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Abstract

Plasmodium falciparum malaria kills nearly a million people annually. Over 90% of these deaths occur in children under five
years of age in sub-Saharan Africa. A neutrophil mediated mechanism, the antibody dependent respiratory burst (ADRB),
was recently shown to correlate with protection from clinical malaria. Human neutrophils constitutively express Fc gamma
receptor-FccRIIA and FccRIIIB by which they interact with immunoglobulin (Ig) G (IgG)-subclass antibodies. Polymorphisms
in exon 4 of FCGR2A and exon 3 of FCGR3B genes encoding FccRIIA and FccRIIIB respectively have been described to alter
the affinities of both receptors for IgG. Here, associations between specific polymorphisms, encoding FccRIIA p.H166R and
FccRIIIB-NA1/NA2/SH variants with clinical malaria were investigated in a longitudinal malaria cohort study. FccRIIA-p.166H/
R was genotyped by gene specific polymerase chain reaction followed by allele specific restriction enzyme digestion.
FCGR3B-exon 3 was sequenced in 585 children, aged 1 to 12 years living in a malaria endemic region of Ghana. Multivariate
logistic regression analysis found no association between FccRIIA-166H/R polymorphism and clinical malaria. The A-allele of
FCGR3B-c.233C.A (rs5030738) was significantly associated with protection from clinical malaria under two out of three
genetic models (additive: p = 0.0061; recessive: p = 0.097; dominant: p = 0.0076) of inheritance. The FccRIIIB-SH allotype
(CTGAAA) containing the 233A-allele (in bold) was associated with protection from malaria (p = 0.049). The FccRIIIB-NA2*03
allotype (CTGCGA), a variant of the classical FccRIIIB-NA2 (CTGCAA) was associated with susceptibility to clinical malaria
(p = 0.0092). The present study is the first to report an association between a variant of FccRIIIB-NA2 and susceptibility to
clinical malaria and provides justification for further functional characterization of variants of the classical FccRIIIB allotypes.
This would be crucial to the improvement of neutrophil mediated functional assays such as the ADRB assay aimed at
assessing the functionality of antibodies induced by candidate malaria vaccines.
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Introduction

Plasmodium falciparum malaria kills nearly a million people

annually and over 90% of deaths occur in children under five

years of age in sub-Saharan Africa [1]. Several sero-epidemiolog-

ical studies have associated P. falciparum antigen-specific cytophilic

immunoglobulin (Ig) G (particularly IgG1 and IgG3) with

protection from clinical malaria [2–4] suggesting a critical role

for immune effector cells in malaria immunity. Monocytes, upon

activation by IgG opsonized infected erythrocytes are thought to

release certain, as yet uncharacterized, factors that inhibit intra-

erythrocytic parasite growth [5,6]. This mechanism, termed

antibody dependent cellular inhibition (ADCI), has been widely

studied in in vitro systems but has so far not shown any significant

correlation with protection against clinical malaria. On the other

hand a correlation has been reported between neutrophil

mediated antibody dependent respiratory burst (ADRB) and

protection from clinical malaria in two Senegalese populations

which differ in malaria transmission intensity [7]. Human

neutrophils constitutively express two receptors, namely Fc gamma

receptor (FccR)- FccRIIA and FccRIIIB [8], which bind the Fc

domain of IgG. These receptors complement each other

functionally [9]. FccRIIA is a transmembrane protein while

FccRIIIB has no transmembrane domain and is anchored in the

plasma membrane through a C-terminus linked glycosylpho-

sphatidylinositol moiety [10,11]. In addition to neutrophils, most

cells of the immune system, including monocytes, macrophages,

eosinophils, basophils, Langerhans cells, platelets, placental

endothelial cells and some T cells subpopulations are known to

express FccRIIA while FccRIIIB is expressed exclusively on

neutrophils [12]. Crosslinking of FccRIIA on neutrophils induces

phagocytosis of IgG-opsonised particles [13] while FccRIIIB
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crosslinking leads to neutrophil degranulation and generation of

reactive oxygen species (ROS), which have been shown to alter

FccRIIA avidity and efficiency in an allele-specific manner [14].

ROS are known to be highly toxic to intra-erythrocytic malaria

parasites [5,15,16] and high ROS production by neutrophils has

been correlated with fast P. falciparum clearance in Gabonese

children [17] and protection from clinical malaria in two

Senegalese populations [7].

Single nucleotide polymorphisms (SNPs) which alter the affinities of

both FccRIIA and FccRIIIB in binding IgG subclasses have been

described. In the present study, we hypothesised that the implications

of these polymorphisms in the described neutrophil mediated immune

correlate of clinical protection from malaria (the ADRB mechanism)

by Joos and colleagues [7], could be critical to the outcome of P.

falciparum infection. In the FCGR2A gene (NM_021642.3), a non-

synonymous variant, c.497G.A (rs1801274) in exon 4, which

specifies the ligand binding domain of the receptor, causes an arginine

(R) substitution of an histidine (H) amino acid at position 166 of the

polypeptide (p.H166R) [18]. The FccRIIA-H166 allele has higher

affinity for human IgG2 and IgG3, compared to FccRIIA-R166

which binds weakly [19]. In a recent study, Schuldt and colleagues

found FccRIIA-R166/R166 homozygosity to be associated with

severe malarial anaemia in Ghanaian children [20]. FccRIIIB bears

the neutrophil antigen (NA) polymorphism in its membrane-distal Ig-

like domain and is found in three polymorphic forms, called human

neutrophil antigen (HNA)-1a (or NA1), HNA-1b (or NA2) and HNA-

1c (or SH), which are encoded by FCGR3B*1, FCGR3B*2 and

FCGR3B*3 alleles, respectively [21]. The FCGR3B*1 and FCGR3B*2

alleles differ in five nucleotide positions; c.108C.G; c.114T.C;

