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Abstract

Data transmission plays a cardinal role in today's society. The key element of such a system

is the antenna which is the interface between the air and the electronics. To operate

optimally, many antennas require baluns as an interface between the electronics and the

antenna. This thesis presents the problem definition, analysis and performance

characterization of baluns. Examples of existing baluns are designed, computed and

measured. A comparison is made between the analyzed baluns' results and recommendations

are made.
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Opsomming

Data transmissie is van kardinale belang in vandag se samelewing. Antennas is die voegvlak

tussen die lug en die elektronika en vorm dus die basis van die sisteme. Vir baie antennas

word 'n balun, wat die elektronika aan die antenna koppel, benodig om optimaal te

funktioneer. Die tesis omskryf die probleemstelling, analiese en 'n prestasie maatstaf vir

baluns. Prakties word daar gekyk na huidige baluns se ontwerp, simulasie, en metings. Die

resultate word krities vergelyk en aanbevelings word gemaak.
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Chapter 1. Introduction to Baluns

Chapter 1. Introduction to Baluns

1.1 Aim of Thesis
Baluns form a critical part of many high frequency systems and surprisingly, very

little detailed work is published on the theory, design and performance characteristics

of these devices to date. This thesis presents an in depth study of the balun. The

following aspects concerning baluns will be covered in detail.

• The definition of the problem

• Model development

• Characterization of baluns

• Computational simulations of these baluns

• Modeling, operation and design of baluns

• Comparison between different balun performances

1.2 Balun Definitions
The following terms will be used to explain balun principles and properties in this

thesis.

1.2.1 Problem Definition

Antennas with a physical symmetric structure require balanced signals for proper

operation. This, in theory, is not a problem since many topologies of balanced

transmission lines exist to feed these antennas. However this is just one side of the

story. It has become popular practice in the years past to use coaxial transmission

lines as the standard transmission line in the industry, and coaxial transmission lines

are unbalanced (This will be discussed in detail in Chapter 1.). The problem occurs

when the unbalanced transmission line is connected to the balanced antenna.

The consequences of this problem is unbalanced currents on the antenna arms and

radiating currents on the feed line, which causes a distorted radiation pattern and

Il
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Chapter 1. Introduction to Baluns

differing input impedance. To solve this problem the antenna/transmission line

system requires some sort of transition to convert an unbalanced environment to a

balanced environment. The class of transition that only propagates a balanced signal

to the antenna is called a balun. The word balun is derived from the words "BALance

to UNbalanced" converter and gives a good indication of the function of the device.

An advantage of many balun structures is that they can implement an impedance

transformation which is a desirable property since antennas rarely have a 50 ninput

impedance.

It should be noted that baluns used for mixers and amplifiers operate in a different

environments and are not the focus of this work. In this case the load can be modelled

as lumped elements, which simplifies the analysis.

1.2.2 Balanced conditions

Antenna

Ib

Balun

Ic
Coaxial Feed

Cable

G

Figure 1-1 Transmission line, Balun and Antenna Configuration

The schematic diagram in Figure 1-1 shows the scenario was a practical coaxial cable

is connected to an antenna through a balun transformer. Currents la, Ib and Ic are all

possible currents in the system, where Ic is the current on the exterior of the coaxial

line. For this system to be balanced the following condition has to be met.

12
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Chapter 1. Introduction to Baluns

• The currents, Ia and lb, at the antenna feed point should be equal in amplitude

and in of phase with respect to Figure 1-1.
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Chapter 1. Introduction to Baluns

Chapter 2. Balun Theory

2.1 Antenna and Transmission line model
This section explains the chronological development of the antenna and transmission

line network model. A simple half wave dipole connected to a coaxial transmission

line will be used as an example to explain the problem and illustrate its consequences.

Starting of with the ideal case; the dipole is driven at the feed point as if no feed cable

is connected. Figure 2-1 shows this scenario while Figure 2-2 shows the current on

the dipole arms.

Lam/4 Dipole Arm Lam/4 Dipole Arm

----i~~---
Vae

Figure 2-1 Dipole fed with an ideal source.

Current on dipole arms
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Figure 2-2 Current on Dipole arms.
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Chapter 1. Introduction to Baluns

From Figure 2-2 it can be seen that the current on the dipole is perfectly balanced and

shaped for a resonant half wave dipole.

The next step is to add the unbalanced coaxial feed line. This is shown in Figure 2-3

and the effect on the arm currents can be seen in Figure 2-4.

Lam/4 Dipole Arm Lam/4 Dipole Arm

Coaxial Feed
Cable

Figure 2-3 Practical dipole fed with a coaxial cable.

Current on dipole arms

~ 0.01-------)--------)--
al
"C
3
-E ,
g 0.005---------~-
::2

I '"- - - - - -l .. L. _ _ _ _ _ _ _ _ _ ~ _

I " I
" ,, ,, ,

, ,
, , , I I ,- - - - - - -~- - - - - - - - - .... - - - - - - - - - - .. - - - - - - - - - - .. - - - - - - - - -.,- - - - - - - - - ~- - - - - - - --
, I I I

, "I, , ,, , ,, , ,, , ,, , ,OL___~ ~ __~ _L ~ __ ~ ~ __ ~

-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08
Length (ml

180,----,----,----,-----,----,----,----,-----,
, ,, , ,

178 -- po -_ ~- -- - - ---- - ~---- -- -- --:-- -- -- --, - --- ---of. --- - - - -_ --:- -- - - - - -- -r- --- -.---
, " '"

0> :::,:::

Q. 176 ---------i--------"+-------- ;---------+------ -~---------~----------i---------
Q) :::::::

gj 174---------~-------- ,----------:----------~----------~----- --~----------:---------
~ I I , I I I

Il. """172---------,----------f- - -- - -----:--- ------- ~- ------- -of - - --- --- -~- -- -- - - - : - --- -----
I I , I I , I
I , , I I I ,
, I , I I , I

170L_--~----~--~-----L----L---~----~--~
-0.08 -0.06 -0.04 -~02 o

Length (ml
0.02 0.04 0.06 0.08

Figure 2-4 Current on Dipole arms

The physical asymmetry, presented by the coaxial line, creates stronger coupling from

the one dipole arm to the feed line compared to the coupling between the other arm

15
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Chapter 1. Introduction to Baluns

and the feed line. The impedance to ground differs, and hence different currents flow

on the two.

This effect may be modeled as shown in Figure 2-5.

,,
\

,,
I
I

~'*
Za Zb

Figure 2-5 Practical Dipole with feed schematic representation of impedances.

Za and Zb represent the coupling of the antenna to the coaxial line and Ze the

differential input impedance of the antenna. A network model of Figure 2-5 is shown

in Figure 2-6.

(3) (1 ) (2)

(a) (b)

Figure 2-6 Two network models of generalized Baluns. (a) Delta Model (b) Y Model
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Chapter 1. Introduction to Baluns

We can relate the element values defined in Figure 2-6 to the common and differential

mode impedance with the following equations

(2.1)

and

(2.2)

Figure 2-7 explains the concept of a differential and common mode feed.
Differential Mode Current

r
Common Mode Current

c::r
Differential Mode Feed Common Mode Feed

+
Figure 2-7 Schematic diagram explaining differential and common mode feeds.

2.2 Balun Families
From the model in Figure 2-6 the physical factors that produce the asymmetry can

easily be seen. In Figure 2-6 (a), Za and Zb are related to the geometry between the

feed line and the antenna, and Ze the antenna's ideal (no feed line) differential

impedance. In Figure 2-6 (b), ZC represents the ability of the system to choke the

common mode current and ZA and ZB the transformed differential impedance of the

system. With these two models in mind, two families of baluns can be defined: The

Symmetrical balun family and the Choke balun family. These definitions are of

course interrelated but are introduced only to explain the operation of baluns.

Another balun family, which falls into a totally different class of operation, is the

anti-phase type. All the investigated baluns fall into one of these families for an

explanation of their operation and is explained in the following bullets.

17
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Chapter 1. Introduction to Baluns

• The symmetrical baluns produce balance by having a definable point feed and

then forcing Za and Zb to be equal, in other words, creating a physically

symmetric structure.

• Choke baluns add a series choking impedance in the common mode current

path. From equation (2.2) we observe that all antenna/feed line systems have a

common mode choking impedance which is dependant on the physical

dimensions of the system.

• Anti-phase baluns split the input signal in two, where the two paths to the

output have a 180 degree phase difference.

2.3 Performance characteristics
Most published work presents impedance matching as the only measure to

characterize the performance of baluns. This says nothing about the balun's main

function, which is balance. Matching is an important criterion which defines the

ability of the balun to transfer the power from the transmission line to the antenna.

For this thesis impedance matching information will be presented in the form of input

impedance and the log of the magnitude of SII'

To characterize the balance performance of the balun, the balun ratio (BR) is defmed.

The BR is the ratio of differential mode current to common mode current on the

antenna. Ideally all the current must flow in the differential mode, giving a BR of

infinity. The BR is mathematically defined by

BR = 20 log ldif

i:
(2.3)

where ldif is the differential mode current and leom is the common mode current.

18
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Chapter 3. Computation of Balun Performance

Chapter 3. Computation

Performance

of Balun

The key results displayed in this thesis are obtained by computer computation.

