declining Chenin blanc vineyard in Rawsonville, South Africa, in July 2012, and kept 

under laboratory conditions in perspex boxes measuring 600 mm x 450 mm x 300 mm. Nest 

sizes were not quantified and likely contained variable numbers of foraging worker ants. 

Food was withheld from the ants for 24 hours prior to experimentation. The experiment 

consisted of seven replicates and was conducted over a 3 day period. One box (replicate) was 

used during the first day and three boxes per day in the following days, with a different ant 

nest used for each replicate. Pieces of wood containing ant nests were placed at the centre of 

the boxes while food samples were placed at both ends of the boxes. Ants were offered a 

choice of 0.5 g tuna, 0.5 ml water and 0.5 ml grapevine sap collected from the Cabernet 

Sauvignon vineyard used for the millipede feeding studies. The different food items were 

placed in Petri dishes of 65 mm in diameter, with two Petri dishes of each food item in each 

box. A set of food items was placed on one side of the nest and another set on the opposite 

side (Fig. 1B). The number of ants observed feeding on (with their mouthparts on the food 

item) each item was recorded at 15 minute intervals (ca. 1 minute observation time) for a 
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total duration of 3 hours. The total number of ants found feeding on a particular food item 

during the entire time of observation was used for statistical analyses for each of the seven 

replicates. Analyses of food preference data were conducted using a General Linear Model 

(GLM) analysis of variance (ANOVA) in SAS version 9.2 with the number of ants (counts) 

found on each item as the dependent variable. This was followed by LSD post hoc t-test (α = 

.05) to compare means. Counts were Log (x+1) transformed prior to statistical analysis and 

replicates were entered as block factors.  

 

3.3.2 Transmission of fungal propagules from external surfaces of arthropods to 

pruning wounds 

 

3.3.2.1 Fungal isolate used 

A DsRed-Express transformed Pa. chlamydospora isolate (STE-U 6520, McLean et 

al., 2009) from the Stellenbosch University culture collection was used in this study. Use of 

this isolate made visualisation of successful infection of freshly pruned grapevine shoots easy 

and also ensured that positive detection of infection was by the experimental isolate only. The 

fungus was maintained in Petri dishes containing potato dextrose agar (PDA, Biolab, South 

Africa) for 14 days at 24 °C prior to experimentation.  

 

3.3.2.2 Preparation of grapevine plants 

 

3.3.2.2.1 Potted plants 

One-year-old rooted dormant canes of the cultivar Chardonnay were obtained from a 

certified nursery and were planted in individual plastic pots, measuring 13 cm in diameter 

and 23 cm in height in a glass-house. Thirty vines were used for each of the two treatments 

(inoculations with spore-carrying cocktail ants or millipedes) and ten served as control for 

each treatment, respectively. A cylinder, constructed from transparency paper, was placed 

around each plant and was fastened to the inside of the plastic pots using adhering tape. 

Cheesecloth was placed over the top of the cylinder and fastened using adhering tape to 

prevent arthropods from escaping. Soil within pots was covered with filter paper to prevent 

arthropods from digging into the soil (Fig. 2A). A single shoot per vine was pruned 

immediately prior to inoculation with arthropods, which were placed on the filter paper. After 
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inoculation with arthropods, plants were grown for a month before isolations were carried 

out.  

 

3.3.2.2.2 Floating canes  

One-year-old dormant grapevine canes of the cultivar Chardonnay were soaked in 

water for 4 hours after which they were surface sterilized by dipping in SporekillTM (ICA 

International Chemicals, South Africa) at 150 ml/100L for 5 minutes and dried at room 

temperature. The canes were stored for 2 months at 4 °C in air tight bags containing 

moistened perlite. These were then subjected to hot water treatment (50 °C for 30 minutes) 

and cut into two-node pieces. Each piece was placed through a 9 mm hole in polystyrene 

strips floated in water, such that half of the length of each cane was immersed. Two plastic 

basins (600 mm x 300 mm x 200 mm) were used as experimental arenas, one for millipedes 

and the other for ants. Each basin contained 26 shoots placed on polystyrene strips. Canes 

were pruned to one bud immediately before arthropods were placed onto the polystyrene 

strips. Basins were covered with cheesecloth to prevent arthropods from escaping (Fig. 2B). 

Water within the basins was changed twice weekly and the vines were allowed to grow for a 

month prior to isolations. 