c.194A.G; c.244A.G and c.316A.G [22] in exon 3 of the FCGR3B

gene (NM_00570.4) which results in four amino acid changes at

positions; p.S36R; p.N65S; p.N82D and p.I106V of the peptide chain

with the c.114T.C being a synonymous coding SNP [23]. FccRIIIB-

NA1 facilitates phagocytosis of IgG1- and IgG3-opsonized particles

more efficiently than FccRIIIB-NA2. This may be due to the presence

of two additional N-linked glycosylation sites in FccRIIIB-NA2

compared to FccRIIIB-NA1 [24]. The nucleotide sequence of the

FccRIIIB coding region of FCGR3B*3 is identical to the FCGR3B*2

sequence except for a SNP c.233C.A (rs5030738) encoding p.A78D

resulting in the expression of the FccRIIIB-SH allo-antigen [25]. This

allotype has been associated with about a third of FccRIIIB alleles and

higher expression levels of FccRIIIB but its influence on receptor

function is unclear [26]. Furthermore, in individuals whose neutro-

phils lack the FccRIIIB molecule (NAnull) the corresponding gene

deletion has been described [27]. Sequencing analysis has identified

variants of the classical FccRIIIB-NA1/NA2 allotypes but their

functional significance have, as yet, not been characterised [28–30].

The FccRIIIB-NA2 allotype in combination with the FccRIIA-166H

allele have been associated with cerebral malaria in Thai individuals

[31] and severe malarial anaemia in Kenyan children [32]. In general,

malaria immunogenetic studies have so far mainly focused on severe

forms of malaria using either cross-sectional and/or case-control study

data [20,32–34]. In the present study, we successfully elucidated

associations between FCGR3B and FCGR2A polymorphisms and

clinical malaria using data from a well characterised longitudinal

cohort study.

Results

Demographic and clinical characteristics of study
population

Of the 669 out of 798 children who successfully completed the

42 week longitudinal follow up, DNA was available for 585

(87.4%). These children were distributed across six villages as

follows: Asutsuare (ASU) (169), Kewum (KEW) (138), Avakpo

(AVA) (33), Mafikorpe (MAF) (36), Osuwem (OSU) (71) and

Volivo (VOL) (138) (Table 1). A total of 329 (56.2%) children were

#5 years of age and 88 (15.0%) were sickle cell positive. The study

population consisted predominantly of the Ga-Adangbe (n = 430,

73.5%) and Ewe (n = 76, 13.0%) ethnic groups. The remaining

(n = 79, 13.5%), children belonged to the Akan, Hausa or Fulani

ethnic groups. Children who used bed net constituted 42.1% of the

study population. The gender distribution was not significantly

different between the villages (p = 0.75, x2 analysis) while the

distribution of age, blood group, ethnicity and sickle cell status

were significantly different between the villages (p#0.0007, x2

analysis) (Table 1).

P. falciparum infections in the study cohort
The incidence of clinical malaria during the follow up period

was low (52 cases, 8.9%). These individuals were considered

susceptible to clinical malaria while those who never had clinical

malaria were considered protected. The protected group was sub-

categorized into two: (1) any individual with no malaria episode

and (2) only individuals with no malaria episodes but with parasites

detectable by microscopy at any time point during the follow up

period. The overall number of susceptible and protected

Table 1. Demographics and clinical characteristics of study
participants.

ASU KEW AVA MAF OSU VOL p-value¥

N 169 138 33 36 71 138

Age group (years)

1–5 122 66 17 15 50 59

6–12 47 72 16 21 21 79 ,0.0001

Sex

Male 83 71 19 17 32 62

Female 86 67 14 19 39 76 0.75

Sickle cell

Negative 152 129 12 23 68 113

Positive 17 9 21 13 3 25 ,0.0001

Blood group

O 96 64 10 11 37 62

A 33 31 14 7 8 18

B 32 36 9 13 19 46

AB 8 7 0 5 7 12 0.0007

Bed net use

Yes 63 65 21 26 26 45

No 106 73 12 10 45 93 ,0.0001

Ethnic group

Ga-Adangbe 124 103 15 14 67 107

Ewe 15 7 14 18 1 21

Other 30 28 4 4 3 10 ,0.0001

Clinical malaria
status

Susceptible 12 15 2 0 9 14

Protected 157 123 31 36 62 124 0.24

¥p-values refer to chi-square tests. ASU: Asutsuare; KEW: Kewum-Atrobinya;
AVA: Avakpo; MAF: Mafikorpe; OSU: Osuwem; VOL: Volivo.
doi:10.1371/journal.pone.0046197.t001
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individuals did not differ significantly (p = 0.24, x2 analysis) among

the six villages (Table 1). Logistic regression analyses investigating

the association of the covariates, age groups, sex, blood group,

ethnicity and sickle cell status with clinical malaria, found an

association with ethnicity. Individuals of the Ewe ethnic group had

a significantly reduced risk of clinical malaria compared to other

ethnic groups (likelihood ratio test: p(LR test) = 0.013) (Table 2).