Selected baluns impedance response were also measured to verify the computed

results. The reason computation is used as the primary result and not measurements,

is because of the versatility and low cost of computations where dimensions can easily

be changed to study the effects of parameter variation on the response without

manufacturing a new balun. The computation package used is FEKO [1J, and the key

results obtained from computations are balance performance and impedance. All the

computational models are checked for convergence to ensure that the results have

converged.

3.1 FEKO
The program, FEKO, is based on the Method of Moments where electromagnetic

fields are obtained by first calculating the electric and magnetic surface and line

currents. Once the current distribution is known, further parameters can be obtained.

FEKO can be used for various types of electromagnetic field analyses involving

objects of arbitrary shapes.

One big advantage FEKO has over other electromagnetic magnetic computation

packages is that it has a text editor for defining the dimensions and computation

parameters. This makes it very convenient for changing parameters.

3.2 Data Processing
FEKO saves specified currents on segments in an output file. These currents are

saved in vector format. The FEKO output files are loaded into MATLAB where the

currents are extracted and processed to obtain common and differential mode currents,

and common and differential mode impedances. With this data, the performance

characteristics of the baluns can be calculated. The following bullets explain the

procedure in more detail. See Figure 3-1.
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Chapter 3. Computation of Balun Performance

• FEKO computation is set up to compute currents on certain segments of the

structure. The segments of interest include a dummy wire across the feed

point and the feed points of the antenna under investigation. These are

currents Il' 12 and Is in Figure 3-1. The dummy segment across the feed

points is a wire segment loaded with very high impedance so that the ratio of

current flowing on the segment compared to the antenna arms is negligible.

The purpose of the dummy segment is to use the measured current to calculate

the voltage across the feed point which is needed to calculate the impedances.

(For the Bazooka and Quarter wave balun the dummy segment is not required

since the excitation voltage can be used directly.)

• The FEKO output file is loaded into MATLAB and the currents are extracted.

The common and differential mode current is then calculated with the

following equations.

(3.1)

(3.2)

• The voltage across the feed point is determined by

V=IsR (3.3)

where R = 1080

• The common and differential mode impedance is calculated with the following

equations.

(3.4)

(3.5)

• The next step is to determine the Balun Ratio which is defmed by

Idi[BR=2010g-'i: (3.6)

20
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Chapter 3. Computation of Balun Performance

• The input impedance of a transmission linelbalun/antenna system is predicted

from the response of an ideally fed (no feed line), identical antenna. This

enables the designer to get an idea of how the system's (transmission

linelbalun/antenna) input impedance response will behave if the ideal input

impedance of the antenna is known. To be able to predict the response of the

system, the balun's differential response has to be extracted. This is done with

the following equation.

(3.7)

where

Zbal is the balun's differential impedance

ZdifBAL is the differential impedance of the feed linelbalunlantenna system

ZdijNO is the differential impedance of the antenna alone

• The balun's response is then used to predict the response of the dipole and the

bow-tie in the feed linelbalun/antenna system. The following equation is used

to predict the response.

Zdif = [ 1 )1 1-+--
Zbal ZdijNO'

(3.8)

where

Zdif is the predicted differential impedance of the dipole or the bow-tie

Zbal is the balun differential impedance calculated in the previous step

ZdijNO' is the ideal differential impedance of the dipole or bow-tie. (Test antennas

used)
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Chapter 3. Computation of Balun Performance

Feed points where
currents are measured

Antenna arm

.-- A______ 1\ .-- A ___( ,J \( \
Antenna arm

Balun

Coaxial Feed
Cable Dummy

Segment: Is

G

Figure 3-1 Computation Parameters and Results

3.3 Wu-King Feed line
The computations have to model the practical problem as closely as possible. Since

feed lines play an important role for baluns in practice, a way had to be devised to

model these infinitely long lines. Without the feed lines in the computation, all tested

baluns would perform perfectly in the balance criteria because there is no path for the

common mode current to flow. To add an infinitely long wire segment in the

computation is not an option since this is impractical.

T.T. Wu and R.W.P. King [2] developed a way to suppress all backward travelling

waves on finite length dipole antenna arms by loading the arms with an impedance

profile. This profile is a function of axial coordinate z and is given by

(3.9)

where h is the length of the antenna arm and If/ is the complex expansion parameter.

The complex expansion parameter is well approximated by

If/re = 2[ In(2: ) -1.65] (3.10)
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Chapter 3. Computation of Balun Performance

where a is the radius of the antenna arm [3].

Taking one Wu-King loaded arm and using it as a feed line is an excellent way to

model the feed line in a computation. Looking into this loaded line gives the

appearance of an infmitely long line for local effects and thus a current path for the

common mode current to flow while at the same time keeping the computational

volume small.

3.4 Test Antennas
Test antennas play an equally important role as the feed line does when it comes to

characterizing baluns. A distributed load is required to investigate the asymmetry

produced by the feed line because with a lumped element load connected over the

balun, the currents will always be perfectly balanced.

Three antennas are used to investigate the balun responses. The Wu-King Loaded

Infinite Dipole, Half Wave Dipole and a Ninety Degree Half Wave Bow-Tie antenna.

The reasons for these choices are explained in the next sections together with the

input impedance of the antenna in both a symmetrical and asymmetrical system.

Figure 3-2 shows the models for the asymmetrical and symmetrical scenarios.

Cl>
:§
."
Cl>

If
1ii·x
cuoo

Antenna Arm Antenna Arm

Asymmetrical

Antenna Arm Antenna Arm

Symmetrical

Figure 3-2 Models of the antennas fed asymmetrical and symmetrical.
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3.4. 1 Wu-King Loaded Infinite Dipole

This antenna is chosen for its wide bandwidth. The response is reasonably flat over a

large frequency band which makes it easier to visualize the balun response without

superimposing the effect of the antenna response. The arms of the antenna give good

coupling to the feed line to exploit the asymmetry on condition that they are

substantially longer than the balun itself.

Infinite Dipole Arm Infinite Dipole Arm

v
Resistive Loads Feed point Resistive Loads

Figure 3-3 Schematic ofWu-King Loaded Infinite Dipole Antenna

The design of this antenna is done with the help of a FEKO computation applet.

Table 3-1 displays the applet inputs.

Data for Infinite Dipole Applet

Inputs Value Dimension

Length of Arm 0.5 m

Number of Loads per Arm 20

Radius of Antenna 0.55 mm

Length of Loads 4 mm

Feed Gap 3.4 mm

Frequency Band 0.8 - 2.4 GHz

Table 3-1 Inputs for Infinite Dipole Applet

The applet produces a FEKO output file with the currents on all the segments stored

in it. These can be converted to obtain the input impedance of the antenna. The input

values in Table 3-1 were obtained after a few iterations, maximizing the flatness of

the impedance response over the frequency band. One guideline in designing this

antenna is to choose the wire sections between the loads not to be near resonance in

the frequency band of interest. Figure 3-4 shows the input impedance of the antenna

fed with a feed line and without a feed line.
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Input impedance of Infinite Dipole: Ideal feed \5. Asymmetrical Feed~r---:---~----:----:---;r=~~~=c==~
: - Fed with feed line in model

, , , , : -IdeallyledI350 - ------:-----------!----------~----------1----------f----------; ----------; ---------
Q. : ' : : : : :
~ 300 ---------+---------+---------r---- ; ---------~----------~---------_r---------

J 250 ~~~~~~:-·~--=~=====c==~~
200'-----L-_--'--- __ ---'---__ -L-_---"'---_--L __ --'---__ -'

0.8 1.2 1.4 1.6 1.8 2.2 2.4
Frequency (Hz] x 10'

~O,--_,--_r--._--,_-_,rr==~=====c====~
; : : : : - Fed with feed line in model

·100 ...••....• ~ •••••.... ~••....••.• ~...••..•.• ~........•. :. - Ideally led

, ::::::::~~+:~~I=·:····::j:::::::::::::::::::::~::::~ .
C I I " I I
al I I , 1 I , ,

~ -160 --- - - ---- -:-- -- -- -i- - -- - - - -- - -1-- -- ----- - ~- - -- -- - - _ot -- --- - - - - - ~--- - - -- - - -i- - ---- - ---
e:: :: : : : : :_______ 'A ~ J .L. .1. L L _

, , I , I I I
I I , , I , ,
, , I , , I ,

.200L-_--'- __ --'---__ ---'---__ L.... _ _j1L__--'- __ -:'-:-__ -:'

0.8 1.8 2.2 2.4

x 109Frequency (Hz]

Figure 3-4 Ideal and with feed line input impedance of Infinite Dipole

3.4.2 Half Wave Dipole

This antenna is chosen because it is the most popular, narrow band antenna and it

requires a balun for proper operation. The design is very simple with only two design

parameters; the radius of the antenna and the feed gap with the length fixed by the

centre frequency. Table 3-2 presents the design data.

Dipole Arm Dipole Arm

Feed point

Figure 3-5 Schematic of Half Wave Dipole

Design Data for Dipole

Inputs Value Dimension

Length of Arm 47 mm

Radius of Antenna 0.55 mm
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Feed Gap 3.4 mm

Frequency Band 0.8 _ 2.4 GHz

Table 3-2 Design data for Half Wave Dipole

Figure 3-6 shows the input impedance of the antenna terminated with a feed line and

without the feed line.