 

3.3.2.3 Arthropod collection, treatment and placement on grapevine plants 

Millipedes and ants were collected from the above-mentioned vineyards. Millipedes 

were washed in distilled water for 10 seconds and dried using filter paper. Because of their 

small size, ants were used unwashed. Collected millipedes (3 per dish) and ants (30 per dish) 

were allowed to associate with sporulating colonies of the DsRed-Express transformed Pa. 

chlamydospora in Petri dishes for 24 hours. These were removed from the Petri dishes using 

sterile tweezers and immediately placed on either the filter paper (for potted plants) or on the 

polystyrene strips (for floating canes) and left for 3 days, after which they were removed. 

Three millipedes and ten ants were used for each of the potted vine treatments, respectively. 

Control potted plants received the same numbers of individuals but these were placed onto 

PDA plates without any fungal colonies prior to inoculation. Each cane inserted into the 

polystyrene strip received either three millipedes or ten ants (depending on the treatment) that 

were placed directly onto the strip.  
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3.3.2.4 Inoculum viability and spore load of Pa. chlamydospora on millipedes and ants 

The viability of the inoculum was determined by allowing individuals of each 

arthropod species to walk on PDA plates containing the fungus for 24 hours (as described 

above). Three individuals of each species were then placed individually in 2-ml tubes 

containing 1 ml of sterile water. The tubes were vortexed for 60 seconds to loosen spores. 

Arthropods were removed and the suspension was serially diluted (100, 10-1, 10-2, 10-3 and 10-

4) with sterile water, and 100 µl aliquots of each dilution were spread onto Petri dishes 

containing potato dextrose agar. Three replicate dishes were used for each dilution. Plates 

were incubated at 24 °C for 3 days and the number of Pa. chlamydospora colonies growing 

on each was determined using a stereo microscope. Number of colonies growing on stock 

suspension (100) plates could not be determined due to the large number of colonies growing 

on them. For the rest, the number of colonies was counted and the average percentage 

germination was determined by dividing the number of geminating spores by the total 

number of spores in the plates. 

Average spore loads [number of fungal spores carried on the exoskeleton of 

arthropods (Jacobi et al., 2007)] on arthropods that were allowed to associate with the fungal 

colonies were determined. Three individuals of each arthropod species were placed separately 

in sterile 2-ml eppendorf tubes containing 1 ml of sterile water, which were vortexed for 60 

seconds and the arthropods removed. The number of spores in the suspensions was estimated 

using a haemocytometer. The volume of suspension examined in each replicate was 5 µl. The 

average number of spores per species was calculated and represented it as the approximate 

spore load. 

 

3.3.2.5 Transmission of inoculum onto pruning wounds 

The one-month-old pruning wounds from both the potted and floating vines were 

pruned and examined for the presence of the DsRed-Express transformed Pa. 

chlamydospora. The pruned pieces were surface sterilized by immersion in 70 % ethanol for 

30 seconds, 60 seconds in 3.5 % sodium hypochlorite and again for 30 seconds in 70 % 

ethanol. Shoots were then split longitudinally and small wood fragments (1 x 2 mm) were cut 

from either side of the pith and plated onto PDA amended with chloromycetin (250mg/L) in 

Petri dishes. Dishes were incubated at 23 – 24 °C, exposed to approximately 12 hours day 

light and 10 hours of darkness and monitored daily for fungal growth for four weeks. The 
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fluorescence of the Pa. chlamydospora colonies growing on the PDA plates was observed in 

water mounted slides of mycelium using an epifluorescence microscope (Zeiss Axioskop, 

West Germany).  

 

3.3.3 Millipede faecal pellets as sources of inoculum on grapevine pruning wounds 

Millipedes were collected from a Cabernet Sauvingnon vineyard at Nietvoorbij. 