Distribution of FCGR2A and FCGR 3B genotype in
Ghanaian children

The FccRIIA-p.H166R (c.497A.G) genotypes were deter-

mined by gene specific polymerase chain reaction amplification

followed by allele specific restriction enzyme digestion (PCR-

ASRED). The minor allele frequency (which is this population was

the A-allele) was 41.0% and there was no deviation from HWE

(p = 0.690, x2 analysis). Nucleotide sequencing of exon 3 of

FCGR3B identified the six polymorphisms (c.108C.G,

c.114T.C, c.194A.G, c.233C.A, c.244A.G and c.316A.G),

defining the FccRIIIB-NA1/NA2/SH allotypes. The previously

described c.197T.G, and c.297G.T polymorphisms were also

found in 87 (14.9%) and 46 (7.9%) individuals respectively. A new

SNP, c.232G.A was identified in five (0.85%) of the study

participants. All the SNPs were in HWE, p.0.05 (Table 3). The

distribution of the genotypes was not significantly different

between the ethnic groups except for the FCGR2A-c.497A.G

(p = 0.038, x2 test) and FCGR3B-c.194A.G (p = 0.017, x2 test)

SNPs (Table S1).

FCGR2A and FCGR 3B genotypes and clinical malaria
The distribution of the FCGR2A-c.497A.G (FccRIIA-

p.H166R) genotype frequencies among the susceptible and

protected groups did not differ significantly in a multivariate

analysis and had no influence on the outcome of P. falciparum

infection (p(LR test) = 0.80) (Table S2). The FCGR3B-c.233C.A

(FccRIIIB-p.A78D) polymorphism showed a statistically signifi-

cant association with the outcome of P. falciparum infection (p(LR

test) = 0.009) (Table S1). The A-allele was significantly associated

with protection from clinical malaria under two out of the three

genetic models of inheritance (additive: p = 0.0061, recessive:

p = 0.097 and dominant: p = 0.0076) analysed using a control

group that included all individuals with no clinical malaria during

follow up (Table 4). The confounding effect of possible heteroge-

neity in exposure was investigated by repeating the analysis with a

redefined control group comprising only individuals with no

malaria episodes but with a definitive evidence of exposure ie. with

parasites detected by microscopy during follow up. The same

marker (c.233A-allele) was significantly associated with protection

from malaria (Table S3) under the same genetic models of

inheritance previously observed, confirming the initial observation.

Disease association analyses for FCGR3B were restricted to the six

SNPs encoding the FccRIIIB-NA1/NA2/SH allotypes. Of the

three additional SNPs, only the T-allele of c.297G.T was

significantly associated with protection from clinical malaria

(OR = 0.307, 95%CI = 0.16–0.61, p = 0.0016, Fisher’s exact test).

Table 2. Covariates association with clinical malaria.

Covariates Susceptible (n = 52) Protected (n = 533) OR(95%CI)a p-valuea LR test p-value

Age group (years)

1–5 29 300 1

6–12 23 233 1.01 (0.56–1.81) 0.97 0.97

Sex

Male 25 259 1

Female 27 274 0.96 (0.54–1.72) 0.89 0.89

Sickle cell

Negative 45 452 1

Positive 7 81 0.94 (0.37–2.07) 0.89 0.89

Blood group

O 26 254 1

A 6 105 0.59 (0.22–1.42) 0.27

B 15 140 1.08 (0.54–2.11) 0.81

AB 5 34 1.58 (0.50–4.16) 0.39 0.46

Bed net use

Yes 20 226 1

No 32 307 1.06 (0.58–1.96) 0.85 0.85

Ethnic group

Other 8 71 1

Ga-Adangbe 43 387 0.97 (0.46–2.33) 0.95

Ewe 1 75 0.12 (0.01–0.67) 0.047 0.013

Odds Ratios (OR) and 95% confidence intervals (CI) were determined using multivariate logistic regression.
aAnalysis for each covariate was adjusted by the other remaining covariates: age groups, sex, sickle cell status, blood group, bed net use and ethnic group. The
likelihood ratio (LR) test result compares the adjusted model to a model which only includes the adjusting factors and thereby tests if the variable has an effect on
susceptibility.
doi:10.1371/journal.pone.0046197.t002
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FCGR3B haplotype association with clinical malaria
The six SNPs defining the FccRIIIB-NA1/NA2/SH were

investigated for association with clinical malaria. Pairwise r2 values

between these SNPs (0.08#r2#0.86) from linkage analysis

revealed a significant linkage between most of the SNPs

(Figure 1A). A haplotype block was defined to include all SNPs

in order to estimate the frequencies of FccRIIIB allotypes in the

entire study population (Figure 1A). The haplotype analysis

identified the three major FccRIIIB allotypes (FccRIIIB-NA1/

NA2/SH), two variants of FccRIIIB-NA1 (FccRIIIB-NA1*02 and

FccRIIIB-NA1*06) and two variants of FccRIIIB-NA2 (FccRIIIB-

NA2*02 and FccRIIIB-NA2*03) (Figure 1B). The FccRIIIB-

NA2*03 was significantly associated with susceptibility to clinical

malaria (OR = 2.67, 95%CI = 1.27–5.59, p = 0.0092) while the

FccRIIIB-SH allotype showed a borderline significant association

with protection (OR = 0.42, 95%CI = 0.18–1.00, p = 0.049)

(Figure 1B). When only individuals who did not have malaria

but with detectable parasites during the follow up period were

considered as controls in the haplotype association analysis, logistic

regression could not be performed because the risk haplotype

FccRIIIB-NA2*03 was completely absent in the control group

(n = 57).

Population differences of FCGR3B-c.233C.A
polymorphism

Exon 3 of FCGR3B was sequenced in 132 native Danish blood

donors and genotype distributions compared to the Ghanaian

population to investigate differences and possible selection.

Sequence analysis found all the six SNPs defining the FccRIIIB-

NA1/NA2/SH system. All SNPs were in HWE (p.0.05). One

person carried synonymous variant (c.201C.T). The c.233C.A

genotype frequencies were significantly different (p,0.0001, x2

analysis) between the Ghanaian and Danish populations (Figure 2).