Input impedance of Dipole: Ideal feed vs. Asymmetrical Feed

~~---;----:----;----:---;r==~~~~==~
: : : : : - Fed with feed line in model

500 - •••• - •• --~ - -- - - - - - - ~- - - - -- - -- - ~- -- -- - - ---; --. - •• - .--: - ,--_ldc:.:ea..;-II,,-Y c:.fed:___~_--:r'

f:•••••••1 , ,··.'·••E2>?L••..
&! 100 .••• ------:.- ••• - .••• ~-------·--t~~~-i-~~t--······_+--·.---..~-.--..-..

o
0.8 1.2 1.8 2.2

Frequency (Hz]

~~---:----:-----:----:-----:r=~~~~~~~
E 200 ---------+----------~----------~----------~----------t---':---=-=---=-=---=-=.-~-~-:-: .. =""""',.,..,..,.=s.J

j~~i=fl
1.2 1.4 1.6

Frequency (Hz]
1.8 2.2 2.4

X 109

Figure 3-6 Ideal and with feed line input impedance of Dipole

3.4.3 Ninety Degree Half Wave Bow- Tie

The Bow-Tie antenna is also a popular antenna that requires a balun and has a wide

bandwidth. The design is straight forward with the name giving away most of the

dimensions. Figure 3-7 shows a schematic view of the Bow-Tie while Table 3-3

presents the design data.
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,Length ofArm LengthofA'mi

Feed point

Figure 3-7 Schematic of Ninety Degree Half Wave Bow-Tie

Design Data for Bow-Tie

Inputs Value Dimension

Length of Arm 47 mm

Flare Angle 0 90 Deg

Feed Gap 3.4 mm

Frequency Band 0.8 - 2.4 GHz

Table 3-3 Design data for Ninety Degree Half Wave Bow-Tie

Figure 3-8 shows the input impedance of the antenna terminated with the feed line

and without the feed line.
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Input impedance of Bow-Tie: Ideal feed w. Asymmetrical Feed

O~ __ ~L_ __ ~ ~ ~ _L _L _L ~

0.8 1.2 1.4 1.6 1.8 2.2 2.4
Frequency [Hz) x lO'

: : : : : - Fed with feed line in model

f:~~~~J~
.50 - - -- - - -- - -:- - -- - -- -- - -t- - -- - --- - - ~- - -- - - - - J - - - -- - ,- - - - - -- - -- ~ - - - - - - - -- -~ - - - - - -- --

, , , I , I ,
, , , I , I ,

-100,:---~c---~=----~,------,LC----:":------:------:':------7
0.8 1.2 1.4 1.6 1.8 2.2 2.4

Frequency [Hz) x lO'

Figure 3-8 Ideal and with feed line input impedance of Bow-Tie

3.4.4 Balun Ratios of Test Antennas

An antenna/feed line system can be modeled by either a delta or a Y model as

explained in Chapter 1. From the model a differential and common mode impedance

can be calculated, and thus also a Balun Ratio. Figure 3-9 shows the balun ratios of

the antenna/feed line system without the baluns added. This can be compared to

results presented in Chapter 5. to observe if the balun is operating as a balun or not.

Balun Ratios for 18S1Antenna

.: , : I , I ,

15 --------r.------;---- ---or -----r-----T------T-------~--------
I I I ,

I '"
...... I , "i10 ---------:----- -:-(-:-.---.-:-(-------:-- -----+------'1'--------1--------
N : : : ••• , : : :

5 -- -- -- --~:f:.:.:=t.:.:~-:~ -:-.-{-':-.---~---------;--~.:.:~-
, , , I I ,

o ---------:---------:----------:---------1'--------1---------j---------j-
, ., .

-~~8----~'----~12=-----,L.4----,~.6----~,'8-----L----~2.2----~24
Frequency [Hz} x 109

Figure 3-9 Balun Ratio of test antennas terminated with a transmission line model.
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Figure 3-10 shows the percentage common to differential mode current calculated at
the feed point on the three test antennas.

Percentage Common to Differential mode current on the Antenna
~68~.- - , , 1
:- 66 ·········i ·······i····-·····~·········+·········i······---..,:····: .
Cl 64 , ,. ·······,-··········,··········f··········,-·········,··· .
ro """,

~ ~~ ::::::::j::::::::::j::::::::::i .... ::::::~:::····:::t::::::1-'-Infinit~ Dipole
~ 58 : : : : , ' :

0.8 1.2 1.4 1.6 1.8 2 2.2 .~1°ObImrmmmlmmu~Cl> 80 - , , " - , - , ,.... . .

~ 60 ----- -- --i-- -- - -- - _- i -_ --- - - - --j----- - - -- --!- --- - --- --~- - - -- - -- - )-- -- - - - i- - -- - -- --
I:: I I , " ,

~ 40 : -.; + ~ ;.... :... '
£ 20 _ '. . : : : ' : - Dipole

0.8 1.2 1.4 1.6 1.8 2 2.2itmu~Tuul_ 40 ---------,----------T----------r-------- ---------r----------,----------,---------
C " I I , , ,

~ 20 j L. . ~ - ~ ; j. - Bow-lie
0..

0.8 1.2 1.4 1.6 1.8 2 2.2
Frequency [GHz]

Figure 3-10 Percentage common to differential mode current for the 3 test antennas terminated
with a transmission line

29

Stellenbosch University http://scholar.sun.ac.za



Chapter 4. Balun Measurements

Chapter 4. Balun Measurements
Measurement is the accepted method of characterizing the operation of the device

under test. Yet, not many people measure balun performances correctly. The most

popular techniques measure only the impedance frequency response of the balun and

not the balance property of the balun. This chapter investigates the techniques

available and presents a newly proposed technique.

4.1 Back to back
This technique is the most popular and also the worst. Two identical baluns are

connected back to back so that the balanced ports connect to each other in the middle.

The two unbalanced ports can then conveniently be connected to a network analyzer

where the s-parameters can be measured. The setup being reciprocal, either SII and

S21 or S22 and S12 are the results obtained by this technique. No information about

balance is acquired with this technique.

4.2 Combined Even and Odd mode 5 -

parameters
New measurement hardware using multi ports, [4], makes it possible to measure

mixed mode S-parameters. The hardware is a four port test set for network analyzers

which enables the user to connect all four ports of a general balun to the network

analyzer and measure the s-parameters for the four port system. The theory of mixed

mode parameters, mixed mode s-parameter conversion from the measured s-

parameter and the extraction of the common and differential mode impedances for the

device under test is derived and discussed in [5]. [4] explains the detail of the

physical measurement.

The method is useful to gain an idea of the balun's balance performance and gives

good results for the balun's impedance response. It is however impossible to obtain

the balun/antenna system's balance performance using this method because all four
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ports of the balun under test are connected to the network analyzer. This method also

only tests the common mode choking properties of the balun and not the symmetry

properties.

4.3 Measurement system proposed by Palmer

and Van Rooyen, [6]
A technique to measure broadband balanced loads with a network analyzer is

presented in [6]. The method uses a measurement jig shown in Figure 4-1. The two

ports of the network analyzer are connected to the two SMA connectors, in Figure

4-1, and the balanced load is connected to the two centre conductors coming out of

the semi-rigid coaxial cable. This method allows one to obtain the balanced load's pi

equivalent network values which can be used to calculate the common and differential

mode impedances once Sii and S2i are measured.

This method can also be used to measure balun/antenna systems. Instead of directly

connecting an antenna to the jig, a balun/antenna system can be connected. This setup

measures the common and differential mode impedances of the whole balun/antenna

system. Together with a measurement of the antenna alone, the balun's common and

differential mode impedances can be extracted. This is a very powerful technique

since information on both the balance performance and the impedance matching is

obtained. This technique is promising in theory but has as yet not been tested.

Figure 4-1 Measurement jig proposed by [6]

Figure 4-2 shows how the technique could possibly applied to balun measurements.
Practically the balun/transmission line part will have to be folded onto the jig and
grounded at their respective grounds. This is done to avoid unwanted asymmetry and
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to get the system as accurate as possible. A drawback of implementing the jig like
this is that only shielded or baluns with ground planes can be measured with it.

System to be measured
Measurement Jig

Antenna

50 Ohm
BALUN

Coaxial Una

Figure 4-2 Proposed technique applied to balun measurements

4.4 Other Techniques

4.4.1 Balance Comparator

This technique requires a complicated measurement system. [7] shows the

construction with dimensions and gives a thorough explanation of the operation of

this jig. The jig together with a signal generator and a receiver measures only the

balance quality of the balun under test. It is assumed that the differential balun

impedance is known because the measurement system has to be matched with a

lumped element resistor to the balun.

4.4.2 Using VNA's, discussed in [7J
The network analyzer method, thoroughly explained III [7], uses a simple

measurement jig. The method measures the balance quality of the balun but not the

impedance response of the balun. The method is questionable because it only gives

an indication of the balun on its own and not of the balun in the system (with antenna)
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and as with the mixed mode s-parameter method only gives performance

characteristics of the choking properties and not of the symmetry properties.

4.5 Comparison
Table 4-1 summarizes the results available from various measurement techniques.

Method Test

Balanced
Impedance

Choking Symmetry

Back to back No No Yes

Mixed mode S-parameters Yes No Yes

System proposed by Palmer & Van Rooyen [6] Yes Yes Yes

Balance comparator Yes No No

Network analyzer Yes No No

Table 4-1 Results available for various measurement techniques.
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Chapter 5. Analysis of Popular Baluns
This chapter analyzes existing baluns with the theory developed in the previous chapters. The

analysis of each balun is divided into two parts: Principle of operation and design. Table 5-1

lists the baluns that are considered.