Forty-five millipedes were placed in Petri dishes (n = 15) containing PDA with Pa. 

chlamydospora colonies for 24 hours, each dish containing three millipedes. Twenty-four 

millipedes for the control experiment were placed in PDA dishes without any fungal colonies 

(n = 8). Millipedes were aseptically removed, using sterile tweezers, and surface sterilised; 

these were placed in 50-ml Falcon tubes containing 10 ml of sterile water and vortexed for 60 

seconds. Millipedes were then transferred to fresh tubes containing 2.5 % sodium 

hypochlorite and vortexed for 30 seconds and thereafter, were transferred to tubes containing 

10 ml of 70 % ethanol and vortexed for 10 seconds. The millipedes were then washed by 

vortexing in 10 ml sterile water for 60 seconds. This final wash-step was repeated. Different 

sterilisation regimes were tested to ensure effective surface sterilisation and not to kill the 

millipedes. They were dried on sterile paper towels and placed in sterile empty Petri dishes 

and left overnight. Faecal pellets of the millipedes were aseptically picked from Petri dishes 

the next morning and placed in 2-ml tubes containing 1 ml of sterile water. A suspension of 

the faecal pellets was made by macerating in sterile water. To determine whether the faecal 

pellets contained viable propagules of the fungus, 100 µl of the 1 ml suspension of faecal 

matter was plated on PDA. We also tested the efficacy of the surface sterilisation technique 

by plating possible spores from the final millipede wash step. These water samples were 

centrifuged for 10 minutes at 10000 rpm in an eppendorf centrifuge 5810R (Eppendorf 

International, Germany), the supernatant discarded and the pellet was re-suspended in 200 µl 

of sterile water. One-hundred microliters of this suspension was plated onto PDA and 

monitored for the growth of Pa. chlamydospora. The experiment was repeated. 
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3.4 RESULTS 

 

3.4.1 Grapevine sap as food source for millipedes and ants 

Forty-six of the 60 millipedes presented with a choice of water and sap were observed 

to feed throughout the duration of the experiment while the remaining 14 were not observed 

to feed. Forty-two of these ingested vine sap (Fig. 3A) while only four drank water. Of the 42 

individuals, 39 chose to initially feed on the grapevine sap while only four chose to initially 

ingest the water. However, not one of the 39 individuals that started feeding on the grapevine 

sap first switched to water at a later stage whilst three of the four that chose water first 

switched to the sap later on. Chi-square tests showed that there was a significant (χ2
d.f=1 = 

50.90, P < .0001) tendency for millipede individuals to feed on grapevine sap when faced 

with a choice between water or sap. When these had no choice (only water offered), only 

three of the 20 individuals were observed drinking, only once. Similarly, significantly more 

workers of C. peringueyi preferred grapevine sap over the protein and water offered to them 

(F = 12.60, d.f = 6, P < .05, Fig. 3B and Fig. 4).  

 

3.4.2 Transmission of fungal propagules from external surfaces of arthropods to 

pruning wounds 

The viability of the inoculum was found to be approximately 96 % and the spore load 

per individual millipede was estimated to be approximately 1.8 x 106 spores per ml of water 

while that of ant individuals was approximately 5.5 x 104 spores per ml of water. Some 

millipede and ant individuals were observed to move to pruning wounds on potted vines 

immediately after placement on filter paper (Figs. 5A and 5B). Ants were, however, much 

more active than millipedes and constantly moved around in the experimental arenas. Similar 

behaviour was observed for arthropods placed on the floating polystyrene strips. 

Phaeomoniella chlamydospora was isolated from 47 % (14 out of 30 plants) and 27 % (8 out 

of 30 plants) of the pruning wounds on potted vines that were exposed to millipedes and ants, 

respectively. The fungus was not isolated from any pruning wounds of control plants. In the 

case of the floating canes, the fungus was isolated from 15 % (4 of the 26 shoots) and 12 % 

(3 out of 26 shoots) of the canes for millipedes and ants, respectively. All isolates recovered 

from the pruning wounds were confirmed to be that of the DsRed-Express transformed Pa. 
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chlamydospora initially used for inoculations as these fluoresced red when viewed under the 

epifluorescence microscope. 

 

3.4.3 Millipede faeces as sources of inoculum on grapevine pruning wounds 

Plating the suspensions from the water in which the millipedes were rinsed revealed 

that the sterilisation technique used was fairly effective as 74 % (34 of the 46 dishes in both 

experiments) did not contain any fungal or bacterial growth. For the remaining 26 % of the 

dishes, 5 out of 12 plates produced a few colonies of Pa. chlamydospora while the rest were 

contaminated by bacteria and other fungal taxa (very few colonies when compared to dishes 

where faecal suspensions were plated).  

Seventy-three percent (22 out of 30 dishes for both experiments) of dishes that 

contained suspensions of faecal pellets produced high numbers of Pa. chlamydospora 

colonies (Fig. 6). Phaeomoniella chlamydospora was not observed in the remaining 27 % of 

these dishes as these were overgrown by contaminants. The pathogen was not recovered from 

faeces of control millipedes exposed to PDA only. 