Although the A-allele remained the minor allele in both

populations, none of the 132 Danes was homozygous compared

to the 8.5% homozygosity in the Ghanaian population. Only 10

individuals were heterozygous in the Danish population. The

Tajima’s D statistic estimated for FCGR3B exon 3 showed a

significant positive deviation from the values expected under

neutrality in both the Ghanaian (D = 2.9, p,0.05) and Danish

(D = 2.2, p,0.05) populations. Comparisons with data from the

1000 Genomes Project database showed that the A-allele

frequency for the African (AFR) (17.9%) super population was

similar to that in the Ghanaians (21.4%) in this study. Similarly,

the A-allele frequency for the Ad Mixed American (AMR) (3.3%)

and European (EUR) (0.8%) super populations were comparable

to the Danes (3.8) (Table 5). Thus, the A-allele, which was

associated with protection from P. falciparum malaria, was more

frequent in malaria endemic populations than in non-endemic

populations. To further evaluate the extent of divergence with

respect to this polymorphism, pairwise FST indices were calculated

for all five populations (Ghanaians, Danes, AFR, AMR and EUR).

The AFR and the Ghanaian population shared a pairwise FST

value of 0.004 while all comparisons between the malaria endemic

(Ghanaians and AFR) and the malaria non-endemic (Danes, AMR

Table 3. FCGR3B allele frequencies and Hardy-Weinberg (HW) estimations in protected individuals.

Variation ID Alleles* Amino acid change* Minor allele (Frequency) HW p-valuea

rs403016 c.108C.G p.S36R G (0.491) 1.00

rs447536 c.114T.C Synonymous coding C (0.471) 0.62

rs448740 c.194A.G p.N65S A (0.390) 0.61

rs5030738 c.233C.A p.A78D A (0.214) 0.49

rs428888 c.244A.G p.N82D A (0.491) 0.066

rs2290834 c.316A.G p.I106V G (0.251) 0.29

*Allele and amino acid numberings refer to positions in FCGR3B transcript ENST00000367964.
aHW estimations based on children (n = 267) who had diploid copies of FCGR3B, were the first sibling in a family and were not susceptible to clinical malaria in the
observation period.
doi:10.1371/journal.pone.0046197.t003

Table 4. Single marker association of FCGR3B alleles with clinical malaria.

MAF Additive model Recessive model Dominant model

SNP ID Minor Allele Protected Susceptible OR (95% CI) p-value OR (95% CI) p-value OR (95% CI) p-value

rs403016 C 0.49 0.50 1.04 (0.71–1.54) 0.84 1.38 (0.74–2.53) 0.31 0.82 (0.44–1.53) 0.53

rs447536 C 0.47 0.46 0.98 (0.67–1.45) 0.94 1.11 (0.57–2.13) 0.77 0.88 (0.47–1.63) 0.68

rs448740 A 0.40 0.38 0.95 (0.64–1.42) 0.82 1.16 (0.56–2.40) 0.69 0.80 (0.45–1.44) 0.46

rs5030738 A 0.22 0.10 0.43 (0.23–0.78) 0.0061 0.18 (0.02–1.36) 0.097 0.37 (0.18–0.77) 0.0076

rs428888 A 0.50 0.40 0.74 (0.51–1.06) 0.10 0.52 (0.25–1.07) 0.075 0.74 (0.40–1.36) 0.34

rs2290834 G 0.27 0.22 0.81 (0.52–1.27) 0.36 0.87 (0.34–2.20) 0.77 0.69 (0.37–1.27) 0.23

Odds ratio (OR) and 95% confidence intervals (CI) were determined using multivariate logistic regression controlling for age, gender, ethnicity, sickle-cell status, FCGR3B
copy number, blood group, family structure and use of bed net. MAF: minor allele frequency.

All individuals who never had malaria despite parasitaemia at any time point (monthly blood slide) during the study, plus all individuals who never had malaria but
without detectable parasitaemia by microscopy.
doi:10.1371/journal.pone.0046197.t004
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and EUR) populations yielded consistently higher FST values

(0.098#FST#0.194) (Table 6).

Discussion

Using PCR-ASRED and exon 3 nucleotide sequencing data for

FCGR2A and FCGR3B respectively, the association between SNPs

which alter the affinity of these receptors for IgG subclasses and

clinical malaria were studied in a cohort of Ghanaian children.

There was no association between the FCGR2A-c.497A.G

(FccRIIA-p.H166R) polymorphism and clinical malaria while

the A-allele of FCGR3B-c.233C.A polymorphism (rs5030738)

was strongly associated with protection from clinical malaria.

Haplotype analysis identified the FccRIIIB-SH allotype

(CTGAAA) containing the c.233A-allele (in bold) to be associated

with protection while a variant of FccRIIIB-NA2, the FccRIIIB-

NA2*03 allotype (CTGCGA) was associated with susceptibility to

clinical malaria. Individuals of the Ewe ethnic group showed a

Figure 1. Studied SNPs in the FCGR3B gene, linkage disequilibrium (LD) patterns and haplotype association analysis. A) A schematic
of exon 3 FCGR3B gene (NM_000570.4) and LD plot of the respective SNPs visualised using Haploview v4.2. The LD plot shows pairwise r2 values
(6100) given in the squares for each comparison between the SNPs. White squares represent r2 values equal to 0. Different shades of grey represent
r2 values between 0 and 1. B) Haplotype associations with susceptibility to clinical malaria compared to clinically protected individuals. Odds ratio
(OR) and 95% confidence intervals (CI) were determined using multivariate logistic regression controlling for age, gender, ethnicity, sickle-cell status,
FCGR3B copy number, blood group and use of bed net. The haplotype with the highest frequency in the study population was considered the
reference group in the multivariate logistic regression analyses. Variant first reported in this study, the associated gene for NA1*06 is
FCGR3B*01A194G, G316A; Y Variants first reported by Matsuo et al, [28], the associated genes for NA1*02, NA2*02 and NA2*03 are FCGR3B*01G316A,
FCGR3B*02G194A and FCGR3B*02A244G respectively.
doi:10.1371/journal.pone.0046197.g001