Balun Bandwidth Family

Bazooka Narrow band Choke

Quarter wave Narrow band Choke /Symmetric

Marchand Wide band Symmetric/Choke

Tapered line Wide band Choke/ Symmetric?

Double Y Wide band Choke /Symmetric?

"Slot line" Wide band Choke?

"Log-periodic" Wide band Choke /Symrnetric/Anti-

phase

Table 5-1 Investigated Baluns sorted into families.

5.1 The Sleeve or "Bazooka" Balun
Popular in textbooks, for this balun the coaxial feed line is covered by a coaxial shield of a

quarter wave length at the centre frequency. At a quarter wave length away from the antenna

feed point, the outer coaxial shield is shorted to the feed lines' coaxial shield. Figure 5-1

shows a photograph of the balun terminated with a dipole antenna while Figure 5-2 shows the

schematic diagram of the balun.

Figure 5-1 Photograph manufactured balun terminated with a Dipole
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Section A

/ Sleeve shorted to coaxial shield

/ Section A
_________tL____ tt _

Centre conductor

Coaxial Sleeve

Coaxial Shield

Antenna arm Antenna arm

Sleeve shorted to coaxial shield----------~.~.--~~.
Section B I RJ Section B

Figure 5-2 Schematic diagram of the sectioned front and top view of the Bazooka Balun

5.1.1 Principle of Operation: "Bazooka" Balun

This balun falls in the choke balun family. The added quarter wave section introduces a series

impedance (choke) into the common mode current path. At the centre frequency this

impedance is close to infinity, forcing balance in the system. The bandwidth where the balun

will balance the system is thus limited to that of a quarter wave transformer. Za' and Z, ' are

not equal in this case. (The coupling from the one arm of the antenna to ground and the other

arm of the antenna to ground differs.) Figure 5-3 shows the equivalent network model for the

balun. The input impedance for the system is defmed as

z = Z // Z '//(Z "+ Z ")In ani baz a b (5.1)
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where Zbaz ' ,Za" and Zb" is the impedances formed by transforming the Y section to a delta.

The parallel combination of Zbaz '//(Za "+ Z, ") has very little effect on the differential mode

impedance. Mathematically we can explain this as follows: Zbaz has a quarter wave

transformers response. Za' and Z;' are high impedances with some variation over the band.

Transforming the Y model to a delta model will give a high, flat response for Zbaz '. Za" and

Zb" will have high values with the effects of the quarter wave transformer visible in the

response. The parallel combination of these two factors gives a high response over the band

compared to Zant and can almost be neglected.

Model Transformed Model

Figure 5-3 Network model

Design: "Bazooka" Balun

The variable parameter in the balun is the radius of the external shield once the centre

frequency is known. This parameter has little effect on the bandwidth of the system so any

convenient radius can be chosen.

5.2 Quarter wave Balun
The quarter wave balun is probably the most popular balun because of its trivial design, easy

manufacturing and good performance. Figure 5-4 shows a photograph of the balun

terminated with a dipole antenna.
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Figure 5-4 Photograph of manufactured balun with dipole.

,,
Centre conductor ',,,

Za'... ", .. , ..
,,'........' J,,,r->

r

/ z,:
~,,,.<"./,/

,/" J'"'r,,,
" '\ ,,,

,
,,,,

,,,

Antenna arm Antenna arm

Figure 5-5 Schematic diagram of Quarter wave Balun

37

Stellenbosch University http://scholar.sun.ac.za



Chapter 5. Analysis of Popular Baluns

5.2.1 Principle of Operation: Quarter wave Balun

Two aspects of the quarter wave balun should be investigated: The balun principle and the

effect of the balun on the differential mode impedance of the system. Figure 5-5 presents the

schematic diagram of the balun. The balun is part of the symmetrical balun family, thus

creating a symmetrical structure(with definable point source) to feed the antenna. Za I is

always equal to Z b" Common mode current is never generated and there is no need for any

common mode choking. In creating the symmetrical structure, a parallel impedance

consisting of the loop ABCDEF is added in the system. To obtain the same input impedance

as before the addition of the balun, the loop impedance should be as high as possible,

preferably over an infinite bandwidth. Choosing the length of the added balun structure to

be a quarter wave length at the centre frequency, approximated this impedance criteria, as at

the centre frequency the shorted quarter wave section will become an open circuit. A

drawback of the quarter wave section is' that if the frequency shifts from the centre frequency,

the impedance drops rapidly and starts interfering with the system input impedance. Figure

5-6 shows the equivalent circuit for the quarter wave balun terminated with an antenna. The

system input impedance is given by

(5.2)

The parallel impedance formed by Za I and Zb I, which represents the coupling from the

antenna arms to ground, can be neglected since it is very high compared to the antenna

impedance over the frequency band. Zant is the antenna input impedance for an ideally fed

antenna with no feed cable. The delta in Figure 5-6 can be transformed to a Y. In this model

the balun has a series impedance in the common mode current path, although no current will

flow there because Za" and Zb" are equal.

Model
Transformed Model

Figure 5-6 Network model of quarter wave balun
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Design: Quarter wave Balun
The design is simple as the loop length must be resonant at the centre frequency. The gap AB

defined in Figure 5-5, is the only variable as the equivalent arm width, EF, is not a sensitive

parameter. Computations show as expected from a transmission line model, that a wider gap

gives a higher impedance for the quarter wave section at resonance.

5.3 Planar Marchand Balun [8, 9]
This balun was proposed in 1944 by Nathan Marchand and was one the first wide band baluns

manufactured [8]. The classic Marchand balun is realized in a coaxial environment. It was

only when planar topologies became popular that the planar version was implemented. Since

the balun principle for the two topologies are the same, both in the symmetrical and choke

family, the planar version is implemented as it is easier to simulate. Figure 5-7 shows a

photograph of the balun.

Figure 5-7 Photograph of manufactured balun.

5.3.1 Principle of Operation: Marchand Balun

The coaxial topology is used to explain the operation of the balun. Figure 5-8 shows the first

step in the development of the Marchand balun. A basic transition from coaxial to a balanced

twin wire is placed inside a shielded box. The shielding box should enclose all internal

currents. To explain the operation of this network, currents must be traced. The criterion is

that II and 12 should be equal in magnitude and opposite in phase.
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Current IJ flows from the centre conductor to the one conductor of the balanced twin wire.

Current 12 flows from the other conductor of the balanced line either on the inside, 13, of the

coaxial line or on the outside, 14, of the coaxial line. Since the coaxial line is extended a

quarter wavelength (BC) into the box, 14 sees a very high impedance at the centre frequency

and all the current flow in 13' The network is thus perfectly balanced at one frequency where

the extended coax is a quarter wavelength.

Coax

~ """" -, """" -, -, """"""
~ '"
~ '"ialline ~ Extended shield

r-,
l'" "'''''''''11'\ '\ '\ "" '\ '\ '\ '\ lA ~i1i .""".".

1 Balanced line

1'.""""""""""',;."""'"- 2-

~C I. IB
~f---iam/4---l l -, -, -, -, -,'1

~ I '"t-, D I"" Expanded secti

I"" -, -, -, -, -, -, -, -, -, ""!"-
Figure 5-8 Cross section of a single frequency transformer

Figure 5-9 is the distributed element equivalent of Figure 5-8.

where

(5.3)

and Zo is the characteristic impedance of the coaxial line and ZO' IS the characteristic

impedance of the box with respect to outer conductor.

L Balanced lineCoaxial Feed

(c)

Figure 5-9 Distributed element equivalent circuit of Figure 5-8

Figure 5-10 shows the next stage of the balun development. A solid stub connected to the

centre conductor of the coaxial line is added. The stub is the same length and outer radius as

the extended shield. This introduces an impedance from A to D (Figure 5-8) equal to the

impedance from B to D (Figure 5-8). Change in frequency will now only introduce a phase

error with perfectly balanced magnitude. Figure 5-11 is the distributed element equivalent of

Figure 5-10. Notice how the stub doubles the inductance.
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Balanced line

Figure 5-10 Second stage of development

Balanced lineCoaxial Feed

(c)

Figure 5-11 Distributed element equivalent circuit of Figure 5-10

To correct the phase error and complete the balun, the solid stub is replaced with an open

circuited coaxial stub shown in Figure 5-12.

Inside stub

Balanced line ~oad

Figure 5-12 Coaxial Marchand Balun
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Figure 5-13 shows the fmal distributed element equivalent circuit. It is a second order model

which gives it high pass filter properties, translated to a band pass filter when realized with

quarter wave transformers. The Marchand balun is also implemented for higher orders. A

detailed description of the coaxial Marchand is given in [10]

Coaxial Feed Balanced line

(c)

Figure 5-13 Distributed element equivalent circuit of Figure 5-12

The element values are given by

L = jZo' tanB (5.4)

and

C = jZoe cotB (5.5)

where Zo is the characteristic impedance of the coaxial line, Zo' is the characteristic

impedance of the box with respect to outer conductor and Zoe is the characteristic impedance

of the stub with respect to the shield around it.