 

3.5 DISCUSSION 

 

The fungi that cause Petri disease and esca are vascular pathogens that infect 

grapevines via pruning wounds in the field (Eskalen and Gubler, 2001; Rolshausen et al., 

2010). It has long been suspected that arthropods may play a role in this process, but this has 

never been empirically tested. In this study, both millipedes and ants were shown to be 

attracted to grapevine pruning wounds to feed on the sugar rich (Van der Meer et al., 1990) 

sap. In the process, these were shown to be able to effectively transfer spores of one of the 

causal agents of Petri disease and esca (Pa. chlamydospora) to pruning wounds on healthy 

plants and cause infection. Other grapevine trunk disease pathogens may be dispersed in a 

similar manner since they are ecologically fairly similar. These results may explain why Petri 

disease fungi were isolated from pruning wounds in vineyards where aerial spores of the 

pathogens could not be detected (Michelon et al., 2007; Van Niekerk et al., 2010).  

Generally, millipedes are known to be detritivores (Crawford, 1992) although some, 

like the Portuguese millipede, have also been reported to feed on roots, fruits and germinating 

seeds of different plants (Baker, 1978; Ebregt et al., 2007) as well as on grapevine leaves 
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(Roets, personal comm.). This study, therefore, presents the first evidence that some taxa can 

also feed on plant sap produced from wounded grapevines. The choice of grapevine sap by 

the cocktail ants is not surprising as these have a high affinity for sugary food sources, 

although they are also known to feed on protein (tuna or dead insects) food sources (Longino, 

2003; Mgocheki and Addison, 2009; Nyamukondiwa and Addison, 2011). It is noteworthy 

that these taxa might not necessarily visit pruning wounds for sap alone, but may also be 

feeding on the gum that forms later. The sap is usually only available for a day or two but 

these arthropods were observed to continue visiting pruning wounds even after the sap has 

stopped flowing (data not shown). Pruning wounds have been found to be susceptible for 

several weeks after pruning (Eskalen et al., 2007; Serra et al., 2008; Van Niekerk et al., 

2011) and this may promote infection during feeding on gum exudates by contaminated 

arthropods. 

In the field, inoculum can be acquired from the cracks and crevices on trunks, cordons 

and spurs of diseased vines (Edwards et al., 2001; Rooney-Latham et al., 2005a) as well as 

from sap flowing from fresh pruning wounds on diseased vines (Rooney et al., 2001). 

Although arthropods used in the study were exposed to the pathogen under conditions that 

would probably not occur naturally, they were able to acquire large quantities of pathogen 

spores and transmit the inoculum to pruning wounds immediately after exposure to fungal 

cultures. Under field conditions, numerous spores carried on the exoskeleton will be lost in 

transit or may die from exposure to less favourable conditions and lead to much lower 

inoculation success rates.  

Numerous arthropod taxa have been shown to be associated with fungal pathogens. 

De Nooij (1988) demonstrated that weevils, Ceutorhynchidius troglodytes Germar, were able 

to carry the fungus, Phomopsis subordinaria (Desm.) Traverso, internally and externally, 

after exposing the weevils to the sporulating fungus in Petri dishes for 48 hours. The tortoise 

beetles, Cassida rubiginosa Muller, and alate aphids [Uroleucon cirsii (Linnaeus)] were able 

to transport spores of the rust fungus, Puccinia punctiformis (F.Strauss) Rohl. between 

diseased and healthy thistles, Cirsium arvense (L.) Scop. These aphids were exposed to the 

infected leaves for 24 hours in Petri dishes (Kluth et al., 2002). Argentine ants, Iridomyrmex 

humilis (Mayr), which were fed on sugary exudate (in Petri dishes) containing Phytophthora 

citricola Sawada were able to acquire and transmit the fungus and cause 73 % infection in 

wounded stem cuttings of a lauraceous tree, Persea indica (L.) Spreng. (El-Hamalawi and 
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Menge, 1996). Storer et al. (2004) showed that twig beetles in the genus Pityophthorus 

Eichhoff were able to vector the pitch canker pathogen, Fusarium circinatum Nirenberg & 

O’Donnell, to Monterey pine branches. To the best of our knowledge, this study is the first to 

show that millipedes can also vector plant pathogenic fungi.  