Figure 2. FCGR3B-c.233C.A genotypes. Genotype distribution
compared between malaria endemic (Ghanaian) and malaria non
endemic (Danish) populations.
doi:10.1371/journal.pone.0046197.g002
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reduced risk to clinical malaria compared to other ethnic groups,

however, the distribution of genotypes was not different between

the ethnic groups except for FCGR2A-497A.G and FCGR3B-

194A.G. These genotypes had no association with clinical

malaria. Also, while the ethnic group distribution was different

between the villages, the number of susceptible and protected

individuals was not different between the villages. Thus, the

genetic associations with protection and susceptibility observed

here could not be due to a bias caused by ethnicity. Heterogeneity

in malaria exposure is an important confounder in association

studies [35]. In the current study, the outcome of the association

analysis did not differ whether or not the control group included

individuals with no malaria and no detectable asymptomatic

parasitaemia by microscopy. This suggests exposure may have

been homogeneous and that asymptomatic malaria infection in

some of the individuals went undetected due to immunity resulting

in sub-microscopic parasitaemia [35]. The protective allele

(c.233A), though a minor allele in all populations in this study,

still had a significantly higher frequency in malaria endemic

populations compared to the non-endemic populations, possibly

because of positive selection by P. falciparum malaria. The Tajima’s

D estimates show that FCGR3B exon 3 is under strong selection

pressure in the Ghanaian populations and also to a lesser extent in

the Danish population.

Both sero-epidemiological [2–4] and in vitro studies [5,36] have

demonstrated that cytophilic IgG (1 and 3) subclasses are the most

important in controlling parasites multiplication and/or disease,

emphasizing the importance of effector cells such as monocytes

and neutrophils in malaria immunity. Neutrophils are the most

abundant leucocytes and known to have both high phagocytic and

cytotoxic capabilities through the generation and release of potent

cytotoxic mediators such as reactive oxygen species (ROS) and

proteases [37]. They are the main effector cells in the ADRB

mechanism recently shown to correlate with protection from

clinical malaria [7]. Neutrophils engage IgG1 and IgG3 immune

complexes (ICs) through FccRIIA and FccRIIIB constitutively

expressed on the cell surface. Although these receptors function

synergistically, it has been shown that phagocytosis by neutrophils

is primarily dependent on FccRIIA crosslinking [13] while ROS

release is by FccRIIIB crosslinking with ICs [14]. The lack of

association between clinical malaria and any of the genotypes of

FccRIIA-p.H166R in this study suggests that, neutrophil ROS

activity may be paramount to phagocytic activity in protecting

against clinical malaria since only FccRIIIB polymorphisms could

explain the outcome of P. falciparum infection. This notion is

supported by both in vitro studies of ROS toxicity on intra-

erythrocytic malaria parasites [5,15,16] and field studies where

high ROS production by neutrophils correlated with fast P.

falciparum clearance [17] and protection from clinical malaria [7].

The c.233A-allele of FCGR3B which was associated with

protection from clinical malaria in the present study causes a

replacement of the hydrophobic amino acid alanine (A) with the

negatively charged aspartic acid (D) at position 78 in the NA2

protein. This substitution results in the SH allotype which also

showed association with protection. The functional implications of

this p.A78D substitution in receptor-ligand (antibody) interactions

have not been conclusively shown. Koene and colleagues [26]

suggest it may influence a ligand epitope possibly located in the

membrane distal Ig-like domain. In the same study, the SH

allotype was associated with high expression levels of FccRIIIB.

Thus, protection from clinical malaria seen in individuals with the

A-allele and SH allotype may be due to increased ROS production

as a result of both enhanced antibody-receptor interaction and

increased FccRIIIB density on neutrophil cell surface. The

maximum statistical power for A-allele association with protection

was observed under the dominant model with homozygous

individuals having over 60% reduced risk to acquiring clinical

malaria compared to the other models tested. In genetic

association studies, maximum power to detect significant associ-

ation is reached when the ‘true’ mode of inheritance and the

genetic model used in the analysis are concordant [38]. Thus, the

dominant model best explains the mode of inheritance of the

c.233C.A polymorphism in the Ghanaian cohort studied.

Association studies based on Polymerase Chain Reaction-

Sequence Specific Primer (PCR-SSP) data of FCGR2A and

FCGR3B have found individuals carrying the NA2 allotype in

combination with FccRIIA-166H have an increased risk of

developing cerebral malaria [31] and severe malarial anaemia

[32]. Here, using FCGR3B-exon 3 nucleotide sequencing data, we

find a previously reported variant of FccRIIIB-NA2, FccRIIIB-

NA2*03 (associated gene: FCGR3B*02A244G, [28]) to be associ-

ated with susceptibility to clinical malaria. While the PCR-SSP

technique [39] is an established method for genotyping FCGR3B

and has been extensively used, sequencing data [28–30,40] have

consistently shown that the FCGR3B gene is more polymorphic

Table 5. rs5030738 (c.233C.A) allele distribution among malaria endemic and malaria non-endemic populations.