5.3.2 Principle of Operation and Design of the Planar

Marchand Balun

The planar Marchand balun can be implemented in any of the planar technologies. This

design implements the balun with micro strip coupled lines. A comparison between the

coaxial version and the planar version's model is made as starting point to show that they are

equivalent.

Figure 5-14 shows a section of coupled micro strip line, its equivalent circuit and two network

properties. The characteristic impedance and coupling coefficient of the coupled line is given

by

Zoe = ~ZoeZoo

k = Zoe -Zoo
Zoe +Zoo

(5.6)
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and are related to the network equivalent circuit elements by

(5.7)

Coupled Micro strip section Network equivalent circuit

1~4

2~3
2,2 3

Open Circuit

U
Short Circuit

:[JJ

Lumped Element Capacitor

• l
T•

Lumped Element Inductor: ~

Figure 5-14 Basic Network Forms (11)

With this information the distributed element equivalent circuit of the planar Marchand,

shown in Figure 5-15 is derived graphically in Figure 5-16.

Unbalanced Input

~L (_a_) ~r-.~.~~(b_) ~~

(a) (b)

Balanced Output

Figure 5-15 Coupled line model of planar Marchand Balun
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2 z,z,

(a)

z,

2 z, z,

(b)

n:~

E____)'

n:~

E____)'

(c)

Figure 5-16 Derivation of network model of planar Marchand Balun

This model is essentially the same as the model for the coaxial Marchand. The element

values defined in Figure 5-16 are specified by the following equations.

Z '= Z2
2 2n

(5.8)

(5.9)

(5.10)
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The network model in Figure 5-16 explains only the impedance frequency response of the

balun. By adding an antenna to the balun the symmetry can be explained. Figure 5-17 shows

the system's network model. Coupling from the arms to the balun and feed line, represented

by Za' and Z;' is almost equal when looking at the coupled line model in Figure 5-15 and

especially in the coaxial Marchand shown in Figure 5-12. The coaxial version's internal

structure can be modeled as a perfect point source, with a symmetrical external shield. This

will bring perfect balance to the system. For the planar version, the internal and external parts

are not shielded from each other and can thus only be approximated by a point source with a

symmetrical outer. The planar version's balance is not expected to be perfect because of this

approximation.

Coaxial Feed

(c)

Figure 5-17 Network model of system

Design: Marchand Balun

The capacitance, inductance and unit element values (Figure 5-17) can be calculated to fit a

Chebyshev, Butterworth or any other filter response, using the technique explained in [12].

The synthesis of the balun is summarized by the following bullets.

• L, C and the unit element are obtained using filter design techniques. [12]

• The coupled line parameters are determined by the following equations.

k=
Z2 '+Ze '+ZL'

Z = Z2'
ac ~ (5.11)

Z = Ze'
ac ~

'\/1- k'
R'=Re

where R is the load impedance and
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Zac
2 = ZoeaZoo

a

Zbc
2 = ZoehZoo

h
(5.12)

• Coupled line dimensions are determined using curves or CAD tools. To obtain the

tight coupling required, a second set of coupled lines are added on the opposite side.

These extra coupled lines are connected to the initial coupled line with air bridges.

Figure 5-18 shows the dimensions of the designed balun. The substrate has an e, = 10.2

and a thickness ofO.635 mm.

00
00gg

0.300
q,alll

.000 .... .000

ï II
10.000 JL 10.0000

2200

5500
5500
5500

8
(IJ
cS

Figure 5-18 Dimensions of designed and manufactured Marchand Balun

5.4 Double Y Balun [13, 14 & 15]
The double Y balun is based on the double Y junction, which is a complex transition from an

unbalanced to balanced transmission line. This balun has only been realized in a planar

environment. Any of the planer topologies can be used. For this project the coplanar

waveguide-finite-ground-plane to coplanar strip-line topology is investigated.

5.4. 1 Principle of Operation: Double Y Balun

To obtain a network model, we trace the currents. Figure 5-19 shows the double Y junction

with the equivalent model for it. The influence of the junction itself is neglected in the

network model.
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3

Unbalanced Port Balanced Port

b v,
4

/ v,

6

Figure 5-19 Diagram of Double Y junction with equivalent circuit

In making the bridge symmetric, the impedances simplify to Z2 = Z5 = Za and Z3 = Z6 = Zb'

The impedance matrix of the equivalent circuit is defined as

(5.13)

where

(5.14)

If the load impedance is real, the input impedance is expressed by

(5.15)

Thus, if Za and Z, fulfill the following condition (5.16), the input impedance is real and

frequency independent.

(5.16)
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This condition is fulfilled because the bridge has short and open circuits with the same lengths

alternately, producing an all pass network. This explains the impedance behavior of the

balun, but says nothing about the balance. Analyzing the equivalent circuit, we find no series

impedance in the common mode current path. Looking at the physical structure, there is some

symmetry placing the double y balun in the symmetric balun family.

Design: Double Y Balun
The design for the balun is trivial compared to laying it out for construction. The two types of

transmission line dimensions are the only parameters to be designed and can be done with

design curves or CAD packages. Air bridges should be added at the transition, connecting the

grounds of the CPW FGP' Table 5-2 presents the parameters for the transmission lines and

substrate obtained for this design. Since the structure is frequency independent, the

transmission line lengths can be made any convenient length.

Substrate CPS[mm] CPW FGP[mm]

ër h W G L Wo G We L

[mm]

9.8 0.635 0.2 0.02 1 0.1 0.04 0.12 0.996

'I'" 111''111
.l- f --- -- -h,-

Table 5-2 Transmission line dimensions for CPS - CPW FGP Double Y Balun

5.5 Tapered-line/Split Coaxial Balun [16 & 17]
The tapered line balun is the planar version of the split coaxial balun. Basically, it is two

planar transmission lines of different impedance connected together with an impedance taper.

The two planar transmission lines are of different topology, with the one an unbalanced

topology and the other balanced. Figure 5-20 shows a photograph of the balun.
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Figure 5-20 Photograph manufactured balun terminated with a Dipole (Top and bottom view).

5.5.1 Principle of Operation: Tapered-line

Looking at the impedance aspect there are a number of techniques available for designing

impedance tapers, with a few popular ones discussed in [18], and [16] reporting a 100:1

bandwidth balun using a Chebyshev taper. Impedance matching is thus not a problem with

the availability of literature. The balun principle is not as trivial though. The balun is part of

the symmetrical balun family, if indeed it is a balun at all. For the balun to be a symmetric

balun coupling between the two antenna arms and the balun/feed line should be equal. This is

not true if the physical structure shown in Figure 5-22 is inspected. The orientation of the

antenna also plays an important role in the symmetry of the system, although no orientation

can give reasonable symmetry. From a common mode choke perspective; [16] claims that the

taper angle is directly proportional to the common mode choking impedance. The reasoning

behind this theory is that the taper will force the currents to stay on the top of the microstrip

ground plane and not flow on the bottom. Intuitively this does not make sense because there

is nothing to prevent the electromagnetic fields from curling around to the bottom of the

ground plane, creating currents. This was investigated in the computations with little success
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in the improvement of the common mode choking impedance. Figure 5-21 shows a

simplified network model for the balun. The impedance transformer represents the

impedance transforming properties of the taper and Za' and Z;' is the new coupling

impedance from the antenna arm to the feed linelbalun. Intuitively this balun should give

worst results than a normally fed antenna system because of the highly asymmetrical structure

with very little common mode current choking.

Coaxial Feed

Figure 5-21 Network Model of Tapered-line Balun

Design: Tapered-line
The design of this balun is in the design of the taper. As mentioned earlier, [18] has detailed

descriptions of the design of popular tapers. The antenna should be terminated horizontally as

shown in Figure 5-20. Figure 5-22 shows the dimensions of the designed balun. A piece of

foam( Br ~ 1), 0.45 mm thick, is used as substrate.

72 M 107 M .07 M

~.~

-

~r,,- 0

ru ru
286 M

Figure 5-22 Dimensions of designed Tapered line balun

5.6 "Log-periodic" Balun [19]
This balun is not studied in the same detail as the previous baluns. A few remarks on the

operation and performance will only be made. The Log-Periodic balun is a anti-phase balun,

which falls in the class of popular baluns using combiners and dividers. Other baluns that

falls into this class are the 180 degree hybrid and Magic T baluns. A schematic diagram of

the balun is shown in Figure 5-23.
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Unbalanced Input

I
I

-1
I
lW1-

Figure 5-23 Schematic diagram of the "Log-periodic" Balun

5.6. 1 Principle of Operation: ULog-periodic" Balun

This balun is not much more than a power divider designed for a wide bandwidth with a

physically symmetrical structure. The "Log-periodic" structure is inherited from the "Log-

periodic" antenna explained in [20]. In essence these baluns operate by splitting, the input

signal into two, where the two paths have a difference of 180 degrees. The different length of

periodic sections gives the 180 degree path difference at different frequencies.

Design: "Log-periodic" Balun

The design is once again simple compared to the circuit board layout with only a few basic

equations to determine the length, width and separation of the periodic elements. The design

procedure is summarized in [19]

5.7 Coplanar-Slot balun [21]
This balun is also not studied in detail. A few remarks on the operation and performance will

only be made.

5.7.1 Principle of Operation: Coplanar-Slot balun

The balun is a basic transition from coplanar waveguide to coplanar stripline. The balance in

the system is forced by the addition of a radial slot, which acts as a wide band open circuit.