Inoculum of pathogens can not only be transported on external structures of 

arthropods, but also internally. This was clearly demonstrated in the current study where Pa. 

chlamydospora was recovered from the faeces of millipedes. Therefore, Pa. chlamydospora 

propagules are resistant to the digestive enzymes of millipedes. However, the identity of the 

infective unit (whether it is the spores or mycelium) in the faeces is still unknown and it still 

needs to be determined how long the millipede faeces can remain infective. Several authors 

have noted the presence of fungal spores in droppings of arthropods implicating their 

importance as a dispersal agent. For example, the faecal pellets of the millipede, Harpaphe 

haydeniana (Wood), were found to contain the ectomycorrhizal fungus, Tomentella 

sublilacina (Ellis & Holw.) and could serve as inoculation source of seedlings of the Bishop 

Pine, Pinus muricata D. Don. (Lilleskov and Bruns, 2005). El-Hamalawi and Menge (1996) 

found that faeces of garden snails (Helix aspera Muller), when fed avocado plants (Persea 

americana Mill.) infected with Phytophthora citricola, contained viable propagules of the 

fungus. The same study showed that inoculation of wounds of healthy avocado plants with 

contaminated faeces resulted in 77 % infection success (El-Hamalawi and Menge, 1996). 

Turner (1967) found that sporangium of Phytophthora palmivora Butler survived the passage 

through the digestive tract of the African snail Achatina fulica Bow. and remained infective 

for 14 weeks.  

The release of propagules of Petri disease and esca pathogens occurs mostly in winter 

and has been closely linked to the occurrence of rainfall (Eskalen and Gubler, 2001; Rooney 

et al., 2005a, but see chapter 2). This is also the time when millipedes start to emerge and 

become more abundant (Baker, 1978; Bailey and Kovaliski, 1993; Carey and Bull, 1986; 

Widmer, 2006). This coincides with the time when grapevine pruning is usually carried out 

and this suggests that millipedes may play a major role in the inoculation of vines with Petri 

disease and esca pathogens. Crematogaster ants are arboreal, usually nesting under the bark 

or in hollow branches of trees (Longino, 2003). Crematogaster peringueyi is more abundant 

in old vineyards containing a lot of dead wood (Kriegler and Whitehead, 1962). These same 

niches are also sporulation areas for Petri disease pathogens (Edwards et al., 2001; Rooney-
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Latham et al., 2005a). These ants can therefore, easily become contaminated with pathogens 

and transfer these to fresh wounds on healthy vines while foraging. Personal observations 

confirm that the cocktail ants often move from one vine to the next via trellising wires. 

Results from this study show that it is necessary to integrate the control of arthropods, 

particularly cocktail ants and millipedes, into the efforts to manage Petri disease pathogens. 

These management strategies should include protection of pruning wounds from pathogen 

inoculation by arthropods and removal of dead and diseased wood to reduce inoculum load. 

This will also help reduce arthropod populations as dead wood is considered a prime habitat 

for millipedes and cocktail ants. The movement of arthropods to fresh pruning wounds should 

be limited by e.g. placing barriers below wounds or the use of baits at the base of the plants 

(Purcell, 2006). The movement of millipedes can easily be prevented by placing smooth 

vertical or rounded barriers at the base of trunks (Widmer, 2006). The importance of the 

control of cocktail ants and other ant species found in vineyards is already well established 

(Kriegler and Whitehead, 1962; Nyamukondiwa and Addison, 2011). Ants tend the vine 

mealybug, Planococcus ficus (Signoret), which is a serious pest in South African vineyards, 

by consuming the honeydew it produces and thereby stimulate outbreaks of this arthropod 

(Mgocheki and Addison, 2009; Nyamukondiwa and Addison, 2011). Several control methods 

are in place in South Africa (Mgocheki and Addison, 2009; Nyamukondiwa and Addison, 

2011). These need to be adhered to in order to help curb the spread of grapevine trunk disease 

pathogens.  