Malaria endemic Malaria non-endemic

rs5030738 c.233C.A Ghanaians (n = 585) AFR* (n = 248) Danes (n = 132) EUR* (n = 381) AMR* (n = 181)

A-allele % 21.4 17.9 3.8 0.8 3.3

C-allele % 78.6 82.1 96.2 99.2 96.7

*Allele frequency data from the 1000 Genomes project data base. AFR: African; AMR: Ad Mixed American; EUR: European.
doi:10.1371/journal.pone.0046197.t005

Table 6. Pairwise genetic distances between malaria versus
non-malaria population with respect to c.233C.A (rs5030738)
polymorphism.

Population AFR Danes EUR AMR

Ghanaian 0.004 0.131 0.194 0.141

AFR 0.098 0.159 0.106

Danes 0.020 0.000

EUR 0.015

FST distance (Latter et al., 1972).
Allele frequency data from the 1000 Genomes Project database (http://

browser.1000genomes.org/Homo_sapiens/Variation/
Population?db = core;g = ENSG00000162747;r = 1:161592986-
161601753;t = ENST00000531221;v = rs5030738;vdb = variation;vf = 8673417).
AFR: African; AMR: Ad Mixed American; EUR: European.
doi:10.1371/journal.pone.0046197.t006
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than was previously thought. Variations at the allotype defining

sites could result in aberrant PCR-SSP typing [30,40]. More

importantly, the PCR-SSP method cannot differentiate between

the classical NA2 and the variant NA2*03 and will simply type

both as NA2. Thus, the PCR-SSP method alone may not be

enough to sufficiently characterise FccRIIIB allotypes in disease

association studies. It is not clear how exon 3 sequencing data

would have affected the conclusions from PCR-SSP typing

association studies particularly where NA2 was associated with

disease outcome. The risk associated allotype NA2*03 found in the

Ghanaian population, differs from the classical NA2 by an

asparagine (N) to aspartic acid (D) substitution at position 82 of the

FccRIIIB protein. This N82D substitution results in a loss of one

potential N-glycosylation site of NA2. It is conceivable, that the

NA2*03 variant would have one-less (ie. 5) potential N-glycosyl-

ation sites. NA2 shows a reduced capacity to facilitate phagocy-

tosis, respiratory burst and degranulation responses compared to

NA1, a property attributed to the extensive glycosylation in NA2

than in NA1 [9,41]. Thus, it would be expected that the NA2*03

variant possessing one-less glycosylation site compared to NA2

should have a higher affinity for IgG1 and IgG3 than NA2 and

hence be the more efficient receptor. However, no study has as yet

investigated the binding affinity of the NA2*03 variant for IgG1

and IgG3 or the possible conformational changes due to the

replacement of a potential glycosylated group (p.82N) with an

unglycosylated charged group (p.82D). N-glycosylation is a

common feature of many membrane-bound and extracellular

proteins in animals and the carbohydrate groups are considered

crucial for biological functions such as proper protein folding [42],

protein stability and solubility [43], ligand binding affinity [44],

signal transduction [45], and immunogenicity [46]. Thus, it is

plausible that the p.N82D substitution in the NA2*03 variant may

alter an important biological mechanism critical for neutrophil

respiratory burst and hence predispose to clinical malaria. Further

studies are needed to delineate the possible functional conse-

quences of the NA2*03 polymorphism in FccRIIIB.

The Tajima’s D analysis showed exon 3 of FCGR3B to be under

selection pressure in both the Ghanaian and the Danish

populations; however, it is not clear what may be driving the

selection in these different populations. Malaria has been

considered the strongest known selective pressure in the recent

history of the human genome [47]. There was a higher frequency

of the c.233A allele in malaria endemic populations and high

pairwise FST indices (0.098#FST#0.194) between the malaria

versus non-malaria endemic populations. These observations

support the notion that malaria may be a significant contributor

to the selection pressure, at least in the Ghanaian and African

(AFR) populations. However, other possible factors that could

explain the selection in both the malaria and non-malaria endemic

populations may include inflammatory diseases such as rheuma-

toid arthritis [48] or periodontal diseases (PD). PD is a widespread

condition and several studies have associated FccRIIIB polymor-

phisms with PD in different populations [49]. In animal studies,

PD has been shown to contribute to perinatal mortality [50]. A

recent study in humans concluded that, in cases of extreme

prematurity, maternal PD may be a significant contributor to

perinatal mortality [51]. Given the contribution of PD in perinatal

mortality and the association of FccRIIIB polymorphisms in the

pathogenesis of PD, we speculate that PD may contribute to the

selection pressure acting on exon 3 of FCGR3B. It is however,

worth noting that the present data does not clearly show which

modes of natural selection may be at play in these two populations.

Further studies are needed to clearly define the forces of selection

on FCGR3B-exon 3 in these populations.

In conclusion, the present study has identified the c.233A allele

of FCGR3B-c.233C.A (rs5030738) and the FccRIIIB-SH

(CTGAAA) haplotype to be associated with protection from

clinical malaria. The FccRIIIB-NA2*03 (CTGCGA) variant of

FccRIIIB-NA2 (CTGCAA) was associated with susceptibility to

clinical malaria in the Ghanaian population. The study provides

the justification for a more detailed functional characterisation of

the FccRIIIB-SH and FccRIIIB-NA2*03 haplotypes in relation to

neutrophil functionality especially in respiratory burst activity.

Materials and Methods

Ethics Statement
Ethical approval for the study was given by the Institutional

Review Board of the Noguchi Memorial Institute for Medical

Research (NMIMR) of the University of Ghana, Accra, Ghana.