The radial slot forces the electric field to be mainly between the balanced arms of the CPS.

Air bridges on the transition plane ensure that the potential on the two ground planes are the

same.
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Figure 5-24 Schematic diagram of the Coplanar-Slot Balun

Design: Coplanar-Slot balun

The design of the balun is straight forward once a substrate is found on which CPW and CPS

lines of the same impedance can be realized. Transmission line parameters can easily be

obtained using curves, equations [21] or CAD software. An impedance transformer can be

added to the system on the unbalanced side if desired.

Substrate CPS[mm] CPW FGP[mm]

Br h W G L W G L

[mm]

1 2.5 1.8 0.46 37.5 0.92 0.9 37.5

f-
Ill"', 1111

r-

Table 5-3 Dimenslens of the Slot-line balun
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Chapter 6. Computational Results
The results are divided into three sections: currents, impedances and antenna

influence on balun performance. The first section presents the following results.

• Comparison of the two antenna arm currents. (magnitude & phase)

• The balun ratio for the balun terminated with an infmite dipole.

The second section is titled Impedance, and displays the following results:

• Feed impedance response of the balun terminated with the infmite dipole.

• The differential and common mode impedance computed from currents on the

infinite dipole arms at the feed point.

The third section presents the balun ratios for the balun terminated with all three test

antennas to see the effect finite antennas have on the balun's performance.

For the four baluns that were manufactured, there is a fourth section which deals with

the validation of the computational model. A comparison between the computed and

measured feed impedance or lSI I I is presented.

6.1 The Sleeve or "Bazooka" Balun

6.1.1 Balun Construction: "Bazooka 11 Balun

Figure 6-1 shows the computational model used in FEKO, while Figure 6-2 shows the

detailed view of the feeding section.

Coaxial Feed Line

Antenna Arm

Figure 6-1 Computational model
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High Impedance Voltage Censing Element

Figure 6-2 Detailed view of the feed section for Figure 6-1

6.1.2 Currents: "Bazooka" Balun

Figure 6-3 presents the arm currents calculated at the feed point and balun ratio for the

bazooka balun terminated with the infinite dipole. Notice that the currents are only

balanced around the centre frequency. This explains the peak in the balun ratio

response at that frequency. The balun ratio bandwidth is 11 % around the centre

frequency.

Current on ann 1 & 2: Magnitude

1/
1.2 1.4 1.6 1.8 2 2.2 2.40.8

Current on ann 1 & 2: Phase

0.8 1.2 1.4 1.6 1.8 2 2.2 2.4
Balun Ratio

60

til
~ 40
.9
~
c: 20"iii
al

0
0.8 1.2 1.4 1.6 1.8 2 2.2 2.4

Frequency [GHz]

Figure 6-3 Currents on Infinite Dipole Arms (Magnitude & Phase) and Balun Ratio for Infinite

Dipole
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6.1.3 Impedance: "Bazooka" Balun

Figure 6-4 presents the feed impedance and differential and common mode impedance

calculated from currents (At feed point) on infmite dipole arms. The balun has little

effect on the feed impedance as expected from the theory. The effect of the quarter

wave line can be seen in the common mode impedance.

Feed Impedance

_J- Real t
- Imaginary

2 2.2 2.4
Differential Mode Impedance calculated from dipole ann currents: Real & Imaginary

4001~=:::::==::=========F-~~=lJI I Real JI - Imaginary

:=
'ij
N o

I200
Q.

0.8 1.2 1.4 1.6 1.8 2 2.2 2.4
Common Mode Impedance calculated from dipole ann currents: Real & Imaginary15000

l 1-- Real 1

~

- Imaginary

V

E 10000
Q. 5000
§
~ 0

-5000
0.8 1.2 1.4 1.6 1.8 2 2.2 2.4

Frequency [GHz)

Figure 6-4 Feed Impedance and Differential and Common Mode Impedance Calculated from

Currents on Infinite Dipole Arms (At Feed Point)

6. 1.4 Antenna Type Influence on Balun Performance:

"Bazooka" Balun

Figure 6-5 presents the Balun Ratios for the Three test antennas to show how the

different antennas influence the balun performance. Refer to Appendix B for the

currents and impedance results of the dipole and bow-tie antennas terminated with the

various baluns.
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Balun Ratios for Test Antenna
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Frequency [GHz]

Infinite Dipole
- Dipole
- Bow-Tie

1.6 1.8 2.22

Figure 6-5 Balun Ratios for the Three test antennas

6.1.5 Validation of Model: "Bazooka" Balun

Figure 6-6 presents the measured and computed lSI II for the balun terminated with the

half wave dipole antenna. The measurement is done on a HP 8753 network analyzer

with a standard one port calibration.
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-2

-4

-6
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iii' -10
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Computed and Measured 15111Response for Dipole

- Computed response
- Measured response

1.2 1.4 1.6 1.8 2 2.2 2.4
Frequency [GHz]

Figure 6-6 Measured and Computed IS"I

6.2 Quarter wave Balun

6.2.1 Balun Construction: Quarter wave Balun

Figure 6-7 shows the computational model used in FEKO, while Figure 6-8 shows the

detailed view of the feeding section.
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Coaxial Feed Line

c:
..2
ccm
Q)

>cc
~...
Q)

1::cc
::Ja

Figure 6-7 Computational model

High Impedance Voltage Sensing Element
Currents on Arms at Feed Point

Figure 6-8 Detailed view of the feed section for Figure 6-7

6.2.2 Currents: Quarter wave Balun

Figure 6-9 presents the arm currents calculated at the feed point and balun ratio for the

quarter wave balun terminated with the infinite dipole. The currents on the two arms

are perfectly balanced and coincide on the figure. The balun ratio is infinite over the

whole band because of the balanced currents.
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Figure 6-9 Currents on Infinite Dipole Arms (Magnitude & Phase) and Balun Ratio for Infinite

Dipole.

6.2.3 Impedance: Quarter wave Balun

Figure 6-10 presents the feed, differential and common mode impedance calculated

from currents on infinite dipole arms. Notice the effect of the parallel combination of

the quarter wave loop and the antenna input impedance on the feed impedance. The

common mode impedance is infmite over the band as expected.
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Feed Impedance
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Figure 6-10 Feed Impedance and Differential and Common Mode Impedance Calculated from

Currents on Infinite Dipole Arms (At Feed Point)

6.2.4 Antenna Type Influence on Balun Performance:

Quarter wave Balun

Figure 6-11 presents the Balun Ratios for the three test antennas to show how the

different antennas influence the balun performance. Refer to Appendix B for the

current and impedance results of the dipole and bow-tie antennas terminated with the

various baluns. The balun ratios obtained with the infmite dipole and the dipole is

infinite over the band.
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Figure 6-11 Balun Ratios for the Three test antennas

6.2.5 Validation of Model: Quarter wave Balun

Figure 6-12 presents the measured and computed IS111 for this balun terminated with a

half wave dipole antenna. The measurement is done on a HP 8753 network analyzer

with a standard one port calibration. The extra resonance in the measured data

(1.4GHz) could not be explained.
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Computed and Measured IS111Response for Dipole

-25
- Computed response
- Measured response

Frequency [GHz]
1.80.8 1.2 1.4 1.6 2 2.2

Figure 6-12 Measured and Computed lSI II

6.3 Marchand Balun

6.3.1 Balun Construction: Marchand Balun

Figure 6-13 shows the computational model used in FEKO, while Figure 6-14 shows

the detailed view of the feeding section. The following computations were done with

an ideal configuration to show the wide band properties of the Marchand balun. The

SMA connector model, shown in Figure 6-13, was removed from the computational

model. In the validation of model section, the SMA was added again to be able to

make a good comparison with the measured results.
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SMA connector model

Antenna Arm

Figure 6-13 Computational model

High Impedance Voltage Censing Element

Detailed View of Feed section Detailed View of Antenna Termination section

Figure 6-14 Detailed view of the feed section for Figure 6-13

6.3.2 Currents: Marchand Balun

Figure 6-15 presents the arm currents calculated at the feed point and balun ratio for

the Marchand balun terminated with the infinite dipole. The results show good

balance over the band.
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Figure 6-15 Currents on Infinite Dipole Arms (Magnitude & Phase) and Balun Ratio for Infinite

Dipole

6.3.3 Impedance: Marchand Balun

Figure 6-16 presents the feed, differential and common mode impedance calculated

from currents on infinite dipole arms. The feed impedance of the system is flat over

the whole band as expected for a well designed Marchand balun. The impedance

transforming property of the balun is also visible from the feed impedance.
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Figure 6-16 Feed Impedance and Differential and Common Mode Impedance Calculated from

Currents on Infinite Dipole Arms (At Feed Point)

6.3.4 Antenna Type Influence on Balun Performance:

Marchand Balun

Figure 6-17 presents the Balun Ratios for the Three test antennas to show how the

different antennas influence the balun performance. Refer to Appendix B for the

currents and impedance results of the dipole and bow-tie antennas terminated with the

various baluns.
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Balun Ratios for Test Antenna
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Figure 6-17 Balun Ratios for the Three test antennas

6.3.5 Validation of Model: Marchand Balun

Figure 6-18 presents the measured and computed input impedance for the balun

terminated with the half wave dipole antenna. The measurement is done on a HP

8753 network analyzer with a standard one port calibration.