Further studies are needed to determine the relative importance of other arthropod 

taxa, which were found to carry grapevine trunk disease pathogens (Chapter 2), in the 

transmission of these pathogens to fresh pruning wounds. Control practices need to be 

evaluated on a per-taxon basis as some of these spore-carrying arthropods are also beneficial 

to the plants. Spiders, for example, are good control agents for many pest species, but these 

have also been identified as carriers of the trunk disease pathogens (Chapter 2). The use of 

broad spectrum insecticides is thus, not advocated here and a greater focus on sanitation 

practices will likely negate the role of most arthropods in disease transmission. 
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Figure 4. Mean number of ants (Log (x+1) transformed means) that fed on a specific food 

item throughout the three hour observation period. Different letters above bars indicate 

significant differences between means at P < .05. 
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CHAPTER 4  

 

GENERAL DISCUSSION 

 

Petri disease and esca are important diseases of grapevines and have had a large 

impact on the grapevine industry in the last two decades. Several sources of inoculum and 

dispersal mechanisms of the pathogens responsible for these two grapevine trunk diseases 

have been studied and are discussed in Chapter 1. Although extensive research has been 

carried out to understand the epidemiology of Petri disease and esca pathogens, several 

questions remain uncertain with regards to dissemination in vineyards. Arthropods have been 

suspected to play a role in the dispersal of grapevine trunk disease pathogens in the field 

(Edwards et al., 2001; Rooney-Latham et al., 2005). Prior to the present investigation, only 

one study had shown the presence of Diplodia seriata (associated with black dead arm) on 

rove beetles, caught on pruning wounds in a vineyard (Epstein et al., 2008). The overall 

objectives of this study were to identify arthropods that harbour Petri disease and esca fungi 

and their potential to transmit the fungi to fresh grapevine pruning wounds. Understanding 

the sources of inoculum and dispersal mechanisms of any pathogen is important in order to 

develop effective control measures. Therefore, the knowledge gained with this study could be 

used to determine whether it is necessary to include the control of certain arthropods in the 

disease management of grapevine trunk diseases.  

 

4.1 Arthropods as carriers of pathogens associated with Petri disease and esca in 

vineyards 

Arthropods associated with declining grapevines were collected from two vineyards 

and were tested for the presence of grapevine trunk disease pathogens. The study succeeded 

in identifying arthropods occurring on declining grapevines and showing that a wide variety 

of arthropods carry grapevine trunk disease pathogens. These findings are consistent with 

other studies which have demonstrated that arthropods are capable of carrying and 

transmitting pathogens to healthy plants (De Nooij, 1988; El-Hamalawi and Menge, 1996; 

Kluth et al., 2002; Storer et al., 2004; Lilleskov and Bruns, 2005). The arthropod taxa which 

were associated with diseased vines and found to carry trunk disease pathogens are listed in 

Table 1 of Chapter 2. The presence of a variety of arthropod species found carrying trunk 
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disease pathogens in vineyards present a great number of arthropod species that may serve as 

vectors of pathogens.  

Although the aim of the study was to focus on fungi associated with Petri disease and 

esca, all the major groups of fungi associated with grapevine trunk diseases were detected 

(via plating on PDA) and reported on. Molecular detection (nested PCR) was more sensitive 

since it detected a higher number of samples with Petri disease fungi compared to plating on 

media. However, it is important to note that the high number of samples does not indicate a 

high number of viable pathogen propagules because PCR has the ability to detect both viable 

and non-viable propagules of fungi (Rawsthorne et al., 2009). The presence of trunk disease 

fungi on arthropods helps to explain why some studies have not caught spores of Petri disease 

fungi in the air. Studies by Michelon et al. (2007) and Van Niekerk et al. (2010) failed to trap 

spores of these pathogens in vineyards using volumetric spore traps. 

 

4.2 Ants and millipedes as vectors of Phaeomoniella chlamydospora to grapevine 

pruning wounds  

The first phase of the work (Chapter 2) showed that high numbers of Portuguese 

millipedes and cocktail ants carried trunk disease fungi, indicating their potential of vectoring 

trunk pathogens. These arthropod species were used in subsequent studies to determine their 

vector status. The first aim of Chapter 3 was to test the hypothesis that these arthropods were 

associated with grapevine pruning wounds partly because of their attraction to and/or fed on 

sap flowing from freshly made wounds. The results of this study supported the hypothesis 

that the arthropods are attracted to and feed on grapevine sap. These findings suggested that 

further work needed to be conducted to: i) test whether arthropods carrying inoculum on their 

exoskeleton can successfully deposit it on grapevine pruning wounds during feeding on the 

sap and cause infection and ii) determine whether Pa. chlamydospora propagules consumed 

by millipedes can withstand the digestive enzymes in the alimentary canal and be passed out 

in a viable state in the faecal pellets. These studies, as discussed in Chapter 3, were valuable 

in that they conclusively proved that ants and millipedes do not only carry inoculum, but are 

capable of depositing it and cause infection on pruning wounds as they explore them for 

grapevine sap. These results agree with those of El-Hamalawi and Menge (1996) and 