Written informed consent was given by the parents and guardians

of children before they were enrolled into the study. Ethical

approval for Danish blood donor samples was given by the

Scientific Ethics Committee of Copenhagen and Frederiksberg,

Denmark. DNA samples from a total of 132 anonymous Danish

blood, obtained for control purposes from Copenhagen University

Hospital, were analysed in order to allow population comparisons

of genotype distributions. These individuals are resident of central

Copenhagen and provided written consent to have a small portion

of their blood stored, anonymously, and used for research

purposes. Blood donors in Denmark must be between the ages

of 18 and 60. All data were analysed anonymously.

Study area, population and baseline sampling
The study was conducted in Asutsuare (ASU) (about 120 km

north-east of Accra) and five neighbouring villages: Kewum-

Atrobinya (KEW), Avakpo (AVA), Mafikorpe (MAF), Osuwem

(OSU) and Volivo (VOL) of the Damgbe West District of the

Greater-Accra Region of Ghana. The villages are only about 2-

5 km apart. Like many other parts of Ghana, the climate of the

area is characterised by two major seasons: a dry or the harmattan

season (December to March) and a wet or the rainy season (June to

August), however, there are also some few rains in November and

early December, just before the onset of the harmattan season.

Malaria transmission occurs throughout the year but peaks during

and after the rains (September and January). P. falciparum

constitutes 98% of all infection with the remaining 2% due to P.

malariae and P. ovale [52]. The population is predominantly of the

Ga-Adangbe ethnic origin but is interspersed with other ethnic

groups such as the Ewes and the Akans. There are two health

centres serving all these communities: Osudoku Community

Health Centre at Asutsuare and the Osuwem Community Health

Centre. In addition, the Akuse Hospital, about 10 km away serves

as a referral hospital for cases beyond the capacity of the

community health centres.

Altogether, 798 children (aged 1 to 12 years old) were enrolled

and were followed up actively and passively for malaria case

detection in a 42 week longitudinal cohort study. Genomic DNA

for analysis was available for 585 of the 669 children who

successfully completed the follow up without missing at most three

successive weekly visits. Of these 585 children, there were 316

singletons, 91 families with two children enrolled, 17 families with

3 children enrolled and 9 families with 4 children enrolled.. At

baseline (enrolment), 5 ml EDTA-anticoagulated venous blood

and thick and thin film blood slides were obtained from all

individuals prior to the malaria transmission season (May 2008) for

baseline immunological and parasitological determinations. Blood

group and sickle cell status of each individual were determined by
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a commercial blood grouping kit (Biotec Laboratories Limited,

UK) and the sodium metabisulphite test respectively and

haemoglobin (Hb) level was measured using the Hemocue-Hb

201 (Angelhom, Sweden). Blood was centrifuged to separate

plasma and peripheral blood mononuclear cells (PBMCs) and

stored at 280uC and in liquid nitrogen respectively. The thick and

thin blood film slides were stained with Giemsa and examined for

baseline asymptomatic parasitaemia. A slide was negative if no

parasite was visualised in 200 oil fields of a thick film. For slides

that were positive, parasites were counted per 200 white blood

cells (WBCs) and parasite densities calculated by assuming 8,000

WBCs/ml blood. A standardised questionnaire was used to obtain

epidemiological, anthropometrical and clinical data of all study

participants during the enrolment.

Danish Donors
DNA samples from a total of 132 anonymous Danish blood

donors, obtained for control purposes, were analysed in order to

allow population comparisons of genotype distributions. These

individuals are resident of central Copenhagen and provided

consent to have a small portion of their blood stored,

anonymously, and used for research purposes. Blood donors in

Denmark must be between the ages of 18 and 60 [33].

Parasitological and Clinical Surveillance
Parasitological surveillance for malaria infection was carried out

monthly for each study participant during the follow-up period.

This involved obtaining thick and thin blood film slides from finger

pricks by trained medical personnel. In addition, about 500 ml of

blood was collected during the monthly finger pricking to obtain

plasma for immunological analyses. The remaining packed cells

were stored at 280uC for DNA purification for genetic analyses.

The active case detection surveillance comprised weekly visits to

each participant’s home, where a morbidity questionnaire

(investigating symptoms occurring in the preceding week) was

administered by trained Field Assistants. The presence or absence

of fever (measured axillary temperature of $37.5uC, or reported)

was ascertained. Study participants complaining of symptoms

suggestive of malaria were referred for treatment at the respective

health centres. In the passive case detection surveillance, visits by

participants to the health centres without prior referral from a field

assistant were documented. In both the active and passive case

detection, Hb level was measured and thick and thin blood films

were obtained from study participants with febrile temperature

(.37.5uC) or reported febrile temperature prior to treatment.

Clinical malaria was defined as slide positive for any asexual P.

falciparum parasitaemia with at least one other sign of malaria such

as vomiting, diarrhoea, or malaise. Malaria was treated with

artesunate-amodiaquine combined dose therapy which was the

recommended standard treatment for malaria in Ghana. At the

end of the study, on the basis of the clinical and parasitological

data obtained, the study population was divided into three groups:

(1) those susceptible, in which parasitaemia was associated with

febrile disease, and (2) those apparently protected against clinical

manifestation despite parasitaemia and (3) those apparently

protected against clinical manifestation without detectable para-

sitaemia by microscopy.