The following results are obtained with the SMA connector added to the

computational model, as shown in Figure 6-13. Values obtained by the computation

do not hold any importance. What is important is to notice that the computation and

the measurement do agree. A hypothesis can be made that the other results such as;

differential and common mode impedances and balun ratios obtained by computation,

are correct.
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Sytem Input Impedance: Real and Imaginary
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Figure 6-18 Measured and Computed System Input Impedance

6.4 Double Y Balun [13, 14 & 15]

6.4.1 Balun Construction: Double Y Balun

Figure 6-19 shows the computational model used in FEKO, while Figure 6-20 shows

the detailed view of the feeding section.
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Double Y Balun

Coaxial Feed Line

Figure 6-19 Computational model (Detailed view of antenna termination section is the same as

for the Marchand Balun)

OI!talllldYiewofFe«I .. cton

Figure 6-20 Detailed view of the feed section of Figure 6-19

6.4.2 Currents: Double Y Balun

Figure 6-21 presents the arm currents calculated at the feed point and balun ratio for

the double Y balun terminated with the infinite dipole. The results show very poor

balance over the band.
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Figure 6-21 Currents on Infinite Dipole Arms (Magnitude & Phase) and Balun Ratio for Infinite

Dipole

6.4.3 Impedance: Double Y Balun

Figure 6-22 presents the feed, differential and common mode impedance calculated

from currents on infmite dipole arms. The feed impedance of the system is flat over

the whole band as expected.
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Figure 6-22 Feed Impedance and Differential and Common Mode Impedance Calculated from

Currents on Infinite Dipole Arms (At Feed Point)

6.4.4 Antenna Type Influence on Balun Performance:

Double Y Balun

Figure 6-23 presents the Balun Ratios for the three test antennas to show how the

different antennas influence the balun performance. Refer to Appendix B for the

currents and impedance results of the dipole and bow-tie antennas terminated with the

various baluns.
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Balun Ratios for Test Antenna
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Figure 6-23 Balun Ratios for the Three test antennas

6.5 Tapered-line/Split Coaxial Balun [16 & 17]

6.5.1 Balun Construction: Tapered-line Balun

Figure 6-24 shows the computational model used in FEKO, while Figure 6-25 shows

the detailed view of the feeding and antenna terminating section.
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Figure 6-24 Computational model

/ Feed between two edges

High Impedance Voltage Cansing Element Currents on Arms at Feed Poln

Detailed view of Antenna Termination section Detailed view of Feed section

Figure 6-25 Detailed view of the antenna termination and feed section for Figure 6-24

6.5.2 Currents: Tapered-line Balun

Figure 6-26 presents the arm currents calculated at the feed point and balun ratio for

the tapered line balun terminated with the infinite dipole. The results show reasonable

current balance over the band. The balun ratio is unpredictable and oscillates around

10 dB.
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Figure 6-26 Currents on Infinite Dipole Arms (Magnitude & Phase) and Balun Ratio for Infinite

Dipole

6.5.3 Impedance: Tapered-line Balun

Figure 6-27 presents the feed, differential and common mode impedance calculated

from currents on infinite dipole arms. The length of either the microstrip, taper or

balanced line causes resonances in the band. This can be removed by carefully

redesigning the lengths mentioned. This does not interfere with the balance

investigation. The impedance transforming property can still be seen though.
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Feed Impedance

Differential Mode Impedance calculated from dipole ann currents: Real & Imaginary
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Common Mode Impedance calculated from dipole ann currents: Real & Imaginary
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Figure 6-27 Feed Impedance and Differential and Common Mode Impedance Calculated from

Currents on Infinite Dipole Arms (At Feed Point)

6.5.4 Antenna Type Influence on Balun Performance:

Tapered-line Balun

Figure 6-28 presents the Balun Ratios for the three test antennas to show how the

different antennas influence the balun performance. Refer to Appendix B for the

currents and impedance results of the dipole and bow-tie antennas terminated with the

various baluns.
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Balun Ratios for Test Antenna
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Figure 6-28 Balun Ratios for the Three test antennas

6.5.5 Validation of Model: Tapered-line Balun

Figure 6-29 presents the measured and computed input impedance for the balun

terminated with the half wave dipole antenna. The measurement is done on a HP

8753 network analyzer with a standard one port calibration.
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Figure 6-29 Measured and Computed System Input Impedance

6.6 "Log-periodic" Balun [19]

6.6.1 Balun Construction: "Log-periodic" Balun

Figure 6-30 shows the computational model used in FEKO.
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.. Infinite Dipole Arms

Log-Periodic Balun

/Coaxial Feed Line
,.,/-'

Figure 6-30 Computational model

6.6.2 Currents: "Log-periodic" Balun

Figure 6-31 presents the arm currents calculated at the feed point and balun ratio for

the "Log-periodic" balun terminated with the infinite dipole.
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Figure 6-31 Currents on Infinite Dipole Arms (Magnitude & Phase) and Balun Ratio for Infinite

Dipole
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6.6.3 Impedance: "Log-periodic" Balun

Figure 6-32 presents the feed, differential and common mode impedance calculated

from currents on infinite dipole arms

Feed Impedance

c
N

3 3.2 3.4 3.6 3.8 4 4.2 4.4
Differential Mode Impedance calculated from dipole arm currents: Real & Imaginary

Common Mode Impedance calculated from dipole arm currents: Real & Imaginary

E
.<:

Q.
g
N -5000

3 3.2 3.4 3.6 3.8 4 4.2 4.4
Frequency [GHz]

Figure 6-32 Feed Impedance and Differential and Common Mode Impedance Calculated from

Currents on Infinite Dipole Arms (At Feed Point)

6.6.4 Antenna Type Influence on Balun Performance:

"Log-periodic" Balun

Figure 6-33 presents the balun ratios for the three test antennas to show how the

different antennas influence the balun performance. Refer to Appendix B for the

currents and impedance results of the dipole and bow-tie antennas terminated with the

various baluns.
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Balun Ratios for Test Antenna
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Figure 6-33 Balun Ratios for the Three test antennas

6.7 Coplanar-Slot balun [21]

6.7.1 Balun Construction: Coplanar-Slot balun

Figure 6-34 shows the computational model used in FEKO.

""" Infinite Dipole Arms
<, ......-,

Coplanar-Slot Balun

"

Coaxial Feed Line

Figure 6-34 Computational model (Detailed view of the feed section is shown in Figure 6-20)
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6.7.2 Currents: Coplanar-Slot balun

Figure 6-35 presents the arm currents calculated at the feed point and balun ratio for

the coplanar-slot balun terminated with the infmite dipole.
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Figure 6-35 Currents on Infinite Dipole Arms (Magnitude & Phase) and Balun Ratio for Infinite

Dipole

6.7.3 Impedance: Coplanar-Slot balun

Figure 6-36 presents the feed, and differential and common mode impedance

calculated from currents (At feed point) on infinite dipole arms
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Feed Impedance
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Figure 6-36 Feed Impedance and Differential and Common Mode Impedance Calculated from

Currents on Infinite Dipole Arms (At Feed Point)

6.7.4 Antenna Type Influence on Balun Performance:

Coplanar-Slot balun

Figure 6-37 presents the balun ratios for the three test antennas to show how the

different antennas influence the balun performance. Refer to Appendix B for the

results of the dipole and bow-tie antennas terminated with the various baluns.
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Balun Ratios for Test Antenna
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Figure 6-37 Balun Ratios for the Three test antennas

6.8 Using Infinite Dipole Results to Predict

Finite Antenna Performance
As discussed in Chapter 3, the results of the infmite dipole are used to predict the

response of the finite antennas terminated with the investigated baluns. These results

are not expected to be very good since the baluns performance is highly dependant on

the antenna terminated to it. The dipole's prediction should be much better than the

Bow-Tie prediction because the infinite dipole and dipole look electrically almost the

same. This technique is only presented to enable you to get an idea of what the

system's response would be.

6.8.1 Bazooka Balun

Figure 6-38 presents a comparison between the predicted BazookaIDipole response

and the computed Bazooka/Dipole response.
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Predicted and Computed Input Impedance for Dipole Antenna: Real
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Figure 6-38 Predicted and Computed Input Impedance for Dipole Terminated to a Bazooka

Balun

Figure 6-39 presents a comparison between the predicted Bazooka/Bow-tie response

and the computed Bazooka/ Bow-tie response.
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Figure 6-39 Predicted and Computed Input Impedance for Bow-Tie Terminated to a Bazooka

Balun
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6.8.2 Quarter Wave Balun

Figure 6-40 presents a comparison between the predicted quarter wave balun /dipole

response and the computed quarter wave balun /dipole response.
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Predicted and Computed Input Impedance for Dipole Antenna: Imaginary
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Figure 6-40 Predicted and Computed Input Impedance for Dipole Terminated to a Quarter

Wave Balun

Figure 6-41 presents a comparison between the predicted quarter wave balun /bow-tie

response and the computed quarter wave balun / bow-tie response.
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Predicted and Computed Input Impedance for Bow-Tie Antenna: Real

200

Ë
Q. 150
Cl)

~ 100
(ii
"iii
&

- Predicted response
- Computed response

1.2 1.4 1.6 1.8
Frequency [GHz]

Predicted and Computed Input Impedance for Bow-Tie Antenna: Imaginary

-- Predicted response
- Computed response

1.8
Frequency [GHz]

2 2.2

Figure 6-41 Predicted and Computed Input Impedance for Bow-Tie terminated to a Quarter