Lilleskov and Bruns (2005) who reported that Argentine ants and millipedes can carry and 

transfer inoculum to healthy plants, respectively.  
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Fungal pathogens have undetermined means of dispersal, thus they could use any 

means possible for their dispersal. This is demonstrated in the recovery of viable propagules 

of Pa. chlamydospora in the faeces of millipedes. Several studies have also showed that 

arthropods such as snails (El-Hamalawi and Menge, 1996), grasshoppers (Leach, 1940) and 

adult corn earworm moths (Prom and Lopez, 2004) ingest fungal propagules and pass out the 

propagules in a viable state. These findings demonstrate that faecal material of millipedes, 

which was frequently observed on pruning wounds, should be considered as an important 

source of inoculum for Pa. chlamydospora and probably other fungal trunk pathogens in 

vineyards.  

The results of this study confirm speculations by other studies (Edwards et al., 2001; 

Rooney-Latham et al., 2005; Van Niekerk et al., 2010; Gramaje and Armengol, 2011) that 

arthropods may have a role in the dissemination of trunk disease pathogens. These results are 

important as they contribute immensely in understanding the epidemiology of grapevine 

trunk disease pathogens and demonstrate that more integrated strategies are needed for the 

proactive management of these pathogens in vineyards. 

 

4.3 Conclusion and future research 

Understanding how plant pathogens are dispersed is an essential part of plant pathology. The 

knowledge of pathogen dispersal mechanisms is important for effective control of plant 

diseases because it allows prevention of dispersal of disease as well as breaking the infection 

chain, by discontinuation of the life cycle of the pathogen (Brown, 1997). Although the study 

did not quantify the relative importance of arthropods compared to aerial dispersal of Pa. 

chlamydospora, it is evident from observations made in this study that arthropods may play a 

role in the dispersal of Petri disease and esca pathogens. These observations include the high 

diversity of arthropod species associated with diseased grapevines and those carrying trunk 

disease pathogens, the ability of ants and millipedes to transmit Pa. chlamydospora to healthy 

vines and the ability of the fungus to survive inside the gut of millipedes. It seems likely that 

other grapevine trunk disease pathogens may also be dispersed by arthropods internally. 

The management of millipedes and ants needs to form part of the management 

strategies to combat grapevine trunk diseases in vineyards. Management strategies of 

grapevine trunk diseases range from chemical and biological protection of pruning wounds to 

cultural practices such as use of disease free planting material and removal of dead or 
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diseased plant parts (Gramaje and Armengol, 2011). No current advice is available to 

producers in South Africa regarding the management of arthropods such as millipedes in 

reducing grapevine trunk diseases since it was not known that they are vectors of trunk 

disease pathogens. This study therefore, provides the basis for developing and testing 

management strategies against such arthropods in future research. 

Although only millipedes and ants were used in the transmission studies, it is 

important that further studies be undertaken to determine the vector status of other arthropods 

that were found in high numbers, such as the Cheiracanthium species (spiders) as well as 

Euryopis episinoides (spiders). Rove beetles and springtails were only captured using pruning 

wounds traps. This demonstrates that these are associated with pruning wounds and therefore, 

future work should also aim to determine if they can transmit inoculum to wounds and cause 

infection. Snails occurred in considerably high numbers in vineyards, but were not included 

in this study. However, studies have demonstrated that snails vector plant pathogens 

internally and externally (Turner, 1967; El-Hamalawi and Menge, 1996; Alvarez et al., 2009; 

Borkakati et al., 2009). Therefore, future studies should also consider determining their 

vector status of grapevine trunk pathogens. 

The pathogen status of Diplodia scrobiculata, D. medicaginis and Aplosporella 

prunicola, which are pathogens on Pinus spp. (Bihon et al., 2011), Medicago sativa (Phillips 

et al., 2008) and Prunus spp. (Damm et al., 2007), respectively, needs to be determined on 

grapevines. These fungi were present on arthropods in grapevines and their possible role in 

grapevine trunk diseases is unknown.  
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