FCGR2A genotyping
Genomic DNA was purified from packed cell samples using the

MaxwellH16 system (Promega, Madison, USA) following manu-

facturer’s guidelines. Genotyping of FccRIIA-p.H166R was done

by the gene specific polymerase chain reaction (PCR) amplifica-

tion followed by allele specific restriction enzyme digestion

(ASRED) method [53]. The final BstUI restriction digestion

products were visualized as 343 bp (H allele) and 322 bp (R allele)

bands on 3% agarose (SeaKemHGTGH Agarose, ME) with

ethidium bromide (AppliChem, Damstadt, Germany) staining.

Both fragments were present for heterozygous individuals.

FCGR3B sequencing
We designed a protocol to specifically amplify and sequence exon

3 of the FCGR3B gene from genomic DNA. First, an approximately

4.3-kb fragment of the FCGR3B gene using the sense primer (59-

CTCCATTGCGAGACTTCAGAT-39) placed in exon 1 and the

antisense primer (59-CGTGGTTTCTAAGGTGTCACAGG-39),

positioned within intron 3. A 30-cycle amplification process

consisting of denaturation at 95uC for 30 s, annealing at 63uC for

30 s and extension at 72uC for 5 mins was performed using

PfuUltraH high-fidelity DNA polymerase (Stratagene, USA). The

product was gel purified using E.Z.N.AH Gel Extraction Kit

(Omega Bio-Tek, Inc., GA) and used as template in a nested PCR to

amplify exon 3 of FCGR3B with the M13 tagged (in lower case)

sense (59-tgtaaaacgacggccagtGTCAGCTTCATGGTCTTG-

GATTG-39) and antisense (59-caggaaacagctatgaccACACATTCA-

CATTGTATGCACTCCA-39) primers. The 38 cycle amplifica-

tion consisted of denaturation at 94uC for 30 s, annealing at 58uC
for 30 s and extension at 72uC for 45 sec using TEMPase hotstart

DNA polymerase (Biomol, Germany). The nested PCR product was

then sequenced with M13 primers. The low affinity FCGR locus

contains regions of copy number variation (CNV) which can alter

receptor expression and leukocyte responses to IgG. However,

previous FCGR3B CNV data determined by the SALSAH multiplex

ligation probe amplification (MLPAH) kit P110-B1/P111-B1 FCGR

(Lot 0210, 0409; v.08) (MRC Holland) on the same samples in the

present study found no association with and clinical malaria (Adu

et al., unpublished).

Statistical analysis
Demographic and clinical characteristics of the study popula-

tion were compared across village of residence (x2-test). Since the

risk of clinical malaria is known to be high in children aged 5 years

and below, age was modelled as a categorical variable with two

levels (1–5 years, and 6–12 years). Logistic regression analyses and

likelihood ratio tests were carried out to evaluate the association of

the variables, age group, sex, sickle cell status, blood group, use of

bed net and ethnic group with clinical malaria. The genotype

distribution of the SNPs was compared across ethnic groups (x2-

test). To test Hardy Weinberg equilibrium (HWE), we used the

data of n = 267 children who had diploid copies of FCGR3B, were

the first sibling in a family and were not susceptible to clinical

malaria in the observation period. The exact test (HWE.exact)

implemented in the R-package ‘genetics v.1.3.6’ (http://CRAN.R

project.org/package = genetics) was used. For each of the SNPs,

the minor allele (single marker) association with clinical malaria

was calculated under the three genetic models of inheritance

(additive, recessive and dominant) using logistic regression

adjusting for age group, sex, sickle cell status, blood group, use

of bed net and ethnic group. Two different control groups were

defined: (1) all individuals with no malaria episodes but with

definitive exposure as indicated by parasites detectable by

microscopy during the follow up, plus all individuals with no

malaria episodes but without parasites detectable by microscopy

and (2) only individuals with no malaria episodes but with

definitive exposure as indicated by parasites detectable by

microscopy during the follow up. The second analyses involving

control group (2) was to account for any possible confounding due

to heterogeneity in exposure. This was because, the group
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comprising individuals apparently protected but without detect-

able parasitaemia by microscopy may also include individuals who

did not have malaria due to lack of exposure to the parasite during

the follow up period. Additional sensitivity SNP association

analyses (logistic regression) were performed with a generalized

estimating equation (GEE) approach to correct all confidence

limits and p-values for the family structure in the data. Linkage

disequilibrium (LD) in the FCGR3B SNPs and visualisation of

pairwise r2 LD values were evaluated using Haploview v. 4.2 [54].

Association of FCGR3B haplotypes with clinical malaria was

analysed using the Hapassoc package v. 1.2–4 in R [55]. The

pooling tolerance was set to 0.03 in order to restrict the association

analysis to haplotypes whose frequency exceeded 3% in the

population. The haplotype with the highest frequency was used as

the reference. Comparison to the other haplotypes was performed

using nested logistic regression adjusting for age group, gender, sickle

cell status, blood group, use of bed net and ethnic group. Except for the

LD and pairwise r2 visualization, all statistical analyses were performed

using R v. 2.13.2 (http://www.R-project.org). DnaSP v. 5.10 (http://

www.ub.edu/dnasp/) was used to estimate Tajima’s D for exon 3 of

FCGR3B the Ghanaian and Danish populations. The window length

for the Tajima’s sliding window analysis was 50 with step size of 10

nucleotides. Genotyping data for rs5030738 was retrieved from the

1000 Genomes Project database (http://browser.1000genomes.org/

Homo_sapiens/Variation/Population?db = core;g = ENSG00000162

747;r = 1:161592986-161601753;t = ENST00000531221;v = rs50307

38;vdb = variation;vf = 8673417); for the African (AFR); Ad Mixed

American (AMR) and European (EUR) super populations and allele

frequencies compared among all 5 populations. Pairwise FST distances

were calculated for all 5 populations using the POPTREE2 software

[56].
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