Wave Balun

6.8.3 Marchand Balun

Figure 6-42 presents a comparison between the predicted Marchand balun /dipole

response and the computed Marchand balun /dipole response.
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Figure 6-42 Predicted and Computed Input Impedance for Dipole terminated to a Marchand

Balun
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Figure 6-43 presents a comparison between the predicted Marchand BaluniBow- Tie

response and the computed Marchand Balun /Bow- Tie response.
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Figure 6-43 Predicted and Computed Input Impedance for Bow-Tie Terminated to a Marchand

Balun

6.8.4 Double Y Balun

Figure 6-44 presents a comparison between the predicted double Y balun /dipole

response and the computed double Y balun /dipole response.
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Figure 6-44 Predicted and Computed Input Impedance for Dipole terminated to a Double Y

Balun

Figure 6-45 presents a comparison between the predicted double Y balun /bow-tie

response and the computed double Y balun /bow-tie response.
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Figure 6-45 Predicted and Computed Input Impedance for Bow-Tie terminated to a Double Y

Balun
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6.8.5 Tapered Line Balun

Figure 6-46 presents a comparison between the predicted tapered line balun Idipole

response and the computed tapered line balun Idipole response.
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Predicted and Computed Input Impedance for Dipole Antenna: Imaginary
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Figure 6-46 Predicted and Computed Input Impedance for Dipole terminated to a Tapered Line

Balun

Figure 6-40 presents a comparison between the predicted tapered line balun /bow-tie

response and the computed tapered line balun /bow-tie response.

400

..g
Ol
;;

~ 100

200

I300
Q.

0.8 2.2
Frequency [GHz]

Predicted and Computed Input Impedance for Bow-lie Antenna: Imaginary

250 /"

I 200 //

~ 150/

~lil 100

&!

\
\ /
\~

1.2 1.4
Frequency [GHz]

Figure 6-47 Predicted and Computed Input Impedance for Bow-Tie terminated to a Double Y

Balun
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Chapter 7. Conclusion

7.1 Comparison of Different Balun Performances
Balun Balun Ratio Bandwidth

% Bandwidth with BR::::20 dB
Infmite Dipole Dipole Bow-Tie

Bazooka 11.1 23.3 9.2

Quarter wave 00 00 00

Coaxial Marchand 00 00 00

Planar Marchand NA 26.8 34

Tapered line 0 0 0

Double Y 0 0 0

"Slot line" 0 0 NA

"Log-periodic" 2.8 25 NA

Table 7-1 Comparison of different balun performances

The following bullets summarize the overall performance of the investigated baluns.

• Quarter wave balun: Excellent narrow band balun with perfect balance over the

whole band. Impedance bandwidth is limited by the loop or quarter wave line. The

design and manufacture are very simple and can be done by hand. The factor that

limits the balun's performance is the impedance bandwidth. Note that the impedance

bandwidth of the dipole is actually increased when the quarter wave balun added to

the system. This can be seen in Appendix B.

• Bazooka balun: Good narrow band balun. Balance bandwidth is limited to that of a

quarter wave transformer. Impedance bandwidth is almost frequency independent.

Design and manufacturing is very simple and can be done by hand. The factor that

limits the balun's performance is the balance bandwidth.

• Marchand balun: Excellent wide band balun for the coaxial case. The balance

bandwidth is infinite. The impedance bandwidth is determined in the synthesis

procedure and is a trade off for the quality of impedance matching. Bandwidths of

10:1 are easily obtained. The design of the coaxial and the planar Marchand are both
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rather complex. The planar version is manufactured with standard printed circuit

board technologies while manufacturing the coaxial version demands workshop skills.

• Tapered line balun: The tapered line balun performs excellently as an impedance

transformer with good bandwidth. The balance bandwidth is very poor and

unpredictable though. This is not a balun. The manufacturing is easy and is done

with standard printed circuit board technologies.

• Double Y balun: This balun does not balance the system at all. The balance results

are worse that the results obtained without the balun. The impedance bandwidth on

the other hand is perfect, with a theoretical infinite bandwidth arising from the all pass

nature of the network. The design is trivial compared to the manufacturing.

• Slot Line balun: This balun does not balance the system at all. The balance results is

worse that the results obtained without the balun. [21] claims an impedance

bandwidth of about 40: 1. The design and manufacturing are very simple.

• Log-Periodic balun: The balance bandwidth is good. The balun show wide band

balance promise and must be investigated further. [19] claims a 8: I impedance

bandwidth. Design and manufacturing is simple.

7.2 Conclusion
Balun performance is governed by two key parameters: The balance and impedance

matching. The frequency band that the balun will operate properly in, is thus determined by

the key parameter with the smallest bandwidth.

It was proven that many structures that claim to be baluns, are nothing more than impedance

matching circuits which do nothing to the balance of the system. In the investigation of these

baluns, the following techniques were developed:

• A modelling technique that allows us to divide baluns into two families for

explanation purposes: Symmetrical and Choke baluns.

• Characterization of balun performance.

• Computational models that model the physical problem as accurately as possible.

Further investigation is under way to compile an article, presenting these findings to the

microwave community.
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Appendix A. Examples of Marchand Baluns

Planar [19]

Specifications

• Topology: Planner

• Order: 4

• Load impedance: 95 0.

• Source impedance: 500.

• Bandwidth: 3: 1

• Return loss: 30 dB

Coupled line parameters

• Z;e = 191.10.

• z; =36.70.

• zie = 155.30.

• z; = 29.80.

Coaxial [20]

Specifications

• Topology: Coaxial

• Order: 2

• Load impedance: 100 0.

• Source impedance: 50 0.

• Bandwidth: 10: 1

• Reflection coefficient: -9.5 dB

Transmission line parameters

• Z2 = 21 0.

• Z3 = 241
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Coaxial [20]

Specifications

• Topology: Coaxial

• Order: 3

• Load impedance: 1000

• Source impedance: 50 0

• Bandwidth: 10: 1

• Reflection coefficient: -12.4 dB

Transmission line parameters

• Z2 = 17.50

• Z3 = 215 n
• Z4 =70.70

Coaxial [20]

Specifications

• Topology: Coaxial

• Order: 4

• Load impedance: 100 0

• Source impedance: 500

• Bandwidth: 10: 1

• Reflection coefficient: -14.9 dB

Transmission line parameters

• ZI = 65

• Z2 = 20 0

• Z3 = 250 0
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Appendix B. Balun Performance

Bazooka Balun
Current on arm 1 & 2: Magnitude
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Figure B-1 Current on Dipole Arms

Differential Impedance calculated from dipole arm currents: Real & Imaginary
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Figure B-2 Common and differential mode impedances measured from Dipole arms at feed point
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Current on arm 1 & 2: Magnitude
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Figure B-3 Currents on Bow-Tie arms

Differential Impedance calculated from dipole arm currents: Real & Imaginary
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Figure B-4 Common and differential mode impedances measured from Bow-Tie arms at feed point
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Quarter wave balun
Current on arm 1 & 2: Magnitude
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Figure B-5 Currents on dipole arms
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Figure B-6 Common and differential mode impedances measured from dipole arms at feed point.
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Current on arm 1 & 2: Magnitude
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Figure B-7 Currents on Bow-tie arms

Differential Impedance calculated from dipole arm currents: Real & Imaginary
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Figure B-8 Common and differential mode impedances measured from Bow-tie arms at feed point.
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Marchand Balun
Current on ann 1 & 2: Magnitude
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Figure B-9 Currents on Dipole arms.
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Figure B-IO Common and differential mode impedances measured from Dipole arms at feed point.
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Figure B-ll Currents on Bow-Tie Arms.
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Figure B-12 Common and differential mode impedances measured from Bow-Tie arms at feed point.
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Double Y Balun
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Figure B-13 Current on Dipole Arms
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Figure B-14 Common and differential mode impedances measured from Dipole arms at feed point
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Current on arm 1 & 2: Magnitude
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Figure B-15 Currents on Bow-Tie Arms.
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Figure B-16 Common and differential mode impedances measured from Bow-Tie arms at feed point
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Tapered Line Balun
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Figure B-17 Current on Dipole Arms

Differential Impedance calculated from dipole arm currents: Real & Imaginary
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Figure B-18 Common and differential mode impedances measured from Dipole arms at feed point
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Current on ann , & 2: Magnitude
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Figure B-20 Common and differential mode impedances measured from Bow-Tie arms at feed point
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Log-Periodic Balun
Current on arm 1 & 2: Magnitude
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Figure B-22 Common and differential mode impedances measured from Dipole arms at feed points
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Slot Line Balun
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Figure B-23 Common and differential mode impedances measured from Dipole arms at feed points
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Appendix C. Impedance

Antenna

Profile for

Wu-King Impedance profile
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Figure C-l Impedance profile for Wu-King Antenna

Element Number Element Value
I 25.9202
2 27.2905
3 28.8136
4 30.5169
5 32.4342
6 34.6086
7 37.0954
8 39.9673
9 43.3212
10 47.2896
11 52.0583
12 57.8966
13 65.2098
14 74.6378
15 87.2526
16 104.9989
17 131.8071
18 176.9981
19 269.3450
20 563.1758

Table C-l Element values for Resistive

Wu-King
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